1
|
Alves-Ferreira M, Azevedo A, Coelho T, Santos D, Sequeiros J, Alonso I, Sousa A, Lemos C. Beyond Val30Met transthyretin (TTR): variants associated with age-at-onset in hereditary ATTRv amyloidosis. Amyloid 2021; 28:100-106. [PMID: 33461327 DOI: 10.1080/13506129.2020.1857236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES V30M in transthyretin (TTR) gene is causative for hereditary ATTRv amyloidosis (familial amyloid polyneuropathy). ATTRv amyloidosis shows a wide variation in age-at-onset (AO) between clusters, families, and among generations. We aim at identifying genetic modifiers of disease onset that may contribute to this variability in Portuguese patients by identifying other variants in TTR locus, beyond the ATTRv amyloidosis causing variant that could play a regulatory role in its expression level. METHODS We analysed DNA samples of 330 ATTRV30M carriers (299 patients, 31 aged-asymptomatic carriers aged >40 years) from 120 families currently under follow-up. A generalised estimating equation analysis (GEE) was used to take into account non-independency of AO between relatives. An intensive in silico analysis was performed in order to understand a possible regulation of gene expression. RESULTS We found 11 rare variants in the promoter, coding and intron/exon boundaries of the TTR gene associated with the onset of symptoms before and after age 40 years, namely 2 novel ones and a tandem CA-dinucleotide repeat. Furthermore, of the 4 common variants found, one was significantly associated with AO and may influence the constitutive splicing of TTR pre-mRNA. The seven ATTRV30M/V30M homozygous do not carry any of the variants identified in this study, including the common ones. In silico analysis disclosed significant alterations in the mechanism of splicing, transcription factors and miRNAs binding. CONCLUSIONS Variants within the promoter region may modify disease expressivity and variants in the 3'UTR can impact the efficacy of novel therapeutic interventions. Importantly, the putative mechanisms of regulation of gene expression within the TTR gene deserve to be better explored, in order to be used in the future as potential therapeutical targets.
Collapse
Affiliation(s)
- Miguel Alves-Ferreira
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Azevedo
- ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Teresa Coelho
- Unidade Corino de Andrade (UCA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Diana Santos
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Sharma K, Mishra A, Singh HN, Prashar D, Alam P, Thinlas T, Mohammad G, Kukreti R, Syed MA, Pasha MAQ. High-altitude pulmonary edema is aggravated by risk-loci and associated transcription factors in HIF-prolyl hydroxylases. Hum Mol Genet 2021; 30:1734-1749. [PMID: 34007987 DOI: 10.1093/hmg/ddab139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022] Open
Abstract
High-altitude (HA, > 2500 meters) hypoxic exposure evokes several physiological processes that may be abetted by differential genetic distribution in sojourners, who are susceptible to various HA disorders, such as high-altitude pulmonary edema (HAPE). The genetic variants in hypoxia-sensing genes influence the transcriptional output, however the functional role has not been investigated in HAPE. This study explored the two hypoxia-sensing genes, prolyl hydroxylase domain protein 2 (EGLN1) and factor inhibiting HIF-1α (HIF1AN) in HA adaptation and maladaptation in three well-characterized groups: highland natives, HAPE-free controls and HAPE-patients. The two genes were sequenced and subsequently validated through genotyping of significant SNPs, haplotyping and MDR. Three EGLN1 SNPs rs1538664, rs479200 and rs480902 and their haplotypes emerged significant in HAPE. Blood gene expression and protein levels also differed significantly (P < 0.05) and correlated with clinical parameters and respective alleles. The RegulomeDB annotation exercises of the loci corroborated regulatory role. Allele-specific differential expression was evidenced by luciferase assay followed by electrophoretic mobility shift assay, LC-MS/MS and supershift assays, which confirmed allele-specific transcription factor (TF) binding of FUS RNA binding protein (FUS) with rs1538664A, Rho GDP dissociation inhibitor 1 (RhoGDH1) with rs479200T and Hypoxia up-regulated protein 1 (HYOU1) with rs480902C. Docking simulation studies were in sync for the DNA-TF structural variations. There was strong networking among the TFs that revealed physiological consequences through relevant pathways. The two hydroxylases appear crucial in the regulation of hypoxia-inducible responses.
Collapse
Affiliation(s)
- Kavita Sharma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India.,Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aastha Mishra
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
| | - Himanshu N Singh
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
| | - Deepak Prashar
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
| | - Perwez Alam
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India.,Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, OH, USA
| | | | | | - Ritushree Kukreti
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - M A Qadar Pasha
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India.,Indian Council of Medical Research, New Delhi, 110029, India
| |
Collapse
|
3
|
Mellerup E, Andreassen OA, Bennike B, Dam H, Djurovic S, Jorgensen MB, Kessing LV, Koefoed P, Melle I, Mors O, Moeller GL. Combinations of genetic variants associated with bipolar disorder. PLoS One 2017; 12:e0189739. [PMID: 29267373 PMCID: PMC5739413 DOI: 10.1371/journal.pone.0189739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/30/2017] [Indexed: 12/02/2022] Open
Abstract
The main objective of the study was to find genetic variants that in combination are significantly associated with bipolar disorder. In previous studies of bipolar disorder, combinations of three and four single nucleotide polymorphisms (SNP) genotypes taken from 803 SNPs were analyzed, and five clusters of combinations were found to be significantly associated with bipolar disorder. In the present study, combinations of ten SNP genotypes taken from the same 803 SNPs were analyzed, and one cluster of combinations was found to be significantly associated with bipolar disorder. Combinations from the new cluster and from the five previous clusters were identified in the genomes of 266 or 44% of the 607 patients in the study whereas none of the 1355 control participants had any of these combinations in their genome.The SNP genotypes in the smaller combinations were the normal homozygote, heterozygote or variant homozygote. In the combinations containing 10 SNP genotypes almost all the genotypes were the normal homozygote. Such a finding may indicate that accumulation in the genome of combinations containing few SNP genotypes may be a risk factor for bipolar disorder when those combinations contain relatively many rare SNP genotypes, whereas combinations need to contain many SNP genotypes to be a risk factor when most of the SNP genotypes are the normal homozygote.
Collapse
Affiliation(s)
- Erling Mellerup
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Ole A. Andreassen
- Department of Psychiatry, Oslo University Hospital and Institute of Psychiatry, University of Oslo, Oslo, Norway
| | - Bente Bennike
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Dam
- Psychiatric Centre Copenhagen, Department O, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and Institute of Psychiatry, University of Oslo, Oslo, Norway
| | - Martin Balslev Jorgensen
- Psychiatric Centre Copenhagen, Department O, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Psychiatric Centre Copenhagen, Department O, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pernille Koefoed
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid Melle
- Department of Psychiatry, Oslo University Hospital and Institute of Psychiatry, University of Oslo, Oslo, Norway
| | - Ole Mors
- Centre for Psyciatric Research, Aarhus University Hospital, Skovagervej 2, Risskov, Denmark
| | - Gert Lykke Moeller
- Genokey ApS, ScionDTU, Technical University Denmark, Agern Allé 3, Hoersholm, Denmark
| |
Collapse
|