1
|
Jisna VA, Ajay AP, Jayaraj PB. Using Attention-UNet Models to Predict Protein Contact Maps. J Comput Biol 2024; 31:691-702. [PMID: 38979621 DOI: 10.1089/cmb.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Proteins are essential to life, and understanding their intrinsic roles requires determining their structure. The field of proteomics has opened up new opportunities by applying deep learning algorithms to large databases of solved protein structures. With the availability of large data sets and advanced machine learning methods, the prediction of protein residue interactions has greatly improved. Protein contact maps provide empirical evidence of the interacting residue pairs within a protein sequence. Template-free protein structure prediction systems rely heavily on this information. This article proposes UNet-CON, an attention-integrated UNet architecture, trained to predict residue-residue contacts in protein sequences. With the predicted contacts being more accurate than state-of-the-art methods on the PDB25 test set, the model paves the way for the development of more powerful deep learning algorithms for predicting protein residue interactions.
Collapse
Affiliation(s)
- V A Jisna
- Department of Computer Science and Engineering, Indian Institute of Information Technology Design and Manufacturing, Kurnool, India
| | | | - P B Jayaraj
- Department of Computer Science and Engineering, NIT Calicut, Calicut, India
| |
Collapse
|
2
|
Si Y, Zou J, Gao Y, Chuai G, Liu Q, Chen L. Foundation models in molecular biology. BIOPHYSICS REPORTS 2024; 10:135-151. [PMID: 39027316 PMCID: PMC11252241 DOI: 10.52601/bpr.2024.240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 07/20/2024] Open
Abstract
Determining correlations between molecules at various levels is an important topic in molecular biology. Large language models have demonstrated a remarkable ability to capture correlations from large amounts of data in the field of natural language processing as well as image generation, and correlations captured from data using large language models can also be applicable to solving a wide range of specific tasks, hence large language models are also referred to as foundation models. The massive amount of data that exists in the field of molecular biology provides an excellent basis for the development of foundation models, and the recent emergence of foundation models in the field of molecular biology has really pushed the entire field forward. We summarize the foundation models developed based on RNA sequence data, DNA sequence data, protein sequence data, single-cell transcriptome data, and spatial transcriptome data respectively, and further discuss the research directions for the development of foundation models in molecular biology.
Collapse
Affiliation(s)
- Yunda Si
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiawei Zou
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yicheng Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201804, China
| | - Guohui Chuai
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201804, China
| | - Qi Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201804, China
| | - Luonan Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Sun J, Si S, Ru J, Wang X. DeepdlncUD: Predicting regulation types of small molecule inhibitors on modulating lncRNA expression by deep learning. Comput Biol Med 2023; 163:107226. [PMID: 37450966 DOI: 10.1016/j.compbiomed.2023.107226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/31/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Targeting lncRNAs by small molecules (SM-lncR) to alter their expression levels has emerged as an important therapeutic modality for disease treatment. To date, no computational tools have been dedicated to predicting small molecule-mediated upregulation or downregulation of lncRNA expression. Here, we introduce DeepdlncUD, which integrates predictions of nine deep learning algorithms together, to infer the regulation types of small molecules on modulating lncRNA expression. Through systematic optimization on a training set of 771 upregulation and 739 downregulation SM-lncR pairs, each encoding 1369 sequence, representational, and physiochemical features, this method outperforms a recently released program, DeepsmirUD, by achieving 0.674 in AUC (area under the receiver operating characteristic curve), 0.722 in AUCPR (area under the precision-recall curve), 0.681 in F1-score, and 0.516 in Jaccard Index on a test set of 222 SM-lncR pairs. By extracting 125 upregulation and 46 downregulation SM-lncR pairs that involve disease-associated lncRNAs, DeepdlncUD is shown to gain an accuracy of 0.700 in the pathological context. Using connectivity scores, around half of the small molecules are correctly estimated as drugs to treat lncRNA-regulated diseases. This tool can be run at a fast speed to assist the discovery of potential small molecule drugs of lncRNA targets on a large scale. DeepdlncUD is publicly available at https://github.com/2003100127/deepdlncud.
Collapse
Affiliation(s)
- Jianfeng Sun
- Botnar Research Centre, University of Oxford, Headington, Oxford, OX3 7LD, UK.
| | - Shuyue Si
- School of Mathematics and Physics, Xi'an Jiaotong-liverpool University, Renai, Suzhou, 215028, China
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Sun J, Ru J, Ramos-Mucci L, Qi F, Chen Z, Chen S, Cribbs AP, Deng L, Wang X. DeepsmirUD: Prediction of Regulatory Effects on microRNA Expression Mediated by Small Molecules Using Deep Learning. Int J Mol Sci 2023; 24:1878. [PMID: 36768205 PMCID: PMC9915273 DOI: 10.3390/ijms24031878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Aberrant miRNA expression has been associated with a large number of human diseases. Therefore, targeting miRNAs to regulate their expression levels has become an important therapy against diseases that stem from the dysfunction of pathways regulated by miRNAs. In recent years, small molecules have demonstrated enormous potential as drugs to regulate miRNA expression (i.e., SM-miR). A clear understanding of the mechanism of action of small molecules on the upregulation and downregulation of miRNA expression allows precise diagnosis and treatment of oncogenic pathways. However, outside of a slow and costly process of experimental determination, computational strategies to assist this on an ad hoc basis have yet to be formulated. In this work, we developed, to the best of our knowledge, the first cross-platform prediction tool, DeepsmirUD, to infer small-molecule-mediated regulatory effects on miRNA expression (i.e., upregulation or downregulation). This method is powered by 12 cutting-edge deep-learning frameworks and achieved AUC values of 0.843/0.984 and AUCPR values of 0.866/0.992 on two independent test datasets. With a complementarily constructed network inference approach based on similarity, we report a significantly improved accuracy of 0.813 in determining the regulatory effects of nearly 650 associated SM-miR relations, each formed with either novel small molecule or novel miRNA. By further integrating miRNA-cancer relationships, we established a database of potential pharmaceutical drugs from 1343 small molecules for 107 cancer diseases to understand the drug mechanisms of action and offer novel insight into drug repositioning. Furthermore, we have employed DeepsmirUD to predict the regulatory effects of a large number of high-confidence associated SM-miR relations. Taken together, our method shows promise to accelerate the development of potential miRNA targets and small molecule drugs.
Collapse
Affiliation(s)
- Jianfeng Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Lorenzo Ramos-Mucci
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Fei Qi
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 362021, China
| | - Zihao Chen
- Department of Computational Biology for Drug Discovery, Biolife Biotechnology Ltd., Zhumadian 463200, China
| | - Suyuan Chen
- Leibniz-Institut für Analytische Wissenschaften–ISAS–e.V., Otto-Hahn-Str asse 6b, 44227 Dortmund, Germany
| | - Adam P. Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Alipanahi R, Safari L, Khanteymoori A. CRISPR genome editing using computational approaches: A survey. FRONTIERS IN BIOINFORMATICS 2023; 2:1001131. [PMID: 36710911 PMCID: PMC9875887 DOI: 10.3389/fbinf.2022.1001131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing has been widely used in various cell types and organisms. To make genome editing with Clustered regularly interspaced short palindromic repeats far more precise and practical, we must concentrate on the design of optimal gRNA and the selection of appropriate Cas enzymes. Numerous computational tools have been created in recent years to help researchers design the best gRNA for Clustered regularly interspaced short palindromic repeats researches. There are two approaches for designing an appropriate gRNA sequence (which targets our desired sites with high precision): experimental and predicting-based approaches. It is essential to reduce off-target sites when designing an optimal gRNA. Here we review both traditional and machine learning-based approaches for designing an appropriate gRNA sequence and predicting off-target sites. In this review, we summarize the key characteristics of all available tools (as far as possible) and compare them together. Machine learning-based tools and web servers are believed to become the most effective and reliable methods for predicting on-target and off-target activities of Clustered regularly interspaced short palindromic repeats in the future. However, these predictions are not so precise now and the performance of these algorithms -especially deep learning one's-depends on the amount of data used during training phase. So, as more features are discovered and incorporated into these models, predictions become more in line with experimental observations. We must concentrate on the creation of ideal gRNA and the choice of suitable Cas enzymes in order to make genome editing with Clustered regularly interspaced short palindromic repeats far more accurate and feasible.
Collapse
Affiliation(s)
| | - Leila Safari
- Department of Computer Engineering, University of Zanjan, Zanjan, Iran
| | | |
Collapse
|
6
|
Mufassirin MMM, Newton MAH, Sattar A. Artificial intelligence for template-free protein structure prediction: a comprehensive review. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Roche R, Bhattacharya S, Shuvo MH, Bhattacharya D. rrQNet: Protein contact map quality estimation by deep evolutionary reconciliation. Proteins 2022; 90:2023-2034. [PMID: 35751651 PMCID: PMC9633355 DOI: 10.1002/prot.26394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022]
Abstract
Protein contact maps have proven to be a valuable tool in the deep learning revolution of protein structure prediction, ushering in the recent breakthrough by AlphaFold2. However, self-assessment of the quality of predicted structures are typically performed at the granularity of three-dimensional coordinates as opposed to directly exploiting the rotation- and translation-invariant two-dimensional (2D) contact maps. Here, we present rrQNet, a deep learning method for self-assessment in 2D by contact map quality estimation. Our approach is based on the intuition that for a contact map to be of high quality, the residue pairs predicted to be in contact should be mutually consistent with the evolutionary context of the protein. The deep neural network architecture of rrQNet implements this intuition by cascading two deep modules-one encoding the evolutionary context and the other performing evolutionary reconciliation. The penultimate stage of rrQNet estimates the quality scores at the interacting residue-pair level, which are then aggregated for estimating the quality of a contact map. This design choice offers versatility at varied resolutions from individual residue pairs to full-fledged contact maps. Trained on multiple complementary sources of contact predictors, rrQNet facilitates generalizability across various contact maps. By rigorously testing using publicly available datasets and comparing against several in-house baseline approaches, we show that rrQNet accurately reproduces the true quality score of a predicted contact map and successfully distinguishes between accurate and inaccurate contact maps predicted by a wide variety of contact predictors. The open-source rrQNet software package is freely available at https://github.com/Bhattacharya-Lab/rrQNet.
Collapse
Affiliation(s)
- Rahmatullah Roche
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sutanu Bhattacharya
- Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
8
|
Zhang H, Huang Y, Bei Z, Ju Z, Meng J, Hao M, Zhang J, Zhang H, Xi W. Inter-Residue Distance Prediction From Duet Deep Learning Models. Front Genet 2022; 13:887491. [PMID: 35651930 PMCID: PMC9148999 DOI: 10.3389/fgene.2022.887491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Residue distance prediction from the sequence is critical for many biological applications such as protein structure reconstruction, protein–protein interaction prediction, and protein design. However, prediction of fine-grained distances between residues with long sequence separations still remains challenging. In this study, we propose DuetDis, a method based on duet feature sets and deep residual network with squeeze-and-excitation (SE), for protein inter-residue distance prediction. DuetDis embraces the ability to learn and fuse features directly or indirectly extracted from the whole-genome/metagenomic databases and, therefore, minimize the information loss through ensembling models trained on different feature sets. We evaluate DuetDis and 11 widely used peer methods on a large-scale test set (610 proteins chains). The experimental results suggest that 1) prediction results from different feature sets show obvious differences; 2) ensembling different feature sets can improve the prediction performance; 3) high-quality multiple sequence alignment (MSA) used for both training and testing can greatly improve the prediction performance; and 4) DuetDis is more accurate than peer methods for the overall prediction, more reliable in terms of model prediction score, and more robust against shallow multiple sequence alignment (MSA).
Collapse
Affiliation(s)
- Huiling Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhendong Bei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Ju
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jintao Meng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Hao
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Jingjing Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiping Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Xi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wenhui Xi,
| |
Collapse
|
9
|
Ding W, Nakai K, Gong H. Protein design via deep learning. Brief Bioinform 2022; 23:bbac102. [PMID: 35348602 PMCID: PMC9116377 DOI: 10.1093/bib/bbac102] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Proteins with desired functions and properties are important in fields like nanotechnology and biomedicine. De novo protein design enables the production of previously unseen proteins from the ground up and is believed as a key point for handling real social challenges. Recent introduction of deep learning into design methods exhibits a transformative influence and is expected to represent a promising and exciting future direction. In this review, we retrospect the major aspects of current advances in deep-learning-based design procedures and illustrate their novelty in comparison with conventional knowledge-based approaches through noticeable cases. We not only describe deep learning developments in structure-based protein design and direct sequence design, but also highlight recent applications of deep reinforcement learning in protein design. The future perspectives on design goals, challenges and opportunities are also comprehensively discussed.
Collapse
Affiliation(s)
- Wenze Ding
- School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
- School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Kenta Nakai
- Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Newton MAH, Rahman J, Zaman R, Sattar A. Enhancing Protein Contact Map Prediction Accuracy via Ensembles of Inter-Residue Distance Predictors. Comput Biol Chem 2022; 99:107700. [DOI: 10.1016/j.compbiolchem.2022.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022]
|
11
|
Lee D, Xiong D, Wierbowski S, Li L, Liang S, Yu H. Deep learning methods for 3D structural proteome and interactome modeling. Curr Opin Struct Biol 2022; 73:102329. [PMID: 35139457 PMCID: PMC8957610 DOI: 10.1016/j.sbi.2022.102329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/05/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
Bolstered by recent methodological and hardware advances, deep learning has increasingly been applied to biological problems and structural proteomics. Such approaches have achieved remarkable improvements over traditional machine learning methods in tasks ranging from protein contact map prediction to protein folding, prediction of protein-protein interaction interfaces, and characterization of protein-drug binding pockets. In particular, emergence of ab initio protein structure prediction methods including AlphaFold2 has revolutionized protein structural modeling. From a protein function perspective, numerous deep learning methods have facilitated deconvolution of the exact amino acid residues and protein surface regions responsible for binding other proteins or small molecule drugs. In this review, we provide a comprehensive overview of recent deep learning methods applied in structural proteomics.
Collapse
Affiliation(s)
- Dongjin Lee
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shayne Wierbowski
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Le Li
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Si Y, Yan C. Improved protein contact prediction using dimensional hybrid residual networks and singularity enhanced loss function. Brief Bioinform 2021; 22:6357883. [PMID: 34448830 DOI: 10.1093/bib/bbab341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/10/2021] [Accepted: 08/02/2021] [Indexed: 11/12/2022] Open
Abstract
Deep residual learning has shown great success in protein contact prediction. In this study, a new deep residual learning-based protein contact prediction model was developed. Comparing with previous models, a new type of residual block hybridizing 1D and 2D convolutions was designed to increase the effective receptive field of the residual network, and a new loss function emphasizing the easily misclassified residue pairs was proposed to enhance the model training. The developed protein contact prediction model referred to as DRN-1D2D was first evaluated on 105 CASP11 targets, 76 CAMEO hard targets and 398 membrane proteins together with two in house-developed reference models based on either the standard 2D residual block or the traditional BCE loss function, from which we confirmed that both the dimensional hybrid residual block and the singularity enhanced loss function can be employed to improve the model performance for protein contact prediction. DRN-1D2D was further evaluated on 39 CASP13 and CASP14 free modeling targets together with the two reference models and six state-of-the-art protein contact prediction models including DeepCov, DeepCon, DeepConPred2, SPOT-Contact, RaptorX-Contact and TripleRes. The result shows that DRN-1D2D consistently achieved the best performance among all these models.
Collapse
Affiliation(s)
- Yunda Si
- School of Physics, Huazhong University of Science and Technology, China
| | - Chengfei Yan
- School of Physics, Huazhong University of Science and Technology, China
| |
Collapse
|
13
|
Zhang H, Bei Z, Xi W, Hao M, Ju Z, Saravanan KM, Zhang H, Guo N, Wei Y. Evaluation of residue-residue contact prediction methods: From retrospective to prospective. PLoS Comput Biol 2021; 17:e1009027. [PMID: 34029314 PMCID: PMC8177648 DOI: 10.1371/journal.pcbi.1009027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/04/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Sequence-based residue contact prediction plays a crucial role in protein structure reconstruction. In recent years, the combination of evolutionary coupling analysis (ECA) and deep learning (DL) techniques has made tremendous progress for residue contact prediction, thus a comprehensive assessment of current methods based on a large-scale benchmark data set is very needed. In this study, we evaluate 18 contact predictors on 610 non-redundant proteins and 32 CASP13 targets according to a wide range of perspectives. The results show that different methods have different application scenarios: (1) DL methods based on multi-categories of inputs and large training sets are the best choices for low-contact-density proteins such as the intrinsically disordered ones and proteins with shallow multi-sequence alignments (MSAs). (2) With at least 5L (L is sequence length) effective sequences in the MSA, all the methods show the best performance, and methods that rely only on MSA as input can reach comparable achievements as methods that adopt multi-source inputs. (3) For top L/5 and L/2 predictions, DL methods can predict more hydrophobic interactions while ECA methods predict more salt bridges and disulfide bonds. (4) ECA methods can detect more secondary structure interactions, while DL methods can accurately excavate more contact patterns and prune isolated false positives. In general, multi-input DL methods with large training sets dominate current approaches with the best overall performance. Despite the great success of current DL methods must be stated the fact that there is still much room left for further improvement: (1) With shallow MSAs, the performance will be greatly affected. (2) Current methods show lower precisions for inter-domain compared with intra-domain contact predictions, as well as very high imbalances in precisions between intra-domains. (3) Strong prediction similarities between DL methods indicating more feature types and diversified models need to be developed. (4) The runtime of most methods can be further optimized. The amino acid sequence of a protein ultimately determines its tertiary structure, and the tertiary structure determines its function(s) and plays a key role in understanding biological processes and disease pathogenesis. Protein tertiary structure can be determined using experimental techniques such as cryo-electron microscopy, nuclear magnetic resonance and X-ray crystallography, which are very expensive and time-consuming. As an alternative, researchers are trying to use in silico methods to predict the 3D structures. Residue contact-assisted protein folding paves an avenue for sequence-based protein structure prediction and therefore has become one of the most challenging and promising problems in structural bioinformatics. Over the past years, contact prediction has undergone continuous evolution in techniques. Through a retrospective analysis of traditional machine learning /evolutionary coupling analysis methods/ consensus machine learning methods and a multi-perspective study on recently developed deep learning methods, we explore the most advanced contact predictors, pursue application scenarios for different methods, and seek prospective directions for further improvement. We anticipate that our study will serve as a practical and useful guide for the development of future approaches to contact prediction.
Collapse
Affiliation(s)
- Huiling Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhendong Bei
- Cloud Computing Department, Alibaba Group, Hangzhou, China
| | - Wenhui Xi
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Hao
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Zhen Ju
- University of Chinese Academy of Sciences, Beijing, China
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Konda Mani Saravanan
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiping Zhang
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ning Guo
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjie Wei
- University of Chinese Academy of Sciences, Beijing, China
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- * E-mail:
| |
Collapse
|
14
|
Shao D, Mao W, Xing Y, Gong H. RDb2C2: an improved method to identify the residue-residue pairing in β strands. BMC Bioinformatics 2020; 21:133. [PMID: 32245403 PMCID: PMC7126467 DOI: 10.1186/s12859-020-3476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background Despite the great advance of protein structure prediction, accurate prediction of the structures of mainly β proteins is still highly challenging, but could be assisted by the knowledge of residue-residue pairing in β strands. Previously, we proposed a ridge-detection-based algorithm RDb2C that adopted a multi-stage random forest framework to predict the β-β pairing given the amino acid sequence of a protein. Results In this work, we developed a second version of this algorithm, RDb2C2, by employing the residual neural network to further enhance the prediction accuracy. In the benchmark test, this new algorithm improves the F1-score by > 10 percentage points, reaching impressively high values of ~ 72% and ~ 73% in the BetaSheet916 and BetaSheet1452 sets, respectively. Conclusion Our new method promotes the prediction accuracy of β-β pairing to a new level and the prediction results could better assist the structure modeling of mainly β proteins. We prepared an online server of RDb2C2 at http://structpred.life.tsinghua.edu.cn/rdb2c2.html.
Collapse
|
15
|
Ding W, Gong H. Predicting the Real-Valued Inter-Residue Distances for Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001314. [PMID: 33042750 PMCID: PMC7539185 DOI: 10.1002/advs.202001314] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/06/2020] [Indexed: 05/04/2023]
Abstract
Predicting protein structure from the amino acid sequence has been a challenge with theoretical and practical significance in biophysics. Despite the recent progresses elicited by improved inter-residue contact prediction, contact-based structure prediction has gradually reached the performance ceiling. New methods have been proposed to predict the inter-residue distance, but unanimously by simplifying the real-valued distance prediction into a multiclass classification problem. Here, a lightweight regression-based distance prediction method is shown, which adopts the generative adversarial network to capture the delicate geometric relationship between residue pairs and thus could predict the continuous, real-valued inter-residue distance rapidly and satisfactorily. The predicted residue distance map allows quick structure modeling by the CNS suite, and the constructed models approach the same level of quality as the other state-of-the-art protein structure prediction methods when tested on CASP13 targets. Moreover, this method can be used directly for the structure prediction of membrane proteins without transfer learning.
Collapse
Affiliation(s)
- Wenze Ding
- MOE Key Laboratory of BioinformaticsSchool of Life SciencesTsinghua UniversityBeijing100084China
- Beijing Advanced Innovation Center for Structural BiologyTsinghua UniversityBeijing100084China
| | - Haipeng Gong
- MOE Key Laboratory of BioinformaticsSchool of Life SciencesTsinghua UniversityBeijing100084China
- Beijing Advanced Innovation Center for Structural BiologyTsinghua UniversityBeijing100084China
| |
Collapse
|
16
|
Bhattacharya S, Bhattacharya D. Evaluating the significance of contact maps in low-homology protein modeling using contact-assisted threading. Sci Rep 2020; 10:2908. [PMID: 32076047 PMCID: PMC7031282 DOI: 10.1038/s41598-020-59834-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/02/2022] Open
Abstract
The development of improved threading algorithms for remote homology modeling is a critical step forward in template-based protein structure prediction. We have recently demonstrated the utility of contact information to boost protein threading by developing a new contact-assisted threading method. However, the nature and extent to which the quality of a predicted contact map impacts the performance of contact-assisted threading remains elusive. Here, we systematically analyze and explore this interdependence by employing our newly-developed contact-assisted threading method over a large-scale benchmark dataset using predicted contact maps from four complementary methods including direct coupling analysis (mfDCA), sparse inverse covariance estimation (PSICOV), classical neural network-based meta approach (MetaPSICOV), and state-of-the-art ultra-deep learning model (RaptorX). Experimental results demonstrate that contact-assisted threading using high-quality contacts having the Matthews Correlation Coefficient (MCC) ≥ 0.5 improves threading performance in nearly 30% cases, while low-quality contacts with MCC <0.35 degrades the performance for 50% cases. This holds true even in CASP13 dataset, where threading using high-quality contacts (MCC ≥ 0.5) significantly improves the performance of 22 instances out of 29. Collectively, our study uncovers the mutual association between the quality of predicted contacts and its possible utility in boosting threading performance for improving low-homology protein modeling.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Debswapna Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, 36849, USA.
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
17
|
CRISPRLearner: A Deep Learning-Based System to Predict CRISPR/Cas9 sgRNA On-Target Cleavage Efficiency. ELECTRONICS 2019. [DOI: 10.3390/electronics8121478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPRLearner, the system presented in this paper, makes it possible to predict the on-target cleavage efficiency (also called on-target knockout efficiency) of a given sgRNA sequence, specifying the target genome that this sequence is designed for. After efficiency prediction, the researcher can evaluate its sequence and design a new one if the predicted efficiency is low. CRISPRLearner uses a deep convolutional neural network to automatically learn sequence determinants and predict the efficiency, using pre-trained models or using a model trained on a custom dataset. The convolutional neural network uses linear regression to predict efficiency based on efficiencies used to train the model. Ten different models were trained using ten different gene datasets. The efficiency prediction task attained an average Spearman correlation higher than 0.40. This result was obtained using a data augmentation technique that generates mutations of a sgRNA sequence, maintaining the efficiency value. CRISPRLearner supports researchers in sgRNA design task, predicting a sgRNA on-target knockout efficiency.
Collapse
|