1
|
Fiard M, Cuny P, Sylvi L, Hubas C, Jézéquel R, Lamy D, Walcker R, El Houssainy A, Heimbürger-Boavida LE, Robinet T, Bihannic I, Gilbert F, Michaud E, Dirberg G, Militon C. Mangrove microbiota along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South America): Drivers and potential bioindicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150667. [PMID: 34599952 DOI: 10.1016/j.scitotenv.2021.150667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The microbial communities inhabiting the Atlantic-East Pacific (AEP) mangroves have been poorly studied, and mostly comprise chronically polluted mangroves. In this study, we characterized changes in the structure and diversity of microbial communities of mangroves along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South America) that experience low human impact. The microbial communities were assigned into 50 phyla. Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Planctomycetes were the most abundant taxa. The environmental determinants found to significantly correlated to the microbial communities at these mangroves were granulometry, dieldrin concentration, pH, and total carbon (TC) content. Furthermore, a precise analysis of the sediment highlights the existence of three types of anthropogenic pressure among the stations: (i) organic matter (OM) enrichment due to the proximity to the city and its wastewater treatment plant, (ii) dieldrin contamination, and (iii) naphthalene contamination. These forms of weak anthropogenic pressure seemed to impact the bacterial population size and microbial assemblages. A decrease in Bathyarchaeota, "Candidatus Nitrosopumilus", and Nitrospira genera was observed in mangroves subjected to OM enrichment. Mangroves polluted with organic contaminants were enriched in Desulfobacteraceae, Desulfarculaceae, and Acanthopleuribacteraceae (with dieldrin or polychlorobiphenyl contamination), and Chitinophagaceae and Geobacteraceae (with naphthalene contamination). These findings provide insights into the main environmental factors shaping microbial communities of mangroves in the AEP that experience low human impact and allow for the identification of several potential microbial bioindicators of weak anthropogenic pressure.
Collapse
Affiliation(s)
- Maud Fiard
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Philippe Cuny
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Léa Sylvi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Cédric Hubas
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Station Marine de Concarneau, 29900 Concarneau, France.
| | | | - Dominique Lamy
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France; Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Sorbonne Université, Univ Paris Est Créteil, IRD, CNRS, INRA, 4 place Jussieu, 75005 Paris, France.
| | - Romain Walcker
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| | - Amonda El Houssainy
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | | | - Tony Robinet
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Station Marine de Concarneau, 29900 Concarneau, France.
| | | | - Franck Gilbert
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| | - Emma Michaud
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Guillaume Dirberg
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France.
| | - Cécile Militon
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| |
Collapse
|
2
|
Froján M, Arbones B, Garrido JL, Rodríguez F. Microbial Community Composition during a Bloom of Purple Bacteria in Intertidal Sediments in Vigo (Northwest Spain). Microbiol Spectr 2021; 9:e0123821. [PMID: 34704815 PMCID: PMC8549741 DOI: 10.1128/spectrum.01238-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
In summer 2019, a large, bright pink microbial mat was visible on top of macroalgal deposits in muddy sediments of an urban beach (Playa do Adro, Vigo). In order to characterize the dominant organisms in these colored mats, results from microscopic observations, photosynthetic pigments, and molecular analysis were gathered. Light microscopy examination revealed pinkish microbial aggregates with minor contributions of larger protists and cyanobacteria. High-performance liquid chromatography (HPLC) pigment analysis documented the dominance of bacteriochlorophyll a and carotenoids whose spectra were compatible with those described in photosynthetic purple bacteria. 16S rRNA gene amplicon sequencing confirmed that the vast majority of reads belonged to Proteobacteria (73.5%), and among them, nearly 88% of those reads belonged to purple sulfur bacteria (Gammaproteobacteria). A single family, Chromatiaceae, constituted the bulk of this assemblage, including the genera Thiohalocapsa (32%), Marichromatium (12.5%), Phaeochromatium (5%), and Halocromatium (2%) as main contributors. Nonetheless, a considerable number of sequences could not be assigned to a particular genus, stressing the large biological diversity in these microbial mats and the potential presence of novel taxa of purple sulfur bacteria. IMPORTANCE Urban beaches are valuable recreational areas particularly vulnerable to human disturbance. In these areas, the intertidal sediments harbor a diverse community of microorganisms, including virus, bacteria, fungi, and protozoa. In this sense, pollution events can introduce pathogenic allochthonous microbes which may constitute a human health risk. Visual and sensory observations, such as a weird color or bad smell, are usually appreciated as a warning by beachgoers and authorities, as indeed was the case at do Adro beach in 2019. The observed proliferation seems to be common in summertime, but its dimension alerted beachgoers and media. The obtained results allowed for the identification of purple sulfur bacteria as responsible for the pink-violet top layer staining the intertidal zone. These blooms have never been associated with public health risks. Beyond solving the sanitary concern, other important findings were its diversity and large proportion of novel taxa, illustrating the complexity of these ecosystems.
Collapse
Affiliation(s)
- M. Froján
- Department of Oceanography, Instituto de Investigaciones Marinas (IIM, CSIC), Vigo, Spain
| | - B. Arbones
- Department of Oceanography, Instituto de Investigaciones Marinas (IIM, CSIC), Vigo, Spain
| | - J. L. Garrido
- Department of Oceanography, Instituto de Investigaciones Marinas (IIM, CSIC), Vigo, Spain
| | - F. Rodríguez
- Department of Harmful Algae and Red Tides, Instituto Español de Oceanografia (IEO, CSIC), Vigo, Spain
| |
Collapse
|
3
|
Mo S, Li J, Li B, Kashif M, Nie S, Liao J, Su G, Jiang Q, Yan B, Jiang C. L-Cysteine Synthase Enhanced Sulfide Biotransformation in Subtropical Marine Mangrove Sediments as Revealed by Metagenomics Analysis. WATER 2021; 13:3053. [DOI: 10.3390/w13213053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
High sulfides concentrations can be poisonous to environment because of anthropogenic waste production or natural occurrences. How to elucidate the biological transformation mechanisms of sulfide pollutants in the subtropical marine mangrove ecosystem has gained increased interest. Thus, in the present study, the sulfide biotransformation in subtropical mangroves ecosystem was accurately evaluated using metagenomic sequencing and quantitative polymerase chain reaction analysis. Most abundant genes were related to the organic sulfur transformation. Furthermore, an ecological model of sulfide conversion was constructed. Total phosphorus was the dominant environmental factor that drove the sulfur cycle and microbial communities. We compared mangrove and non-mangrove soils and found that the former enhanced metabolism that was related to sulfate reduction when compared to the latter. Total organic carbon, total organic nitrogen, iron, and available sulfur were the key environmental factors that effectively influenced the dissimilatory sulfate reduction. The taxonomic assignment of dissimilatory sulfate-reducing genes revealed that Desulfobacterales and Chromatiales were mainly responsible for sulfate reduction. Chromatiales were most sensitive to environmental factors. The high abundance of cysE and cysK could contribute to the coping of the microbial community with the toxic sulfide produced by Desulfobacterales. Collectively, these findings provided a theoretical basis for the mechanism of the sulfur cycle in subtropical mangrove ecosystems.
Collapse
Affiliation(s)
- Shuming Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Bin Li
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| | - Muhammad Kashif
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shiqing Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jianping Liao
- School of Computer and Information Engineering, Nanning Normal University, Nanning 530299, China
| | - Guijiao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Qiong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Bing Yan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| |
Collapse
|
4
|
Mo S, Li J, Li B, Kashif M, Nie S, Liao J, Su G, Jiang Q, Yan B, Jiang C. L-Cysteine Synthase Enhanced Sulfide Biotransformation in Subtropical Marine Mangrove Sediments as Revealed by Metagenomics Analysis. WATER 2021; 13:3053. [DOI: https:/doi.org/10.3390/w13213053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
High sulfides concentrations can be poisonous to environment because of anthropogenic waste production or natural occurrences. How to elucidate the biological transformation mechanisms of sulfide pollutants in the subtropical marine mangrove ecosystem has gained increased interest. Thus, in the present study, the sulfide biotransformation in subtropical mangroves ecosystem was accurately evaluated using metagenomic sequencing and quantitative polymerase chain reaction analysis. Most abundant genes were related to the organic sulfur transformation. Furthermore, an ecological model of sulfide conversion was constructed. Total phosphorus was the dominant environmental factor that drove the sulfur cycle and microbial communities. We compared mangrove and non-mangrove soils and found that the former enhanced metabolism that was related to sulfate reduction when compared to the latter. Total organic carbon, total organic nitrogen, iron, and available sulfur were the key environmental factors that effectively influenced the dissimilatory sulfate reduction. The taxonomic assignment of dissimilatory sulfate-reducing genes revealed that Desulfobacterales and Chromatiales were mainly responsible for sulfate reduction. Chromatiales were most sensitive to environmental factors. The high abundance of cysE and cysK could contribute to the coping of the microbial community with the toxic sulfide produced by Desulfobacterales. Collectively, these findings provided a theoretical basis for the mechanism of the sulfur cycle in subtropical mangrove ecosystems.
Collapse
|
5
|
Sylvestre MN, Jean-Louis P, Grimonprez A, Bilas P, Collienne A, Azède C, Gros O. Candidatus Thiovulum sp. strain imperiosus: the largest free-living Epsilonproteobacteraeota Thiovulum strain lives in a marine mangrove environment. Can J Microbiol 2021; 68:1-14. [PMID: 34461021 DOI: 10.1139/cjm-2021-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A large (47.75 ± 3.56 µm in diameter) Thiovulum bacterial strain forming white veils is described from a marine mangrove ecosystem. High sulfide concentrations (up to 8 mM of H2S) were measured on sunken organic matter (wood/bone debris) under laboratory conditions. This sulfur-oxidizing bacterium colonized the organic matter, forming a white veil. According to conventional scanning electron microscope (SEM) observations, bacterial cells are ovoid and slightly motile by numerous small flagella present on the cell surface. Large intracytoplasmic internal sulfur granules were observed, suggesting a sulfidic-based metabolism. Observations were confirmed by elemental sulfur distribution detected by energy-dispersive X-ray spectroscopy (EDXS) analysis using an environmental scanning electron microscope (ESEM) on non-dehydrated samples. Phylogenetic analysis of the partial sequence of 16S rDNA obtained from purified fractions of this Epsilonproteobacteraeota strain indicates that this bacterium belongs to the Thiovulaceae cluster and could be one of the largest Thiovulum ever described. We propose to name this species Candidatus Thiovulum sp. strain imperiosus.
Collapse
Affiliation(s)
- Marie-Noëlle Sylvestre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Patrick Jean-Louis
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Adrien Grimonprez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Philippe Bilas
- Centre Commun de Caractérisation des Matériaux des Antilles et de la Guyane (C3MAG), UFR des Sciences Exactes et Naturelles, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
- Groupe de Technologie des Surfaces et des Interfaces, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Amandine Collienne
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Catherine Azède
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
- Centre Commun de Caractérisation des Matériaux des Antilles et de la Guyane (C3MAG), UFR des Sciences Exactes et Naturelles, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| |
Collapse
|
6
|
Luis P, Saint-Genis G, Vallon L, Bourgeois C, Bruto M, Marchand C, Record E, Hugoni M. Contrasted ecological niches shape fungal and prokaryotic community structure in mangroves sediments. Environ Microbiol 2019; 21:1407-1424. [PMID: 30807675 DOI: 10.1111/1462-2920.14571] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022]
Abstract
Mangroves are forest ecosystems located at the interface between land and sea where sediments presented a variety of contrasted environmental conditions (i.e. oxic/anoxic, non-sulfidic/sulfidic, organic matter content) providing an ideal ecosystem to study microbial communities with niche differentiation and distinct community structures. In this work, prokaryotic and fungal compositions were investigated during both wet and dry seasons in New Caledonian mangrove sediments, from the surface to deeper horizons under the two most common tree species in this region (Avicennia marina and Rhizophora stylosa), using high-throughput sequencing. Our results showed that Bacteria and Archaea communities were mainly shaped by sediment depth while the fungal community was almost evenly distributed according to sediment depth, vegetation cover and season. A detailed analysis of prokaryotic and fungal phyla showed a dominance of Ascomycota over Basidiomycota whatever the compartment, while there was a clear shift in prokaryotic composition. Some prokaryotic phyla were enriched in surface layers such as Proteobacteria, Euryarchaeota while others were mostly associated with deeper layers as Chloroflexi, Bathyarchaeota, Aminicenantes. Our results highlight the importance of considering fungal and prokaryotic counterparts for a better understanding of the microbial succession involved in plant organic matter decomposition in tropical coastal sediments.
Collapse
Affiliation(s)
- Patricia Luis
- CNRS, UMR5557; Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Geoffroy Saint-Genis
- CNRS, UMR5557; Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Laurent Vallon
- CNRS, UMR5557; Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Carine Bourgeois
- IMPMC, Institut de Recherche pour le Développement (IRD), UPMC, CNRS, MNHN, Noumea, New Caledonia, France
| | - Maxime Bruto
- UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, CS 90074, F-29688, Roscoff Cedex, France
| | - Cyril Marchand
- IMPMC, Institut de Recherche pour le Développement (IRD), UPMC, CNRS, MNHN, Noumea, New Caledonia, France.,ISEA, EA, Université de la Nouvelle-Calédonie (UNC), 3325, BP R4, 98851, Noumea, New Caledonia, France
| | - Eric Record
- INRA, Aix-Marseille Université, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Mylène Hugoni
- CNRS, UMR5557; Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| |
Collapse
|