1
|
William N, Acker JP. Innovations in red blood cell preservation. Blood Rev 2025:101283. [PMID: 40074611 DOI: 10.1016/j.blre.2025.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
The global infrastructure supporting nearly 100 million transfusions annually relies on the ability to store red cell concentrates (RCCs) for up to 42 days at hypothermic temperatures or indefinitely at low sub-zero temperatures. While these methods are generally effective, there is both an opportunity and, in specific settings, a need to refine storage techniques that have remained largely unchanged since the 1980s. Recent research has identified ways to address limitations that were not fully understood when these methods were first implemented in blood banks, with much of it focusing on modifying conventional storage strategies, while some studies explore alternative approaches. In this review, we explore the current state of RBC preservation and the future prospects for advancing both short- and long-term storage strategies.
Collapse
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Hu Y, Liu X, Zhang W, Chen J, Chen X, Tan S. Inulin Can Improve Red Blood Cell Cryopreservation by Promoting Vitrification, Stabilizing Cell Membranes, and Inhibiting Ice Recrystallization. ACS Biomater Sci Eng 2024; 10:851-862. [PMID: 38176101 DOI: 10.1021/acsbiomaterials.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In transfusion medicine, the cryopreservation of red blood cells (RBCs) is of major importance. The organic solvent glycerol (Gly) is considered the current gold-standard cryoprotectant (CPA) for RBC cryopreservation, but the deglycerolization procedure is complex and time-consuming, resulting in severe hemolysis. Therefore, it remains a research hotspot to find biocompatible and effective novel CPAs. Herein, the natural and biocompatible inulin, a polysaccharide, was first employed as a CPA for RBC cryopreservation. The presence of inulin could improve the thawed RBC recovery from 11.83 ± 1.40 to 81.86 ± 0.37%. It was found that inulin could promote vitrification because of its relatively high viscosity and glass transition temperature (Tg'), thus reducing the damage during cryopreservation. Inulin possessed membrane stability, which also had beneficial effects on RBC recovery. Moreover, inulin could inhibit the mechanical damage induced by ice recrystallization during thawing. After cryopreservation, the RBC properties were maintained normally. Mathematical modeling analysis was adopted to compare the performance of inulin, Gly, and hydroxyethyl starch (HES) in cryopreservation, and inulin presented the best efficiency. This work provides a promising CPA for RBC cryopreservation and may be beneficial for transfusion therapy in the clinic.
Collapse
Affiliation(s)
- Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenqian Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jiangming Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiaoxiao Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
3
|
Zhu C, Niu Q, Yuan X, Chong J, Ren L. NonFreezable Preservation of Human Red Blood Cells at -8 °C. ACS Biomater Sci Eng 2022; 8:2644-2653. [PMID: 35536888 DOI: 10.1021/acsbiomaterials.2c00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Red blood cell (RBC) preservation is very important in human health. The RBCs are usually preserved at 4 ± 2 °C without freezing or at a very low temperature (-80 °C or liquid nitrogen) with deep freezing. Herein, non freezable preservation of RBCs at a subzero temperature is reported to prolong the preservation time compared with that at 4 ± 2 °C. By adding glycerol and poly(ethylene glycol) (PEG) (average number molecular weight 400, PEG-400) into the preservation solution, the freezing point is decreased and the hemolysis is kept low. The cell metabolism of stored RBCs at -8 °C is reduced, and the shelf life of RBCs extends up to at least 70 days. At the end of preservation, the pH decreases a little bit to demonstrate the low metabolic rate of RBCs stored at subzero temperatures. After quick washing, the RBC survival rate is ca. 95%. The adenosine triphosphate, 2,3-diphosphoglycerate, and cell deformation ability of the washed RBCs are maintained at a high level, while the malondialdehyde is relatively low, which verifies the high quality of RBCs stored at this condition.
Collapse
Affiliation(s)
- Chenhui Zhu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | | | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Exploring the application and mechanism of sodium hyaluronate in cryopreservation of red blood cells. Mater Today Bio 2021; 12:100156. [PMID: 34825160 PMCID: PMC8603211 DOI: 10.1016/j.mtbio.2021.100156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
The cryopreservation of red blood cells (RBCs) is essential for transfusion therapy and maintaining the inventory of RBCs units. The existing cryoprotectants (CPAs) have many defects, and the search for novel CPAs is becoming a research hotspot. Sodium hyaluronate (SH) is polymerized from sodium glucuronate and N-acetylglucosamine, which has good water binding capacity and biocompatibility. Herein, we reported for the first time that under the action of medium molecular weight sodium hyaluronate (MSH), the thawed RBCs recovery increased from 33.1 ± 5.8% to 63.2 ± 3.5%. In addition, RBCs functions and properties were maintained normally, and the residual MSH could be removed by direct washing. When MSH was used with a very low concentration (5% v/v) of glycerol (Gly), the thawed RBCs recovery could be increased to 92.3 ± 4.6%. In general, 40% v/v Gly was required to achieve similar efficiency. A mathematical model was used to compare the performance of MSH, PVA and trehalose in cryopreservation, and MSH showed the best efficiency. It was found that MSH could periodically regulate the content of intracellular water through the “reservoir effect” to reduce the damages during freezing and thawing. Moreover, MSH could inhibit ice recrystallization when combined with RBCs. The high viscosity and strong water binding capacity of MSH was also conducive to reducing the content of ice. This works points out a new direction for cryopreservation of RBCs and may promote transfusion therapy in clinic. MSH improved the RBCs recovery in cryopreservation. MSH can be removed directly after thawing. The properties and functions of RBCs were protected by MSH. High RBCs recovery is found using MSH with 5% v/v glycerol. The mathematical model is studied for the cryopreservation. The mechanism is proposed for cryopreservation using MSH.
Collapse
|
5
|
Guo X, Liu A, Li X, Liu T. A two-stage stochastic model for daily reserve in inventory management of Rh-negative red blood cells. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-192182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rh-negative rare blood inventory protection plays an important role in emergency blood protection. Normally, hospitals typically hold a fixed amount of daily reserve in response to emergency needs, but the measure can increase the unnecessary cost of repeated freezing and thawing. In order to save manpower, protect blood resources and reduce costs, a two-stage stochastic model is proposed to determine the optimal daily reserve of Rh-negative red blood cells, taking into account the uncertainty of demand. First, the model focuses on minimizing operational cost, shortage cost and damage caused by blood substitution. Then, the proposed model generates a series of discrete scenarios to solve the uncertainty of demand and predict the demand. In addition, a case study is presented to prove the validity of the proposed model with real data. Sensitivity analysis is also established to observe the effect of parameter changes on the results. Finally, the results show that the proposed model can effectively reduce the cost and current waste.
Collapse
Affiliation(s)
- Xingru Guo
- Department of Management Engineering, School of Economics & Management, Xidian University, Xi’an, China
| | - Aijun Liu
- Department of Management Engineering, School of Economics & Management, Xidian University, Xi’an, China
| | - Xia Li
- Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Taoning Liu
- Department of Management Engineering, School of Economics & Management, Xidian University, Xi’an, China
| |
Collapse
|
6
|
Sui X, Chen P, Wen C, Yang J, Li Q, Zhang L. Exploring novel cell cryoprotectants based on neutral amino acids. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
|
8
|
Yang J, Sui X, Li Q, Zhao W, Zhang J, Zhu Y, Chen P, Zhang L. In Situ Encapsulation of Postcryopreserved Cells Using Alginate Polymer and Zwitterionic Betaine. ACS Biomater Sci Eng 2019; 5:2621-2630. [DOI: 10.1021/acsbiomaterials.9b00249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, 266235, China
| | - Xiaojie Sui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, 266235, China
| | - Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, 266235, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, 266235, China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, 266235, China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, 266235, China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, 266235, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, 266235, China
| |
Collapse
|
9
|
Sui X, Wen C, Yang J, Guo H, Zhao W, Li Q, Zhang J, Zhu Y, Zhang L. Betaine Combined with Membrane Stabilizers Enables Solvent-Free Whole Blood Cryopreservation and One-Step Cryoprotectant Removal. ACS Biomater Sci Eng 2019; 5:1083-1091. [PMID: 33405798 DOI: 10.1021/acsbiomaterials.8b01286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryopreservation of red blood cells (RBCs) is fundamentally important to modern transfusion medicine. Currently, organic solvent glycerol is utilized as the state-of-the-art cryoprotectant (CPA) for RBC cryopreservation. However, glycerol must be removed before RBC transfusion to avoid intravascular hemolysis via a time-consuming deglycerolization process with specialized equipment (e.g., ACP 215), thus limiting the clinical use of frozen RBCs. Herein, we report novel biocompatible CPA formulations combining betaine with membrane stabilizers (disaccharides or amino acids), which can achieve outstanding efficiency for RBC cryopreservation directly using whole blood without any separation process. Most importantly, because of the osmotic regulation capacity of betaine, a simple and fast one-step method can be used for CPA removal, which is significantly superior to the current multistep deglycerolization process. This work offers a promising solution for highly efficient and solvent-free RBC cryopreservation and holds great potential for improving the long-term storage and long-distance distribution of RBCs.
Collapse
Affiliation(s)
- Xiaojie Sui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, People's Republic of China.,Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, People's Republic of China
| | - Chiyu Wen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, People's Republic of China.,Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, People's Republic of China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, People's Republic of China.,Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, People's Republic of China
| | - Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, People's Republic of China.,Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, People's Republic of China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, People's Republic of China.,Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, People's Republic of China
| | - Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, People's Republic of China.,Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, People's Republic of China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, People's Republic of China.,Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, People's Republic of China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, People's Republic of China.,Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, People's Republic of China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, People's Republic of China.,Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, People's Republic of China
| |
Collapse
|