1
|
Yemaneberhan KH, Kang M, Jang JH, Kim JH, Kim KS, Park HB, Choi D. Beyond the icebox: modern strategies in organ preservation for transplantation. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:377-403. [PMID: 39743232 PMCID: PMC11732768 DOI: 10.4285/ctr.24.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 01/04/2025]
Abstract
Organ transplantation, a critical treatment for end-stage organ failure, has witnessed significant advancements due to the integration of improved surgical techniques, immunosuppressive therapies, and donor-recipient matching. This review explores the progress of organ preservation, focusing on the shift from static cold storage (SCS) to advanced machine perfusion techniques such as hypothermic (HMP) and normothermic machine perfusion (NMP). Although SCS has been the standard approach, its limitations in preserving marginal organs and preventing ischemia-reperfusion injury (IRI) have led to the adoption of HMP and NMP. HMP, which is now the gold standard for high-risk donor kidneys, reduces metabolic activity and improves posttransplant outcomes. NMP allows real-time organ viability assessment and reconditioning, especially for liver transplants. Controlled oxygenated rewarming further minimizes IRI by addressing mitochondrial dysfunction. The review also highlights the potential of cryopreservation for long-term organ storage, despite challenges with ice formation. These advances are crucial for expanding the donor pool, improving transplant success rates, and addressing organ shortages. Continued innovation is necessary to meet the growing demands of transplantation and save more lives.
Collapse
Affiliation(s)
- Kidus Haile Yemaneberhan
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Jun Hwan Jang
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Jin Hee Kim
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
2
|
Vicars Z, Choi J, Marks SM, Remsing RC, Patel AJ. Interfacial Ice Density Fluctuations Inform Surface Ice-Philicity. J Phys Chem B 2024; 128:8512-8521. [PMID: 39171456 DOI: 10.1021/acs.jpcb.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The propensity of a surface to nucleate ice or bind to ice is governed by its ice-philicity─its relative preference for ice over liquid water. However, the relationship between the features of a surface and its ice-philicity is not well understood, and for surfaces with chemical or topographical heterogeneity, such as proteins, their ice-philicity is not even well-defined. In the analogous problem of surface hydrophobicity, it has been shown that hydrophobic surfaces display enhanced low water-density (vapor-like) fluctuations in their vicinity. To interrogate whether enhanced ice-like fluctuations are similarly observed near ice-philic surfaces, here we use molecular simulations and enhanced sampling techniques. Using a family of model surfaces for which the wetting coefficient, k, has previously been characterized, we show that the free energy of observing rare interfacial ice-density fluctuations decreases monotonically with increasing k. By utilizing this connection, we investigate a set of fcc systems and find that the (110) surface is more ice-philic than the (111) or (100) surfaces. By additionally analyzing the structure of interfacial ice, we find that all surfaces prefer to bind to the basal plane of ice, and the topographical complementarity of the (110) surface to the basal plane explains its higher ice-philicity. Using enhanced interfacial ice-like fluctuations as a measure of surface ice-philicity, we then characterize the ice-philicity of chemically heterogeneous and topologically complex systems. In particular, we study the spruce budworm antifreeze protein (sbwAFP), which binds to ice using a known ice-binding site (IBS) and resists engulfment using nonbinding sites of the protein (NBSs). We find that the IBS displays enhanced interfacial ice-density fluctuations and is therefore more ice-philic than the two NBSs studied. We also find the two NBSs are similarly ice-phobic. By establishing a connection between interfacial ice-like fluctuations and surface ice-philicity, our findings thus provide a way to characterize the ice-philicity of heterogeneous surfaces.
Collapse
Affiliation(s)
- Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeongmoon Choi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sean M Marks
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Amish J Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Muss TE, Loftin AH, Oh BC, Brandacher G. Current opinion: advances in machine perfusion and preservation of vascularized composite allografts - will time still matter? Curr Opin Organ Transplant 2023; 28:419-424. [PMID: 37823760 DOI: 10.1097/mot.0000000000001107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW A major hurdle hindering more widespread application of reconstructive transplantation is the very limited cold ischemia time (CIT) of vascularized composite allografts (VCAs). In this review, we discuss cutting edge machine perfusion protocols and preservation strategies to overcome this limitation. RECENT FINDINGS Several preclinical machine perfusion studies have demonstrated the multifactorial utility of this technology to extend preservation windows, assess graft viability prior to transplantation and salvage damaged tissue, yet there are currently no clinically approved machine perfusion protocols for reconstructive transplantation. Thus, machine perfusion remains an open challenge in VCA due to the complexity of the various tissue types. In addition, multiple other promising avenues to prolong preservation of composite allografts have emerged. These include cryopreservation, high subzero preservation, vitrification and nanowarming. Despite several studies demonstrating extended preservation windows, there are several limitations that must be overcome prior to clinical translation. As both machine perfusion and subzero preservation protocols have rapidly advanced in the past few years, special consideration should be given to their potential complementary utilization. SUMMARY Current and emerging machine perfusion and preservation technologies in VCA have great promise to transform the field of reconstructive transplantation, as every extra hour of CIT helps ease the complexities of the peri-transplant workflow. Amongst the many advantages, longer preservation windows may allow for elective procedures, improved matching, establishment of novel immunomodulatory protocols and global transport of grafts, ultimately enabling us the ability to offer this life changing procedure to more patients.
Collapse
Affiliation(s)
- Tessa E Muss
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory
| | - Amanda H Loftin
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Byoung Chol Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory
| |
Collapse
|
4
|
Kim M, Yoon HY. The biomechanical and biological effect of supercooling on cortical bone allograft. J Vet Sci 2023; 24:e79. [PMID: 37904641 PMCID: PMC10694378 DOI: 10.4142/jvs.23183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The need for a storage method capable of preserving the intrinsic properties of bones without using toxic substances has always been raised. Supercooling is a relatively recently introduced preservation method that meets this need. Supercooling refers to the phenomenon of liquid in which the temperature drops below its freezing point without solidifying or crystallizing. OBJECTIVES The purpose of this study was to identify the preservation efficiency and applicability of the supercooling technique as a cortical bone allograft storage modality. METHODS The biomechanical effects of various storage methods, including deep freezing, cryopreservation, lyophilization, glycerol preservation, and supercooling, were evaluated with the three-point banding test, axial compression test, and electron microscopy. Additionally, cortical bone allografts were applied to the radial bone defect in New Zealand White rabbits to determine the biological effects. The degree of bone union was assessed with postoperative clinical signs, radiography, micro-computed tomography, and biomechanical analysis. RESULTS The biomechanical properties of cortical bone grafts preserved using glycerol and supercooling method were found to be comparable to those of normal bone while also significantly stronger than deep-frozen, cryopreserved, and lyophilized bone grafts. Preclinical research performed in rabbit radial defect models revealed that supercooled and glycerol-preserved bone allografts exhibited significantly better bone union than other groups. CONCLUSIONS Considering the biomechanical and biological superiority, the supercooling technique could be one of the optimal preservation methods for cortical bone allografts. This study will form the basis for a novel application of supercooling as a bone material preservation technique.
Collapse
Affiliation(s)
- MuYoung Kim
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL 32611, United States of America
| | - Hun-Young Yoon
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- KU Center for Animal Blood Medical Science, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
5
|
William N, Mangan S, Ben RN, Acker JP. Engineered Compounds to Control Ice Nucleation and Recrystallization. Annu Rev Biomed Eng 2023; 25:333-362. [PMID: 37104651 DOI: 10.1146/annurev-bioeng-082222-015243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
One of the greatest concerns in the subzero storage of cells, tissues, and organs is the ability to control the nucleation or recrystallization of ice. In nature, evidence of these processes, which aid in sustaining internal temperatures below the physiologic freezing point for extended periods of time, is apparent in freeze-avoidant and freeze-tolerant organisms. After decades of studying these proteins, we now have easily accessible compounds and materials capable of recapitulating the mechanisms seen in nature for biopreser-vation applications. The output from this burgeoning area of research can interact synergistically with other novel developments in the field of cryobiology, making it an opportune time for a review on this topic.
Collapse
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada;
| | - Sophia Mangan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Rob N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada;
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Tomalty HE, Graham LA, Walker VK, Davies PL. Chilling injury in human kidney tubule cells after subzero storage is not mitigated by antifreeze protein addition. Cryobiology 2023:S0011-2240(23)00034-2. [PMID: 37164251 DOI: 10.1016/j.cryobiol.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/26/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
By preventing freezing, antifreeze proteins (AFPs) can permit cells and organs to be stored at subzero temperatures. As metabolic rates decrease with decreasing temperature, subzero static cold storage (SZ-SCS) could provide more time for tissue matching and potentially lead to fewer discarded organs. Human kidneys are generally stored for under 24 h and the tubule epithelium is known to be particularly sensitive to static cold storage (SCS). Here, telomerase-immortalized proximal-tubule epithelial cells from humans, which closely resemble their progenitors, were used as a proxy to assess the potential benefit of SZ-SCS for kidneys. The effects of hyperactive AFPs from a beetle and Cryostasis Storage Solution were compared to University of Wisconsin Solution at standard SCS temperatures (4 °C) and at -6 °C for up to six days. Although the AFPs helped guard against freezing, lower storage temperatures under these conditions were not beneficial. Compared to cells at 4 °C, those stored at -6 °C showed decreased viability as well as increased lactate dehydrogenase release and apoptosis. This suggests that this kidney cell type might be prone to chilling injury and that the addition of AFPs to enable SZ-SCS may not be effective for increasing storage times.
Collapse
Affiliation(s)
- Heather E Tomalty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Virginia K Walker
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
7
|
Mutsenko V, Anastassopoulos E, Zaragotas D, Simaioforidou A, Tarusin D, Lauterboeck L, Sydykov B, Brunotte R, Brunotte K, Rozanski C, Petrenko AY, Braslavsky I, Glasmacher B, Gryshkov O. Monitoring of freezing patterns within 3D collagen-hydroxyapatite scaffolds using infrared thermography. Cryobiology 2023:S0011-2240(23)00007-X. [PMID: 37062517 DOI: 10.1016/j.cryobiol.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 04/18/2023]
Abstract
The importance of cryopreservation in tissue engineering is unceasingly increasing. Preparation, cryopreservation, and storage of tissue-engineered constructs (TECs) at an on-site location offer a convenient way for their clinical application and commercialization. Partial freezing initiated at high sub-zero temperatures using ice-nucleating agents (INAs) has recently been applied in organ cryopreservation. It is anticipated that this freezing technique may be efficient for the preservation of both scaffold mechanical properties and cell viability of TECs. Infrared thermography is an instrumental method to monitor INAs-mediated freezing of various biological entities. In this paper, porous collagen-hydroxyapatite (HAP) scaffolds were fabricated and characterized as model TECs, whereas infrared thermography was proposed as a method for monitoring the crystallization-related events on their partial freezing down to -25 °C. Intra- and interscaffold latent heat transmission were descriptively evaluated. Nucleation, freezing points as well as the degree of supercooling and duration of crystallization were calculated based on inspection of respective thermographic curves. Special consideration was given to the cryoprotective agent (CPA) composition (Snomax®, crude leaf extract from Hippophae rhamnoides, dimethyl sulfoxide (Me2SO) and recombinant type-III antifreeze protein (AFP)) and freezing conditions ('in air' or 'in bulk CPA'). For CPAs without ice nucleation activity, thermographic measurements demonstrated that the supercooling was significantly milder in the case of scaffolds present in a CPA solution compared to that without them. This parameter (ΔT, °C) altered with the following tendency: 10 Me2SO (2.90 ± 0.54 ('in air') vs. 7.71 ± 0.43 ('in bulk CPA', P < 0.0001)) and recombinant type-III AFP, 0.5 mg/ml (2.65 ± 0.59 ('in air') vs. 7.68 ± 0.34 ('in bulk CPA', P < 0.0001)). At the same time, in CPA solutions with ice nucleation activity the least degree of supercooling and the longest crystallization duration (Δt, min) for scaffolds frozen 'in air' were documented for crude leaf homogenate (CLH) from Hippophae rhamnoides (1.57 ± 0.37 °C and 21.86 ± 2.93 min compared to Snomax, 5 μg/ml (2.14 ± 0.33 °C and 23.09 ± 0.05), respectively). The paper offers evidence that infrared thermography provides insightful information for monitoring partial freezing events in TECs when using different freezing containers, CPAs and conditions. This may further TEC-specific cryopreservation and optimization of CPA compositions with slow-nucleating properties.
Collapse
Affiliation(s)
- Vitalii Mutsenko
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.
| | | | - Dimitris Zaragotas
- Department of Agricultural Engineering Technologists, TEI Thessaly, Larissa, Greece
| | | | - Dmytro Tarusin
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Lothar Lauterboeck
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Bulat Sydykov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Ricarda Brunotte
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Kai Brunotte
- Institute of Forming Technology and Forming Machines, Leibniz University Hannover, Garbsen, Germany
| | - Corinna Rozanski
- Institute of Building Materials Science, Leibniz University Hannover, Hannover, Germany
| | - Alexander Y Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| |
Collapse
|
8
|
Neto D, Guenthart B, Shudo Y, Currie ME. World's first en bloc heart-lung transplantation using the paragonix lungguard donor preservation system. J Cardiothorac Surg 2023; 18:131. [PMID: 37041582 PMCID: PMC10091844 DOI: 10.1186/s13019-023-02281-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
We present the first en bloc heart-lung donor transplant procurement using the Paragonix LUNGguard™ donor preservation system. This system offers reliable static hypothermic conditions designed to prevent major complications such as cold ischemic injury, uneven cooling and physical damage. While this represents a single case, the encouraging results warrant further investigation.
Collapse
Affiliation(s)
- Daniel Neto
- Department of Cardiothoracic Surgery, Center for Academic Medicine, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA, 94305, USA
| | - Brandon Guenthart
- Department of Cardiothoracic Surgery, Center for Academic Medicine, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA, 94305, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Center for Academic Medicine, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA, 94305, USA
| | - Maria E Currie
- Department of Cardiothoracic Surgery, Center for Academic Medicine, Stanford University School of Medicine, 453 Quarry Road, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Tiwari AK, Gupta PS, Prasad M, Malairajan P. Modulation of Inula racemosa Hook Extract on Cardioprotection by Ischemic Preconditioning in Hyperlipidaemic Rats. J Pharmacopuncture 2022; 25:369-381. [PMID: 36628345 PMCID: PMC9806160 DOI: 10.3831/kpi.2022.25.4.369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 12/30/2022] Open
Abstract
Objectives Hyperlipidemia (HL) is a major cause of ischemic heart diseases. The size-limiting effect of ischemic preconditioning (IPC), a cardioprotective phenomenon, is reduced in HL, possibly because of the opening of the mitochondrial permeability transition pore (MPTP). The objective of this study is to see what effect pretreatment with Inula racemosa Hook root extract (IrA) had on IPC-mediated cardioprotection on HL Wistar rat hearts. An isolated rat heart was mounted on the Langendorff heart array, and then ischemia reperfusion (I/R) and IPC cycles were performed. Atractyloside (Atr) is an MPTP opener. Methods The animals were divided into ten groups, each consisting of six rats (n = 6), to investigate the modulation of I. racemosa Hook extract on cardioprotection by IPC in HL hearts Sham control, I/R Control, IPC control, I/R + HL, I/R + IrA + HL, IPC + HL, IPC + NS + HL, IPC + IrA+ HL, IPC + Atr + oxidative stress, mitochondrial function, integrity, and hemodynamic parameters are evaluated for each group. Results The present experimental data show that pretreatment with IrA reduced the LDH, CK-MB, size of myocardial infarction, content of cardiac collagen, and ventricular fibrillation in all groups of HL rat hearts. This pretreatment also reduced the oxidative stress and mitochondrial dysfunction. Inhibition of MPTP opening by Atr diminished the effect of IrA on IPC-mediated cardioprotection in HL rats. Conclusion The study findings indicate that pretreatment with IrA e restores IPC-mediated cardioprotection in HL rats by inhibiting the MPTP opening.
Collapse
Affiliation(s)
- Arun Kumar Tiwari
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India,Kamla Nehru Institute of Management and Technology, Sultanpur, Uttar Pradesh, India,Corresponding Author Arun Kumar Tiwari, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh 211007, India, Tel: +91-979-304-8909, E-mail:
| | - Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Mahesh Prasad
- Kamla Nehru Institute of Management and Technology, Sultanpur, Uttar Pradesh, India
| | - Paraman Malairajan
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
10
|
Perspectives et voies de recherche dans les allotransplantations composites vasculaires. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2022. [DOI: 10.1016/j.banm.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Niu Q, Gao S, Liu X, Chong J, Ren L, Zhu K, Shi W, Yuan X. Membrane stabilization versus perturbation by aromatic monoamine-modified γ-PGA for cryopreservation of human RBCs with high intracellular trehalose. J Mater Chem B 2022; 10:6038-6048. [PMID: 35894777 DOI: 10.1039/d2tb01074g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a nonreducing disaccharide, trehalose can be used as a biocompatible cryoprotectant for solvent-free cell cryopreservation, but the membrane-impermeability limits its cryoprotective efficiency. Herein, a series of aromatic monoamines with a 1-4 methylene spacer were grafted onto γ-poly(glutamic acid) (γ-PGA) for promoting intracellular trehalose uptake in human red blood cells (hRBCs) via membrane perturbation. The self-assembled nanoparticles of the obtained amphiphilic γ-PGA could be adsorbed on the cell membrane by the hydrophobic interaction to disturb the lipid arrangement and increase the membrane permeability of trehalose under hypertonic conditions. Results suggested that the intracellular trehalose could be enhanced progressively with the methylene spacer length, significantly increasing to 75.1 ± 0.7 mM by incubating hRBCs in 0.8 M trehalose containing phenylbutylamine-grafted γ-PGA at 4 °C for 24 h. Meanwhile, the other three polymers exhibited membrane stabilization in addition to improved intracellular trehalose, maintaining the membrane integrity during cryopreservation to achieve high cryosurvival. Molecular dynamics simulation further confirmed that defects could be formed by interaction of the above four amphiphilic polymers on the modeled phospholipid bilayer. It was believed that glycerol-free cryopreservation of human cells could be realized by using trehalose as the biocompatible cryoprotectant, and membrane stabilization can be a compensatory approach to membrane perturbation during impermeable biomolecule delivery.
Collapse
Affiliation(s)
- Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Xingwen Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | | | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin 300072, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
12
|
Pruß D, Oldenhof H, Wolkers WF, Sieme H. Towards increasing stallion sperm longevity by storage at subzero temperatures in the absence of ice. J Equine Vet Sci 2021; 108:103802. [PMID: 34847496 DOI: 10.1016/j.jevs.2021.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022]
Abstract
The aim of cell preservation technologies is to slow down damaging reactions by lowering the storage temperature. Upon dilution in a stabilizing extender, stallion sperm can be stored at refrigerator temperatures for several days. Cryopreservation allows storage for decades, but freezing and thawing cause damage and viability losses. It is assumed that by storing cells at subzero temperatures in a non-frozen supercooled state, the damaging effects of ice formation can be avoided. In this study, we have investigated if stallion sperm can be stored at -10°C in the absence of ice, and compared viability during supercooled storage with that during storage at 5°C. We found that addition of 2% Ficoll-400 to buffered saline and covering with mineral oil depressed the sample freezing point and inhibited surface-catalyzed nucleation. This allowed storage in a supercooled state at -10°C for up to 7 days. Supplementing specimens with sperm, however, increased the incidence of sample freezing. Nonetheless, with 50×106 sperm mL-1, about 40% of the samples turned out to be non-frozen. Adding 100 mM sucrose was found to preserve sperm membrane intactness during supercooled storage, although this resulted in lower percentages as found with refrigerated storage. Sperm motility appeared to be lost during supercooled storage but could be partly restored by substituting buffered saline with a milk-based extender as base medium. Percentages of membrane intact sperm, however, were found to be lower. Supercooled storage holds promise for semen preservation, but further optimization of the storage solution is required to preserve sperm motility.
Collapse
Affiliation(s)
- David Pruß
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Willem F Wolkers
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|