1
|
He J, Luo L, Xu S, Yang F, Zhu W. Pyrrole-based EGFR inhibitors for the treatment of NCSLC: Binding modes and SARs investigations. Chem Biol Drug Des 2023; 101:195-217. [PMID: 36394145 DOI: 10.1111/cbdd.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022]
Abstract
The treatment of advanced non-small cell lung cancer (NSCLC) has made substantial progress due to the rapid development of small molecule targeted therapy, with dramatically prolonged survival. As an effective drug for the treatment of NSCLC, epidermal growth factor receptor (EGFR) inhibitors are currently experiencing issues like severe adverse events and drug resistance. It is urgent to develop novel types of EGFR inhibitors to overcome the abovementioned limitations. Pyrrole always works well as a probe for the creation of novel medication candidates for hard-to-treat conditions like lung cancer. Although the design, synthesis, and biological assays of pyrrole derivatives have been reported, their inhibitory actions against the receptor tyrosine kinase (RTK) EGFR have not been in-depthly studied. This review highlights the small molecule EGFR inhibitors containing pyrrole heterocyclic pharmacophores in recent years, and the research on their mechanism, biological activity, and structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Jie He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Leixuan Luo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Feiyi Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Nematpour M, Rezaee E, Nazari M, Hosseini O, Tabatabai SA. Targeting EGFR Tyrosine Kinase: Design, Synthesis and Biological Evaluation of Novel Quinazolinone Derivatives. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e123826. [PMID: 35765503 PMCID: PMC9191221 DOI: 10.5812/ijpr.123826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
Impaired cell cycle regulation and disturbance in signal transduction pathway are two major causes of a condition defined as cancer, one of the significant reasons for mortality worldwide. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been commonly used as anticancer agents, and the majority of this medications possess quinazoline moiety as a heteroaromatic core. In this study, two novel series of EGFR-TKIs containing quinazolinone core were designed and synthesized. Most compounds showed reasonable inhibitory activity against EGFR-TK compared to that of erlotinib, a reversible inhibitor of this enzyme. Compound 8b, 2-((2-chlorobenzyl)amino)-6-phenoxyquinazolin-4(1H)-one, with an IC50 value of 1.37 nM exhibited the highest potency. Molecular docking study of compound 8b showed that it had the same direction of erlotinib and formed proper hydrogen bonds and hydrophobic interactions with the important amino acid residues of the active site. Based on in-silico calculations of ADME properties, our novel compounds have the potential to be orally active agents.
Collapse
Affiliation(s)
- Manijeh Nematpour
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Nazari
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hosseini
- Central Research Labretories, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Bhatia P, Sharma V, Alam O, Manaithiya A, Alam P, Kahksha, Alam MT, Imran M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur J Med Chem 2020; 204:112640. [PMID: 32739648 DOI: 10.1016/j.ejmech.2020.112640] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
The over expression of EGFR has been recognized as the driver mechanism in the occurrence and progression of carcinomas such as lung cancer, breast cancer, pancreatic cancer, etcetera. EGFR receptor was thus established as an important target for the management of solid tumors. The occurrence of resistance caused as a result of mutations in EGFR has presented a formidable challenge in the discovery of novel inhibitors of EGFR. This has resulted in the development of three generations of EGFR TKIs. Newer mutations like C797S cause failure of Osimertinib and other EGFR TKIs belonging to the third-generation caused by the development of resistance. In this review, we have summarized the work done in the last five years to overcome the limitations of currently marketed drugs, giving structural activity relationships of quinazoline-based lead compounds synthesized and tested recently. We have also highlighted the shortcomings of the currently used approaches and have provided guidance for circumventing these limitations. Our review would help medicinal chemists streamline and guide their efforts towards developing novel quinazoline-based EGFR inhibitors.
Collapse
Affiliation(s)
- Parth Bhatia
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Perwaiz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kahksha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Tauquir Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| |
Collapse
|
4
|
Synthesis and screening of novel anthraquinone−quinazoline multitarget hybrids as promising anticancer candidates. Future Med Chem 2020; 12:111-126. [PMID: 31718309 DOI: 10.4155/fmc-2019-0230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: The EGF receptor (EGFR) is overexpressed in multiple epithelial-derived cancers and is considered to be a vital target closely associated with cancer therapy. In this study, a series of novel anthraquinone−quinazoline hybrids targeting several vital sites for cancer therapy were designed and synthesized. Methodology & results: Most of the synthesized hybrids demonstrated excellent antiproliferative activity and downregulation of the expression of EGFR. The most promising compound 7d showed the strongest antiproliferation activity; this compound significantly downregulated the expression of p-EGFR protein, induced a remarkable apoptosis effect, promoted the rearrangement of F-actin filaments and destruction of cytoskeleton, induced DNA damage and enhanced radiosensitivity of A549 cells. Conclusion: The novel anthraquinone−quinazoline hybrid 7d emerges as an anticancer drug candidate with promising multitargeted biological activities.
Collapse
|
5
|
Zhao B, Zhao C, Hu X, Xu S, Lan Z, Guo Y, Yang Z, Zhu W, Zheng P. Design, synthesis and 3D-QSAR analysis of novel thiopyranopyrimidine derivatives as potential antitumor agents inhibiting A549 and Hela cancer cells. Eur J Med Chem 2020; 185:111809. [DOI: 10.1016/j.ejmech.2019.111809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
|
6
|
Chen Y, Chen X, Ding X, Wang Y. Afatinib, an EGFR inhibitor, decreases EMT and tumorigenesis of Huh‑7 cells by regulating the ERK‑VEGF/MMP9 signaling pathway. Mol Med Rep 2019; 20:3317-3325. [PMID: 31432165 PMCID: PMC6755195 DOI: 10.3892/mmr.2019.10562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Transcatheter arterial embolization (TAE) therapy has been used in the treatment of inoperable hepatocellular carcinoma (HCC). However, tumor recurrence and metastasis are common in patients after TAE, and these processes may be caused by circulating tumor cells (CTCs). Epithelial-mesenchymal transition (EMT) serves important roles in CTCs, and abnormal expression and activation of epidermal growth factor receptor (EGFR) is common in cancer cells. Afatinib is an EGFR-tyrosine kinase inhibitor (TKI). The present study aimed to investigate the effects of afatinib on EMT and tumorigenesis in HCC cells. Western blot analysis suggested that afatinib was able to effectively suppress overactivation of EGFR. Moreover, the expression levels of EMT- and metastasis-associated genes were found to be modulated by afatinib through EGFR inhibition. In addition, Cell Counting Kit-8 and Transwell assays suggested that the viability, migration and invasion of HCC cells were inhibited by afatinib through EGFR inhibition. Furthermore, the activity of the ERK signaling pathway and the expression levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP9) were decreased following treatment with afatinib in vitro. Collectively, the present results suggested that the inhibitory effects of afatinib on EMT and tumorigenesis may be associated with the ERK-VEGF/MMP9 signaling pathway. The present study provides new insights into understanding the mechanism underlying HCC and may facilitate the development of novel therapeutic strategies to treat HCC recurrence.
Collapse
Affiliation(s)
- Yafei Chen
- Department of Clinical Laboratory, Tiantai People's Hospital, Taizhou, Zhejiang 317200, P.R. China
| | - Xin Chen
- Department of Clinical Laboratory, Tiantai People's Hospital, Taizhou, Zhejiang 317200, P.R. China
| | - Xiaojun Ding
- Department of Clinical Laboratory, Tiantai People's Hospital, Taizhou, Zhejiang 317200, P.R. China
| | - Yingwei Wang
- Department of Clinical Laboratory, Tiantai People's Hospital, Taizhou, Zhejiang 317200, P.R. China
| |
Collapse
|
7
|
Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur J Med Chem 2019; 170:55-72. [DOI: 10.1016/j.ejmech.2019.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022]
|