1
|
Azad RK, Thakur DR. Purification and characterization of α-amylase from Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae). Int J Biol Macromol 2024; 278:135009. [PMID: 39181371 DOI: 10.1016/j.ijbiomac.2024.135009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Acanthoscelides obtectus is one of the most notorious pests of stored kidney beans (Phaseolus vulgaris) worldwide. Kidney beans are an important source of food for these insects. α-Amylase is the main carbohydrate-digesting enzyme in animals including insects. In the current study, the biochemical analysis revealed higher α-amylase activity (U/ml) in 3rd and 4th larval instars but decreased gradually in subsequent developmental stages. However, the specific activity (U/mg) interestingly was highest in 1st instar and decreased in further developmental stages. During qualitative analysis of α-amylase using starch-agar and native PAGE, the maximum zone of starch lysis and a prominent band on the gel was observed in 3rd and 4th larval stages. The molecular mass of the native enzyme was also estimated and found to be 30.34 kDa. The crude α-amylase was further purified by ammonium sulfate precipitation, gel filtration on a Sephadex G-75, and ion exchange chromatography on the DEAE cellulose column. The purified amylase was found to be a monomer with a molecular mass of 15 kDa. The specific activity of the purified enzyme increased from 1.74 U/mg in the crude sample to 166.35 U/mg in the final purification step resulting in 95-fold purification with a yield of 11.14%. Further characterization of purified α-amylase revealed a pH optimum of 7.0 and a temperature optimum of 35 °C. Lineweaver-Burk plot analysis revealed Km and Vmax to be 0.09% and 3.3 U/mL, respectively. Oxalic acid, tannic acid, and HgCl2 significantly inhibited the enzyme, while the Na+, Ca++, and Mg++ ions acted as activators. In conclusion, the study revealed, the highest α-amylase activity in 3rd and 4th larval stages of Acanthoscelides obtectus followed by native and SDS PAGE resulting in molecular mass of 30.34 and 15 kDa respectively.
Collapse
Affiliation(s)
- Rajesh Kumar Azad
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India.
| | - Desh Raj Thakur
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
2
|
Da Lage JL. The Amylases of Insects. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2018; 10:1179543318804783. [PMID: 30305796 PMCID: PMC6176531 DOI: 10.1177/1179543318804783] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 05/26/2023]
Abstract
Alpha-amylases are major digestive enzymes that act in the first step of maltopolysaccharide digestion. In insects, these enzymes have long been studied for applied as well as purely scientific purposes. In many species, amylases are produced by multiple gene copies. Rare species are devoid of Amy gene. They are predominantly secreted in the midgut but salivary expression is also frequent, with extraoral activity. Enzymological parameters are quite variable among insects, with visible trends according to phylogeny: Coleopteran amylases have acidic optimum activity, whereas dipteran amylases have neutral preference and lepidopteran ones have clear alkaline preference. The enzyme structure shows interesting variations shaped by evolutionary convergences, such as the recurrent loss of a loop involved in substrate handling. Many works have focused on the action of plant amylase inhibitors on pest insect amylases, in the frame of crop protection by transgenesis. It appears that sensitivity or resistance to inhibitors is finely tuned and very specific and that amylases and their inhibitors have coevolved. The multicopy feature of insect amylases appears to allow tissue-specific or stage-specific regulation, but also to broaden enzymological abilities, such as pH range, and to overcome plant inhibitory defenses.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- UMR 9191 Évolution, Génomes, Comportement, Écologie,
CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette,
France
| |
Collapse
|
3
|
Cusumano A, Duvic B, Jouan V, Ravallec M, Legeai F, Peri E, Colazza S, Volkoff AN. First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:68-80. [PMID: 29477467 DOI: 10.1016/j.jinsphys.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/23/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functional role and conducted a transcriptomic analysis of the venom gland. We found that injection of O. telenomicida venom induces: 1) a melanized-like process in N. viridula host eggs (host-parasitoid interaction), 2) impairment of the larval development of the competitor Trissolcus basalis (Wollaston) (parasitoid-parasitoid interaction). The O. telenomicida venom gland transcriptome reveals a majority of digestive enzymes (peptidases and glycosylases) and oxidoreductases (laccases) among the most expressed genes. The former enzymes are likely to be involved in degradation of the host resources for the specific benefit of the O. telenomicida offspring. In turn, alteration of host resources caused by these enzymes may negatively affect the larval development of the competitor T. basalis. We hypothesize that the melanization process induced by venom injection could be related to the presence of laccases, which are multicopper oxidases that belong to the phenoloxidases group. This work contributed to a better understanding of the venom in insect parasitoids and allowed to identify candidate genes whose functional role can be investigated in future studies.
Collapse
Affiliation(s)
- Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy; Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Bernard Duvic
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Véronique Jouan
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Marc Ravallec
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Fabrice Legeai
- BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes Cedex, France
| | - Ezio Peri
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Stefano Colazza
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Anne-Nathalie Volkoff
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| |
Collapse
|
4
|
Bodláková K, Jedlička P, Kodrík D. Adipokinetic hormones control amylase activity in the cockroach (Periplaneta americana) gut. INSECT SCIENCE 2017; 24:259-269. [PMID: 26782629 DOI: 10.1111/1744-7917.12314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
This study examined the biochemical characteristics of α-amylase and hormonal (adipokinetic hormone: AKH) stimulation of α-amylase activity in the cockroach (Periplaneta americana) midgut. We applied two AKHs in vivo and in vitro, then measured resultant amylase activity and gene expression, as well as the expression of AKH receptor (AKHR). The results revealed that optimal amylase activity is characterized by the following: pH: 5.7, temperature: 38.4 °C, Km (Michaelis-Menten constant): 2.54 mg starch/mL, and Vmax (maximum reaction velocity): 0.185 μmol maltose/mL/min. In vivo application of AKHs resulted in significant increase of amylase activity: by two-fold in the gastric caeca and 4-7 fold in the rest of the midgut. In vitro experiments supported results seen in vivo: a 24-h incubation with the hormones resulted in the increase of amylase activity by 1.4 times in the caeca and 4-9 times in the midgut. Further, gene expression analyses reveal that AKHR is expressed in both the caeca and the rest of the midgut, although expression levels in the former were 23 times higher than levels in the latter. A similar pattern was found for the amylase (AMY) gene. Hormonal treatment did not affect the expression of either gene. This study is the first to provide evidence indicating direct AKH stimulation of digestive enzyme activity in the insect midgut, supported by specific AKHR gene expression in this organ.
Collapse
Affiliation(s)
| | - Pavel Jedlička
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo sq. 2, 166 10, Prague, Czech Republic
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
5
|
Claisse G, Feller G, Bonneau M, Da Lage JL. A single amino-acid substitution toggles chloride dependence of the alpha-amylase paralog amyrel in Drosophila melanogaster and Drosophila virilis species. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:70-77. [PMID: 27312592 DOI: 10.1016/j.ibmb.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 06/01/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
In animals, most α-amylases are chloride-dependent enzymes. A chloride ion is required for allosteric activation and is coordinated by one asparagine and two arginine side chains. Whereas the asparagine and one arginine are strictly conserved, the main chloride binding arginine is replaced by a glutamine in some rare instances, resulting in the loss of chloride binding and activation. Amyrel is a distant paralogue of α-amylase in Diptera, which was not characterized biochemically to date. Amyrel shows both substitutions depending on the species. In Drosophila melanogaster, an arginine is present in the sequence but in Drosophila virilis, a glutamine occurs at this position. We have investigated basic enzymological parameters and the dependence to chloride of Amyrel of both species, produced in yeast, and in mutants substituting arginine to glutamine or glutamine to arginine. We found that the amylolytic activity of Amyrel is about thirty times weaker than the classical Drosophila α-amylase, and that the substitution of the arginine by a glutamine in D. melanogaster suppressed the chloride-dependence but was detrimental to activity. In contrast, changing the glutamine into an arginine rendered D. virilis Amyrel chloride-dependent, and interestingly, significantly increased its catalytic efficiency. These results show that the chloride ion is not mandatory for Amyrel but stimulates the reaction rate. The possible phylogenetic origin of the arginine/glutamine substitution is also discussed.
Collapse
Affiliation(s)
- Gaëlle Claisse
- UMR 9191 Evolution, Génomes, Comportement et Ecologie, CNRS, F-91198 Gif-sur-Yvette, France; Univ. Paris-Sud, F-91405 Orsay Cedex, France
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering, University of Liège, B-4000 Liège-Sart Tilman, Belgium
| | - Magalie Bonneau
- UMR 9191 Evolution, Génomes, Comportement et Ecologie, CNRS, F-91198 Gif-sur-Yvette, France; Univ. Paris-Sud, F-91405 Orsay Cedex, France
| | - Jean-Luc Da Lage
- UMR 9191 Evolution, Génomes, Comportement et Ecologie, CNRS, F-91198 Gif-sur-Yvette, France; Univ. Paris-Sud, F-91405 Orsay Cedex, France.
| |
Collapse
|
6
|
Sharifloo A, Zibaee A, Sendi JJ, Jahroumi KT. Characterization of a Digestive α-Amylase in the Midgut of Pieris brassicae L. (Lepidoptera: Pieridae). Front Physiol 2016; 7:96. [PMID: 27014094 PMCID: PMC4791400 DOI: 10.3389/fphys.2016.00096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/29/2016] [Indexed: 11/30/2022] Open
Abstract
The current study deals with a digestive α-amylase in the larvae of Pieris brassicae L. through purification, enzymatic characterization, gene expression, and in vivo effect of a specific inhibitor, Acarbose. Although α-amylase activity was the highest in the whole gut homogenate of larvae but compartmentalization of amylolytic activity showed an equal activity in posterior midgut (PM) and anterior midgut (AM). A three step purification using ammonium sulfate, Sepharyl G-100 and DEAE-Cellulose Fast flow revealed an enzyme with a specific activity of 5.18 U/mg, recovery of 13.20, purification fold of 19.25 and molecular weight of 88 kDa. The purified α-amylase had the highest activity at optimal pH and temperature of 8 and 35°C. Also, the enzyme had Vmax values of 4.64 and 3.02 U/mg protein and Km values of 1.37 and 1.74% using starch and glycogen as substrates, respectively. Different concentrations of acarbose, ethylenediamine tetraacetic acid, and ethylene glycol-bis (β-aminoethylether) N, N, N′, N′-tetraacetic acid significantly decreased activity of the purified α-amylase. The 4th instar larvae of P. brassicae were fed on the treated leaves of Raphanus sativus L. with 0.22 mM of Acarbose to find in vivo effects on nutritional indices, α-amylase activity, and gene expression. The significant differences were only found in conversion efficiency of digested food, relative growth rate, and metabolic cost of control and fed larvae on Acarbose. Also, amylolytic activity significantly decreased in the treated larvae by both biochemical and native-PAGE experiments. Results of RT-PCR revealed a gene with 621 bp length responsible for α-amylase expression that had 75% identity with Papilio xuthus and P. polytes. Finally, qRT-PCR revealed higher expression of α-amylase in control larvae compared to acarbose-fed ones.
Collapse
Affiliation(s)
- Ali Sharifloo
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan Rasht, Iran
| | - Arash Zibaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan Rasht, Iran
| | - Jalal J Sendi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan Rasht, Iran
| | - Khalil Talebi Jahroumi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran Karaj, Iran
| |
Collapse
|
7
|
Kaur R, Kaur N, Gupta AK. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 116:83-93. [PMID: 25454524 DOI: 10.1016/j.pestbp.2014.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND α-Amylase is an important digestive enzyme required for the optimal growth and development of insects. Several insect α-amylases had been purified and their physical and chemical properties were characterized. Insect α-amylases of different orders display variability in structure, properties and substrate specificity. Such diverse properties of amylases could be due to different feeding habits and gut environment of insects. KEY POINTS In this review, structural features and properties of several insect α-amylases were compared. This could be helpful in exploring the diversity in characteristics of α-amylase between the members of the same class (insecta). Properties like pH optima are reflected in enzyme structural features. In plants, α-amylase inhibitors (α-AIs) occur as part of natural defense mechanisms against pests by interfering in their digestion process and thus could also provide access to new pest management strategies. AIs are quite specific in their action; therefore, these could be employed according to their effectiveness against target amylases. Potential of transgenics with α-AIs has also been discussed for insect resistance and controlling infestation. CONCLUSIONS The differences in structural features of insect α-amylases provided reasons for their efficient functioning at different pH and the specificity towards various substrates. Various proteinaceous and non-proteinaceous inhibitors discussed could be helpful in controlling pest infestation. In depth detailed studies are required on proteinaceous α-AI-α-amylase interaction at different pH's as well as the insect proteinase action on these inhibitors before selecting the α-AI for making transgenics resistant to particular insect.
Collapse
Affiliation(s)
- Rimaljeet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Narinder Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Anil Kumar Gupta
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India.
| |
Collapse
|
8
|
Lima TDA, Pontual EV, Dornelles LP, Amorim PK, Sá RA, Coelho LCBB, Napoleão TH, Paiva PMG. Digestive enzymes from workers and soldiers of termite Nasutitermes corniger. Comp Biochem Physiol B Biochem Mol Biol 2014; 176:1-8. [DOI: 10.1016/j.cbpb.2014.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
9
|
Zibaee A. Digestive enzymes of large cabbage white butterfly,Pieris brassicaeL. (Lepidoptera: Pieridae) from developmental and site of activity perspectives. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/11250003.2011.607190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|