1
|
Talebi G, Nabavi-Rad A, Sadeghloo Z, Doulberis M, Zali MR, Yadegar A. Inhibitory effects of Lactobacillus reuteri strain I300 against Helicobacter pylori adhesion, invasion, and inflammatory response in gastric epithelial cells in vitro. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01263-7. [PMID: 40244552 DOI: 10.1007/s12223-025-01263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
The increasing rate of Helicobacter pylori (H. pylori) antibiotic resistance has attenuated the effectiveness of conventional antibiotic-based treatment regimens. This study was aimed at investigating the in vitro inhibitory effects of Lactobacillus reuteri (L. reuteri) strain I300 against H. pylori. The inhibitory effects of live L. reuteri I300 and its different formulations I300L, I300G, and I300T were examined on H. pylori adhesion and invasion to AGS cells. Auto-aggregation and co-aggregation assays and also scanning electron microscopy were performed, evaluating L. reuteri capacity to auto-aggregate and co-aggregate with H. pylori. RT-qPCR and ELISA were used to investigate the expression, and production level of inflammation-related cytokines TNF-α, IL-8, and IL-10. E-cadherin expression level was also measured, determining L. reuteri potential effect on AGS cells integrity. L. reuteri presented a time-dependent capacity to auto-aggregate and co-aggregate with H. pylori. Live L. reuteri and its formulations significantly reduced H. pylori adhesion and invasion of AGS cells. H. pylori treatment with L. reuteri reduced proinflammatory cytokines TNF-α and IL-8 production while increasing anti-inflammatory cytokine IL-10 production. L. reuteri promoted the epithelial cell-cell contact by upregulating E-cadherin expression. This study indicated L. reuteri I300 as a potential probiotic strain with co-aggregation capacity and inhibitory effects against H. pylori adhesion, invasion, and inflammation.
Collapse
Affiliation(s)
- Ghazaleh Talebi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadeghloo
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael Doulberis
- Gastroklinik, Private Gastroenterological Practice, Horgen, Switzerland
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Arafa SS, Elnoury HA, Badr El-Din S, Sakr MA, Hendawi FF, Masoud RAE, Barghash SS, Elbehairy DS, Hemeda AA, Farrag IM, Abdelrahman DS, Elsadek AM, Ghanem SK, AboShabaan HS, Atwa AM, Nour El Din M, Radwan AF, Al-Zahrani M, Alhomodi AF, Abdulfattah AM, Abdelkader A. Acetamiprid-induced pulmonary toxicity via oxidative stress, epithelial-mesenchymal transition, apoptosis, and extracellular matrix accumulation in human lung epithelial cells and fibroblasts: Protective role of heat-killed Lactobacilli. Food Chem Toxicol 2025; 198:115322. [PMID: 39961414 DOI: 10.1016/j.fct.2025.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Acetamiprid (ACE) is a neonicotinoid insecticide with widespread global application, resulting in persistent human exposure. The current research examined the toxicological implications of ACE exposure on human lung fibroblasts (MRC-5 cells) and bronchial epithelial cells (BEAS-2B cells). The following implications were explored: oxidative stress, epithelial-mesenchymal transition, apoptosis, cellular proliferation, and extracellular matrix accumulation. The prospective protective properties of heat-killed Lactobacillus fermentum and Lactobacillus delbrueckii (HKL) were further studied. The 14-day exposure to ACE at 4 μM triggered oxidative stress and inflammation. ACE promoted epithelial-mesenchymal transition, as evidenced by the decline of protein and mRNA abundances of E-cadherin alongside increased protein and mRNA quantities of α-SMA and N-cadherin in BEAS-2B cells. Additionally, it elicited apoptosis in BEAS-2B cells and stimulated the cellular growth of MRC-5 cells. The TGF-β1/Smad pathway was activated upon ACE exposure, leading to the accumulation of extracellular matrix. HKL demonstrated antioxidant, anti-apoptotic, anti-proliferative, and anti-fibrotic properties, mitigating ACE-induced toxicity. Our findings delineate the molecular mechanisms underlying epithelial-mesenchymal transition, inflammation, oxidative stress, and extracellular matrix accumulation in ACE-induced pulmonary fibrosis, which provides new insights into pulmonary injury. Additionally, this investigation would offer us an approach to mitigate lung deterioration induced by ACE through utilizing heat-killed probiotic supplementation.
Collapse
Affiliation(s)
- Samah S Arafa
- Department of Pesticides, Faculty of Agriculture, Menoufia University, Shibin Elkom, Egypt.
| | - Heba A Elnoury
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sahar Badr El-Din
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Sakr
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Fatma Fawzi Hendawi
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rehab Ali Elsayed Masoud
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Samia Soliman Barghash
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt; Department of Pharmacology and Toxicology, Pharmacy College, Qassim University, Saudi Arabia
| | - Doaa Sabry Elbehairy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ayat Abdelaty Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Islam Mostafa Farrag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Doaa Sayed Abdelrahman
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amira Mohammad Elsadek
- Department of Chest Diseases, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Sahar K Ghanem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Hind S AboShabaan
- Department of Clinical Pathology, National Liver Institute Hospital, Menoufia University, Shibin Elkom, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, Iraq
| | - Mahmoud Nour El Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Cairo, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt; Department of Pharmacy, Kut University College, Al Kut, Wasit, Iraq
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Sciences and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ahmad F Alhomodi
- Department of Biology, College of Science and Arts, Najran University, Saudi Arabia
| | - Ahmed M Abdulfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Embryonic Stem Cell Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
3
|
Papamentzelopoulou M, Pitiriga VC. Unlocking the Interactions Between the Whole-Body Microbiome and HPV Infection: A Literature Review. Pathogens 2025; 14:293. [PMID: 40137778 PMCID: PMC11945791 DOI: 10.3390/pathogens14030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
The human microbiome plays a vital role in maintaining human homeostasis, acting as a key regulator of host immunity and defense mechanisms. However, dysbiotic microbial communities may cause disruption of the symbiotic relationship between the host and the local microbiota, leading to the pathogenesis of various diseases, including viral infections and cancers. One of the most common infectious agents causing cancer is the human papilloma virus (HPV), which accounts for more than 90% of cervical cancers. In most cases, the host immune system is activated and clears HPV, whereas in some cases, the infection persists and can lead to precancerous lesions. Over the last two decades, the advent of next-generation sequencing (NGS) technology and bioinformatics has allowed a thorough and in-depth analysis of the microbial composition in various anatomical niches, allowing researchers to unveil the interactions and the underlying mechanisms through which the human microbiota could affect HPV infection establishment, persistence, and progression. Accordingly, the present narrative review aims to shed light on our understanding of the role of the human microbiome in the context of HPV infection and its progression, mainly to cervical cancer. Furthermore, we explore the mechanisms by which the composition and balance of microbial communities exert potential pathogenic or protective effects, leading to either HPV persistence and disease outcomes or clearance. Special interest is given to how the microbiome can modulate host immunity to HPV infection. Lastly, we summarize the latest findings on the therapeutic efficacy of probiotics and prebiotics in preventing and/or treating HPV infections and the potential of vaginal microbiota transplantation while highlighting the significance of personalized medicine approaches emerging from NGS-based microbiome profiling and artificial intelligence (AI) for the optimal management of HPV-related diseases.
Collapse
Affiliation(s)
- Myrto Papamentzelopoulou
- Molecular Biology Unit, 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassiliki C. Pitiriga
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| |
Collapse
|
4
|
Xia Q, Pierson S. HPV Infection and Oral Microbiota: Interactions and Future Implications. Int J Mol Sci 2025; 26:1424. [PMID: 40003891 PMCID: PMC11855562 DOI: 10.3390/ijms26041424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Human papillomavirus (HPV) is a leading cause of mucosal cancers, including the increasing incidence of HPV-related head and neck cancers. The oral microbiota-a diverse community of bacteria, fungi, and viruses-play a critical role in oral and systemic health. Oral microbiota dysbiosis is increasingly linked to inflammation, immune suppression, and cancer progression. Recent studies have highlighted a complex interaction between HPV and oral microbiota, suggesting this interplay influences viral persistence, immune response and the tumor microenvironment. These interactions hold significant implications for disease progression, clinical outcomes, and therapeutic approaches. Furthermore, the oral microbiota has emerged as a promising biomarker for HPV detection and disease progress assessment. In addition, probiotic-based treatments are gaining attention as an innovative approach for preventing or treating HPV-related cancers by modulating the microbial environment. In this review, current research on the interaction between HPV and oral microbiota is provided, their clinical implications are explored, and the future potential for utilizing microbiota for diagnostic and therapeutic innovations in HPV-associated cancers is discussed.
Collapse
Affiliation(s)
- Qingqing Xia
- Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| | | |
Collapse
|
5
|
Avitabile E, Menotti L, Croatti V, Giordani B, Parolin C, Vitali B. Protective Mechanisms of Vaginal Lactobacilli against Sexually Transmitted Viral Infections. Int J Mol Sci 2024; 25:9168. [PMID: 39273118 PMCID: PMC11395631 DOI: 10.3390/ijms25179168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The healthy cervicovaginal microbiota is dominated by various Lactobacillus species, which support a condition of eubiosis. Among their many functions, vaginal lactobacilli contribute to the maintenance of an acidic pH, produce antimicrobial compounds, and modulate the host immune response to protect against vaginal bacterial and fungal infections. Increasing evidence suggests that these beneficial bacteria may also confer protection against sexually transmitted infections (STIs) caused by viruses such as human papillomavirus (HPV), human immunodeficiency virus (HIV) and herpes simplex virus (HSV). Viral STIs pose a substantial public health burden globally, causing a range of infectious diseases with potentially severe consequences. Understanding the molecular mechanisms by which lactobacilli exert their protective effects against viral STIs is paramount for the development of novel preventive and therapeutic strategies. This review aims to provide more recent insights into the intricate interactions between lactobacilli and viral STIs, exploring their impact on the vaginal microenvironment, host immune response, viral infectivity and pathogenesis, and highlighting their potential implications for public health interventions and clinical management strategies.
Collapse
Affiliation(s)
- Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Vanessa Croatti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
6
|
Zaręba D, Ziarno M. Tween 80™-induced changes in fatty acid profile of selected mesophilic lactobacilli. Acta Biochim Pol 2024; 71:13014. [PMID: 39027262 PMCID: PMC11254618 DOI: 10.3389/abp.2024.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
Fatty acid profiles are crucial for the functionality and viability of lactobacilli used in food applications. Tween 80™, a common culture media additive, is known to influence bacterial growth and composition. This study investigated how Tween 80™ supplementation impacts the fatty acid profiles of six mesophilic lactobacilli strains (Lacticaseibacillus spp., Limosilactobacillus spp., Lactiplantibacillus plantarum). Analysis of eleven strains revealed 29 distinct fatty acids. Tween 80™ supplementation significantly altered their fatty acid composition. Notably, there was a shift towards saturated fatty acids and changes within the unsaturated fatty acid profile. While some unsaturated fatty acids decreased, there was a concurrent rise in cyclic derivatives like lactobacillic acid (derived from vaccenic acid) and dihydrosterculic acid (derived from oleic acid). This suggests that despite the presence of Tween 80™ as an oleic acid source, lactobacilli prioritize the synthesis of these cyclic derivatives from precursor unsaturated fatty acids. Myristic acid and dihydrosterculic acid levels varied across strains. Interestingly, palmitic acid content increased, potentially reflecting enhanced incorporation of oleic acid from Tween 80™ into membranes. Conversely, cis-vaccenic acid levels consistently decreased across all strains. The observed fatty acid profiles differed from previous studies, likely due to a combination of factors including strain-specific variations and growth condition differences (media type, temperature, harvesting point). However, this study highlights the consistent impact of Tween 80™ on the fatty acid composition of lactobacilli, regardless of these variations. In conclusion, Tween 80™ significantly alters fatty acid profiles, influencing saturation levels and specific fatty acid proportions. This work reveals key factors, including stimulated synthesis of lactobacillic acid, competition for oleic acid incorporation, and strain-specific responses to myristic and dihydrosterculic acids. The consistent reduction in cis-vaccenic acid and the presence of cyclic derivatives warrant further investigation to elucidate their roles in response to Tween 80™ supplementation.
Collapse
Affiliation(s)
- Dorota Zaręba
- Professor E. Pijanowski Catering School Complex in Warsaw, Warsaw, Poland
| | - Małgorzata Ziarno
- Institute of Food Science, Department of Food Technology and Assessment, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
7
|
Gutiérrez Salmeán G, Delgadillo González M, Rueda Escalona AA, Leyva Islas JA, Castro-Eguiluz D. Effects of prebiotics, probiotics, and synbiotics on the prevention and treatment of cervical cancer: Mexican consensus and recommendations. Front Oncol 2024; 14:1383258. [PMID: 38606098 PMCID: PMC11007160 DOI: 10.3389/fonc.2024.1383258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Gut microbiota plays a crucial role in modulating immune responses, including effector response to infection and surveillance of tumors. This article summarizes the current scientific evidence on the effects of supplementation with prebiotics, probiotics, and synbiotics on high-risk human papillomavirus (HPV) infections, precancerous lesions, and various stages of cervical cancer development and treatment while also examining the underlying molecular pathways involved. Our findings indicate that a higher dietary fiber intake is associated with a reduced risk of HPV infection, while certain probiotics have shown promising results in clearing HPV-related lesions. Additionally, certain strains of probiotics, prebiotics such as inulin and fructo-oligosaccharides, and synbiotics decrease the frequency of gastrointestinal adverse effects in cervical cancer patients. These agents attain their results by modulating crucial metabolic pathways, including the reduction of inflammation and oxidative stress, promoting apoptosis, inhibiting cell proliferation, and suppressing the activity of oncogenes, thus attenuating tumorigenesis. We conclude that although further human studies are necessary, robust evidence in preclinical models demonstrates that prebiotics, probiotics, and synbiotics play an essential role in cervical cancer, from infection to carcinogenesis and its medical treatment. Consequently, we strongly recommend conducting high-quality clinical trials using these agents as adjuvants since they have proven safe.
Collapse
Affiliation(s)
- Gabriela Gutiérrez Salmeán
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Mexico, Huixquilucan, Estado de Mexico, Mexico
- Servicio de Nutrición, Centro de Especialidades del Riñón (CER), Naucalpan de Juarez, Estado de Mexico, Mexico
| | - Merari Delgadillo González
- Modelo Integral para la atención del Cáncer Cervicouterino Localmente Avanzado y Avanzado (MICAELA) Program, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - José Antonio Leyva Islas
- Nutritional and Metabolic Support, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE) Hospital Regional Lic. Adolfo López Mateos, Mexico City, Mexico
| | - Denisse Castro-Eguiluz
- Investigador por México, Consejo Nacional de Humanidades Ciencias y Tecnologías (CONAHCyT)—Department of Clinical Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
8
|
Netto de Oliveira da Cunha C, Rodeghiero Collares S, Carvalho Rodrigues D, Walcher DL, Quintana de Moura M, Rodrigues Martins LH, Baracy Klafke G, de Oliveira Arias JL, Carapelli R, do Santos Espinelli Junior JB, Scaini CJ, Farias da Costa de Avila L. The larvicidal effect of the supernatant of Lactobacillus acidophilus ATCC 4356 on Toxocara canis. Exp Parasitol 2024; 258:108720. [PMID: 38367945 DOI: 10.1016/j.exppara.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
Human toxocariasis is a parasitic anthropozoonosis that is difficult to treat and control. A previous study carried out with Lactobacillus acidophilus ATCC 4356 revealed that the cell free supernatant (CFS) of this probiotic killed 100% of Toxocara canis larvae in vitro. The present study aimed to investigate the characteristics of the CFS of L. acidophilus ATCC 4356, which may be involved in its larvicidal effects on T. canis. L. acidophilus ATCC 4356 was cultured, and lactic and acetic acids present in the CFS were quantified by high performance liquid chromatography (HPLC). The levels of pH and H2O2 were also analyzed. To assess the larvicidal effect of the CFS, this was tested pure and diluted (1:2 to 1:128) on T. canis larvae. High concentrations of lactic and acetic acids were detected in the CFS. The acidity of the pure CFS was observed at pH 3.8, remaining acidic at dilutions of 1:2 to 1:16. Regarding the in vitro larvicidal effect, 100% death of T. canis larvae was observed using the pure CFS and 1:2 dilution. Based on these results, it can be inferred that the presence of higher concentrations of organic acids and low pH of the medium contributed to the larvicidal activity of the CFS of L. acidophilus ATCC 4356. In addition, the maintenance of the larvicidal effect, even after dilution, suggests a greater chance of the larvicidal effect of this CFS against T. canis in vivo.
Collapse
Affiliation(s)
- Carolina Netto de Oliveira da Cunha
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil.
| | | | - Débora Carvalho Rodrigues
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Débora Liliane Walcher
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Micaele Quintana de Moura
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Lourdes Helena Rodrigues Martins
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Gabriel Baracy Klafke
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Jean Lucas de Oliveira Arias
- Integrated Analysis Center, School of Chemistry and Food, Federal University of Rio Grande, Av. Italia, Km 6 - Campus Carreiros, CEP 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Rodolfo Carapelli
- School of Chemistry and Food, Federal University of Rio Grande, Avenida Itália, Km 08 - Campus Carreiros, CEP 96.203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - João Batista do Santos Espinelli Junior
- School of Chemistry and Food, Federal University of Rio Grande, Avenida Itália, Km 08 - Campus Carreiros, CEP 96.203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Carlos James Scaini
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Luciana Farias da Costa de Avila
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| |
Collapse
|
9
|
Angal A, Shidture S, Syed J, Tiwari DP, Dubey AK, Bhaduri A, Pujari R. In vitro adhesion and anti-inflammatory properties of Limosilactobacillus fermentum FS-10 isolated from infant fecal sample. Int Microbiol 2024; 27:227-238. [PMID: 37269431 DOI: 10.1007/s10123-023-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
In this study, seven strains of Limosilactobacillus fermentum were isolated from an infant fecal sample and characterized using in vitro studies. Lactobacillus rhamnosus GG was used as a comparison because it is a well-documented commercial probiotic. The isolates were tested for attributes such as acid and phenol tolerance, bile salt hydrolase (BSH) activity, and antibiotic sensitivity. One isolate, L. fermentum FS-10, displayed enhanced cell surface hydrophobicity (> 85%) and mucin adhesion. Mucin-binding helps colonization in the gut. The immunomodulatory property of L. fermentum FS-10 was evaluated by determining the modulation of pro- and anti-inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-10, and nitric oxide (NO) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions induced by lipopolysaccharide (LPS). L. fermentum FS-10 potently downregulated the expression of TNF-α and nitric oxide and upregulated IL-10 levels, indicating an anti-inflammatory response. Safety assessment of the strain revealed the absence of genes for virulence factors, toxin production, and antibiotic resistance, potentiating application as a probiotic strain.
Collapse
Affiliation(s)
- Ashvini Angal
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Shubham Shidture
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Jaserah Syed
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Deepika Pandey Tiwari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Ashok Kumar Dubey
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Anirban Bhaduri
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Radha Pujari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India.
| |
Collapse
|
10
|
Nguyen HDT, Le TM, Lee E, Lee D, Choi Y, Cho J, Park NJY, Chong GO, Seo I, Han HS. Relationship between Human Papillomavirus Status and the Cervicovaginal Microbiome in Cervical Cancer. Microorganisms 2023; 11:1417. [PMID: 37374919 DOI: 10.3390/microorganisms11061417] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Uterine cervical cancer (CC) is a complex, multistep disease primarily linked to persistent infection with high-risk human papillomavirus (HR-HPV). However, it is widely acknowledged that HR-HPV infection alone cannot account for the formation and progression of CC. Emerging evidence suggests that the cervicovaginal microbiome (CVM) also plays a significant role in HPV-related CC. Certain bacteria, such as Fusobacterium spp., Porphyromonas, Prevotella, and Campylobacter, are currently being considered as potential microbiomarkers for HPV-positive CC. However, the composition of the CVM in CC is inconsistent; thus, further studies are needed. This review comprehensively discusses the complex interplay between HPV and the CVM in cervical carcinogenesis. It is postulated that the dynamic interaction between HPV and the CVM creates an imbalanced cervicovaginal microenvironment that triggers dysbiosis, enhances HPV persistence, and promotes cervical carcinogenesis. Moreover, this review aims to provide updated evidence on the potential role of bacteriotherapy, particularly probiotics, in the treatment of CC.
Collapse
Affiliation(s)
- Hong Duc Thi Nguyen
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Tan Minh Le
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Eunmi Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Donghyeon Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yeseul Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Junghwan Cho
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Nora Jee-Young Park
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Gun Oh Chong
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Incheol Seo
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Hyung Soo Han
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
11
|
Xia C, Su J, Liu C, Mai Z, Yin S, Yang C, Fu L. Human microbiomes in cancer development and therapy. MedComm (Beijing) 2023; 4:e221. [PMID: 36860568 PMCID: PMC9969057 DOI: 10.1002/mco2.221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Colonies formed by bacteria, archaea, fungi, and viral groups and their genomes, metabolites, and expressed proteins constitute complex human microbiomes. An increasing evidences showed that carcinogenesis and disease progression were link to microbiomes. Different organ sources, their microbial species, and their metabolites are different; the mechanisms of carcinogenic or procancerous are also different. Here, we summarize how microbiomes contribute to carcinogenesis and disease progression in cancers of the skin, mouth, esophagus, lung, gastrointestinal, genital, blood, and lymph malignancy. We also insight into the molecular mechanisms of triggering, promoting, or inhibiting carcinogenesis and disease progress induced by microbiomes or/and their secretions of bioactive metabolites. And then, the strategies of application of microorganisms in cancer treatment were discussed in detail. However, the mechanisms by which human microbiomes function are still poorly understood. The bidirectional interactions between microbiotas and endocrine systems need to be clarified. Probiotics and prebiotics are believed to benefit human health via a variety of mechanisms, in particular, in tumor inhibition. It is largely unknown how microbial agents cause cancer or how cancer progresses. We expect this review may open new perspectives on possible therapeutic approaches of patients with cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jiyan Su
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Chuansheng Yang
- Department of Head‐Neck and Breast SurgeryYuebei People's Hospital of Shantou UniversityShaoguanChina
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|