1
|
Wang L, Yin N, Shi W, Xie Y, Yi J, Tang Z, Tang J, Xiang J. Splicing inhibition mediated by reduced splicing factors and helicases is associated with the cellular response of lung cancer cells to cisplatin. Comput Struct Biotechnol J 2024; 23:648-658. [PMID: 38283853 PMCID: PMC10819863 DOI: 10.1016/j.csbj.2023.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Lung cancer's mortality is predominantly linked to post-chemotherapy recurrence, driven by the reactivation of dormant cancer cells. Despite the critical role of these reactivated cells in cancer recurrence and metastasis, the molecular mechanisms governing their therapeutic selection remain poorly understood. In this study, we conducted an integrative analysis by combining PacBio single molecule real-time (SMRT) sequencing with short reads Illumina RNA-seq. Our study revealed that cisplatin-induced dormant and reactivated cancer cells exhibited a noteworthy reduction in gene transcripts and alternative splicing events. Particularly, the differential alternative splicing events were found to be overlapping with the differentially expression genes and enriched in genes related to cell cycle and cell division. Utilizing ENCORI database and correlation analysis, we identified key splicing factors, including SRSF7, SRSF3, PRPF8, and HNRNPC, as well as RNA helicase such as EIF4A3, DDX39A, DDX11, and BRIP1, which were associated with the observed reduction in alternative splicing and subsequent decrease in gene expression. Our study demonstrated that lung cancer cells reduce gene transcripts through diminished alternative splicing events mediated by specific splicing factors and RNA helicase in response to the chemotherapeutic stress. These findings provide insights into the molecular mechanisms underlying the therapeutic selection and reactivation of dormant cancer cells. This discovery opens a potential avenue for the development of therapeutic strategies aimed at preventing cancer recurrence following chemotherapy.
Collapse
Affiliation(s)
- Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan 410011, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410011, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Na Yin
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410011, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Wenhua Shi
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410011, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yaohuan Xie
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410011, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Junqi Yi
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan 410011, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ziying Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan 410011, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan 410011, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan 410011, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410011, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
2
|
Southey BR, Romanova EV, Rodriguez-Zas SL, Sweedler JV. Bioinformatics for Prohormone and Neuropeptide Discovery. Methods Mol Biol 2024; 2758:151-178. [PMID: 38549013 PMCID: PMC11045269 DOI: 10.1007/978-1-0716-3646-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neuropeptides and peptide hormones are signaling molecules produced via complex posttranslational modifications of precursor proteins known as prohormones. Neuropeptides activate specific receptors and are associated with the regulation of physiological systems and behaviors. The identification of prohormones-and the neuropeptides created by these prohormones-from genomic assemblies has become essential to support the annotation and use of the rapidly growing number of sequenced genomes. Here we describe a well-validated methodology for identifying the prohormone complement from genomic assemblies that employs widely available public toolsets and databases. The uncovered prohormone sequences can then be screened for putative neuropeptides to enable accurate proteomic discovery and validation.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elena V Romanova
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Xu J, Feng X, Yin N, Wang L, Xie Y, Gao Y, Xiang J. Exosomes from cisplatin-induced dormant cancer cells facilitate the formation of premetastatic niche in bone marrow through activating glycolysis of BMSCs. Front Oncol 2022; 12:922465. [PMID: 36568212 PMCID: PMC9786109 DOI: 10.3389/fonc.2022.922465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Lung cancer is the leading cause of cancer-related deaths worldwide. Chemotherapy kills most cancer cells; however, residual cells enter a dormant state. The dormant cancer cells can be reactivated under specific circumstances. The "premetastatic niche" that is suitable for colonization of cancer cells is formed before the arrival of cancer cells. Tumor-derived exosomes are the main mediators of tumorigenesis. We are aiming to elucidate the roles of exosomes from cisplatin-induced dormant lung cancer cells in the formation of premetastatic niches in bone marrow. Methods We performed differential proteomics in dormant A549 cell- and A549 cell-derived exosomes. Non-targeted metabolomics and RNA sequencing were performed to explore the molecular and metabolic reprogramming of bone marrow stromal cells (BMSCs). The growth and metastasis of A549 cells in vivo were monitored by bioluminescence imaging. Results We found that Insulin-like growth factor 2 (IGF-2) and Insulin-like growth factor binding protein 2 (IGFBP2) were upregulated in dormant A549 cell-derived exosomes. BMSCs that took up exosomes from dormant A549 cells showed enhanced glycolysis and promoted the growth and metastasis of A549 cells possibly through Insulin-like growth factor 1 receptor (IGF-1R)-induced metabolic reprogramming. Inhibition of the production of lactate and IGF-1R signaling can suppress the growth and metastasis of A549 cells from bone marrow. Discussion Overall, we demonstrated that BMSCs formed a premetastatic niche upon taking up exosomes from cisplatin-induced dormant lung cancer cells. BMSCs promoted lung cancer cell growth and metastasis through the reverse Warburg effect.
Collapse
Affiliation(s)
- Jiaqi Xu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China,The Key Laboratory of Carcinogenesis of National Health Committee and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiang Feng
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Na Yin
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China,The Key Laboratory of Carcinogenesis of National Health Committee and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Lujuan Wang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China,The Key Laboratory of Carcinogenesis of National Health Committee and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Yaohuan Xie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China,The Key Laboratory of Carcinogenesis of National Health Committee and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Juanjuan Xiang, ; Yawen Gao,
| | - Juanjuan Xiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China,The Key Laboratory of Carcinogenesis of National Health Committee and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China,Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Juanjuan Xiang, ; Yawen Gao,
| |
Collapse
|
4
|
Wang L, Peng Q, Xie Y, Yin N, Xu J, Chen A, Yi J, Shi W, Tang J, Xiang J. Cell-cell contact-driven EphB1 cis- and trans- signalings regulate cancer stem cells enrichment after chemotherapy. Cell Death Dis 2022; 13:980. [PMID: 36402751 PMCID: PMC9675789 DOI: 10.1038/s41419-022-05385-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
Reactivation of chemotherapy-induced dormant cancer cells is the main cause of relapse and metastasis. The molecular mechanisms underlying remain to be elucidated. In this study, we introduced a cellular model that mimics the process of cisplatin responsiveness in NSCLC patients. We found that during the process of dormancy and reactivation induced by cisplatin, NSCLC cells underwent sequential EMT-MET with enrichment of cancer stem cells. The ATAC-seq combined with motif analysis revealed that OCT4-SOX2-TCF-NANOG motifs were associated with the enrichment of cancer stem cells induced by chemotherapy. Gene expression profiling suggested a dynamic regulatory mechanism during the process of enrichment of cancer stem cells, where Nanog showed upregulation in the dormant state and SOX2 showed upregulation in the reactivated state. Further, we showed that EphB1 and p-EphB1 showed dynamic expression in the process of cancer cell dormancy and reactivation, where the expression profiles of EphB1 and p-EphB1 showed negatively correlated. In the dormant EMT cells which showed disrupted cell-cell contacts, ligand-independent EphB1 promoted entry of lung cancer cells into dormancy through activating p-p38 and downregulating E-cadherin. On the contrary, in the state of MET, in which cell-cell adhesion was recovered, interactions of EphB1 and ligand EphrinB2 in trans promoted the stemness of cancer cells through upregulating Nanog and Sox2. In conclusion, lung cancer stem cells were enriched during the process of cellular response to chemotherapy. EphB1 cis- and trans- signalings function in the dormant and reactivated state of lung cancer cells respectively. It may provide a therapeutic strategy that target the evolution process of cancer cells induced by chemotherapy.
Collapse
Affiliation(s)
- Lujuan Wang
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu Peng
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Yaohuan Xie
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Na Yin
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jiaqi Xu
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Anqi Chen
- grid.216417.70000 0001 0379 7164Department of thoracic surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410013 China ,grid.216417.70000 0001 0379 7164Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Junqi Yi
- grid.216417.70000 0001 0379 7164Department of thoracic surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410013 China ,grid.216417.70000 0001 0379 7164Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Wenhua Shi
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jingqun Tang
- grid.216417.70000 0001 0379 7164Department of thoracic surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410013 China ,grid.216417.70000 0001 0379 7164Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Juanjuan Xiang
- grid.216417.70000 0001 0379 7164Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
5
|
Surachat K, Taylor TD, Wattanamatiphot W, Sukpisit S, Jeenkeawpiam K. aTAP: automated transcriptome analysis platform for processing RNA-seq data by de novo assembly. Heliyon 2022; 8:e10255. [PMID: 36033257 PMCID: PMC9404342 DOI: 10.1016/j.heliyon.2022.e10255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/27/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022] Open
Abstract
RNA-seq is a sequencing technique that uses next-generation sequencing (NGS) to explore and study the entire transcriptome of a biological sample. NGS-based analyses are mostly performed via command-line interfaces, which is an obstacle for molecular biologists and researchers. Therefore, the higher throughputs from NGS can only be accessed with the help of bioinformatics and computer science expertise. As the cost of sequencing is continuously falling, the use of RNA-seq seems certain to increase. To minimize the problems encountered by biologists and researchers in RNA-seq data analysis, we propose an automated platform with a web application that integrates various bioinformatics pipelines. The platform is intended to enable academic users to more easily analyze transcriptome datasets. Our automated Transcriptome Analysis Platform (aTAP) offers comprehensive bioinformatics workflows, including quality control of raw reads, trimming of low-quality reads, de novo transcriptome assembly, transcript expression quantification, differential expression analysis, and transcript annotation. aTAP has a user-friendly graphical interface, allowing researchers to interact with and visualize results in the web browser. This project offers an alternative way to analyze transcriptome data, by integrating efficient and well-known tools, that is simpler and more accessible to research communities. aTAP is freely available to academic users at https://atap.psu.ac.th/.
Collapse
Affiliation(s)
- Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.,Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Todd Duane Taylor
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Wanicbut Wattanamatiphot
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sukgamon Sukpisit
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
6
|
The effects of sequencing depth on the assembly of coding and noncoding transcripts in the human genome. BMC Genomics 2022; 23:487. [PMID: 35787153 PMCID: PMC9251931 DOI: 10.1186/s12864-022-08717-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
Investigating the functions and activities of genes requires proper annotation of the transcribed units. However, transcript assembly efforts have produced a surprisingly large variation in the number of transcripts, and especially so for noncoding transcripts. This heterogeneity in assembled transcript sets might be partially explained by sequencing depth. Here, we used real and simulated short-read sequencing data as well as long-read data to systematically investigate the impact of sequencing depths on the accuracy of assembled transcripts. We assembled and analyzed transcripts from 671 human short-read data sets and four long-read data sets. At the first level, there is a positive correlation between the number of reads and the number of recovered transcripts. However, the effect of the sequencing depth varied based on cell or tissue type, the type of read and the nature and expression levels of the transcripts. The detection of coding transcripts saturated rapidly with both short and long-reads, however, there was no sign of early saturation for noncoding transcripts at any sequencing depth. Increasing long-read sequencing depth specifically benefited transcripts containing transposable elements. Finally, we show how single-cell RNA-seq can be guided by transcripts assembled from bulk long-read samples, and demonstrate that noncoding transcripts are expressed at similar levels to coding transcripts but are expressed in fewer cells. This study highlights the impact of sequencing depth on transcript assembly.
Collapse
|
7
|
Comparative transcriptome analysis of differentially expressed genes and pathways in Procambarus clarkii (Louisiana crawfish) at different acute temperature stress. Genomics 2022; 114:110415. [PMID: 35718088 DOI: 10.1016/j.ygeno.2022.110415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
Procambarus clarkii is an important economic species in China, and exhibit heat and cold tolerance in the main culture regions. To understand the mechanisms, we analyzed the hepatopancreas transcriptome of P. clarkii treated at 10 °C, 25 °C, and 30 °C, then 2092 DEGs and 6929 DEGs were found in 30 °C stress group and 10 °C stress group, respectively. KEGG pathway enrichment results showed that immune pathway is the main stress pathway for 10 °C treatment and metabolic pathway is the main response pathway for 30 °C treatment, which implies low temperature stress induces the damage of the immune system and increases the susceptibility of bacteria while the body response to high temperature stress through metabolic adjustment. In addition, flow cytometry proved that both high and low temperature stress caused different degrees of apoptosis of hemocytes, and dynamic transcription heat map analysis also identified the differential expression of HSPs family genes and apoptosis pathway genes under different heat stresses. This indicates that preventing damaged protein misfolding and accelerating cell apoptosis are necessary mechanisms for P. clarkii to cope with high and low temperature stress. Our research has deepened our understanding of the complex molecular mechanisms of P. clarkii in response to acute temperature stress, and provided a potential strategy for aquatic animals to relieve environmental duress.
Collapse
|
8
|
Chen P, Wang B, Li M, Cui C, Liu F, Gao Y. Celastrol inhibits the proliferation and migration of MCF-7 cells through the leptin-triggered PI3K/AKT pathway. Comput Struct Biotechnol J 2022; 20:3173-3181. [PMID: 35782744 PMCID: PMC9234344 DOI: 10.1016/j.csbj.2022.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Leptin is the pivotal modulator in the onset and progression of breast cancer and obesity. Celastrol, which is extracted from the roots of Tripterygium wilfordi plants, exerts various anticancer bioactivities and has recently emerged as a candidate to treat obesity by improving leptin sensitivity. However, the relationship between leptin and celastrol in the treatment of breast cancer is unknown. Here, the growth and migration of MCF-7 cells induced by leptin were tested to demonstrate the antineoplastic activity of celastrol. Transcriptomic analysis and western blotting were conducted to explore the biological roles of leptin in treating breast cancer with celastrol. The present findings showed that celastrol remarkably reversed leptin-triggered cell proliferation and migration in MCF-7 cells. Fifty-two mRNAs with fivefold higher counts and 149 mRNAs with fivefold lower counts were identified in the celastrol-treated MCF-7 cells. According to the GO and KEGG analyses, the effects of celastrol on MCF-7 cells forced lipid metabolism and the endocrine system. Moreover, leptin treatment induced phosphorylation of leptin receptor and PI3K/AKT in MCF-7 cells, whereas pretreatment with celastrol partly abrogated leptin activation. The binding of celastrol to the leptin receptor was also confirmed by molecular docking. The antitumor effect of celastrol is proposed to be mediated by its binding to the leptin receptor and controlled downregulation of the PI3K/AKT pathway.
Collapse
|
9
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
10
|
TÜNCEL Ö, KARA M, YAYLAK B, ERDOĞAN İ, AKGÜL B. Noncoding RNAs in apoptosis: identification and function. Turk J Biol 2021; 46:1-40. [PMID: 37533667 PMCID: PMC10393110 DOI: 10.3906/biy-2109-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/08/2022] [Accepted: 11/14/2021] [Indexed: 08/04/2023] Open
Abstract
Apoptosis is a vital cellular process that is critical for the maintenance of homeostasis in health and disease. The derailment of apoptotic mechanisms has severe consequences such as abnormal development, cancer, and neurodegenerative diseases. Thus, there exist complex regulatory mechanisms in eukaryotes to preserve the balance between cell growth and cell death. Initially, protein-coding genes were prioritized in the search for such regulatory macromolecules involved in the regulation of apoptosis. However, recent genome annotations and transcriptomics studies have uncovered a plethora of regulatory noncoding RNAs that have the ability to modulate not only apoptosis but also many other biochemical processes in eukaryotes. In this review article, we will cover a brief summary of apoptosis and detection methods followed by an extensive discussion on microRNAs, circular RNAs, and long noncoding RNAs in apoptosis.
Collapse
Affiliation(s)
- Özge TÜNCEL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Merve KARA
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bilge YAYLAK
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - İpek ERDOĞAN
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bünyamin AKGÜL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| |
Collapse
|
11
|
Babarinde IA, Ma G, Li Y, Deng B, Luo Z, Liu H, Abdul MM, Ward C, Chen M, Fu X, Shi L, Duttlinger M, He J, Sun L, Li W, Zhuang Q, Tong G, Frampton J, Cazier JB, Chen J, Jauch R, Esteban MA, Hutchins AP. Transposable element sequence fragments incorporated into coding and noncoding transcripts modulate the transcriptome of human pluripotent stem cells. Nucleic Acids Res 2021; 49:9132-9153. [PMID: 34390351 PMCID: PMC8450112 DOI: 10.1093/nar/gkab710] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) occupy nearly 40% of mammalian genomes and, whilst most are fragmentary and no longer capable of transposition, they can nevertheless contribute to cell function. TEs within genes transcribed by RNA polymerase II can be copied as parts of primary transcripts; however, their full contribution to mature transcript sequences remains unresolved. Here, using long and short read (LR and SR) RNA sequencing data, we show that 26% of coding and 65% of noncoding transcripts in human pluripotent stem cells (hPSCs) contain TE-derived sequences. Different TE families are incorporated into RNAs in unique patterns, with consequences to transcript structure and function. The presence of TE sequences within a transcript is correlated with TE-type specific changes in its subcellular distribution, alterations in steady-state levels and half-life, and differential association with RNA Binding Proteins (RBPs). We identify hPSC-specific incorporation of endogenous retroviruses (ERVs) and LINE:L1 into protein-coding mRNAs, which generate TE sequence-derived peptides. Finally, single cell RNA-seq reveals that hPSCs express ERV-containing transcripts, whilst differentiating subpopulations lack ERVs and express SINE and LINE-containing transcripts. Overall, our comprehensive analysis demonstrates that the incorporation of TE sequences into the RNAs of hPSCs is more widespread and has a greater impact than previously appreciated.
Collapse
Affiliation(s)
- Isaac A Babarinde
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang Ma
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuhao Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Boping Deng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zhiwei Luo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mazid Md Abdul
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Carl Ward
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Minchun Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiuling Fu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liyang Shi
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Martha Duttlinger
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiangping He
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Li Sun
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qiang Zhuang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guoqing Tong
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Jon Frampton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Jiekai Chen
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.,Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Andrew P Hutchins
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
Souvorov A, Agarwala R. SAUTE: sequence assembly using target enrichment. BMC Bioinformatics 2021; 22:375. [PMID: 34289805 PMCID: PMC8293564 DOI: 10.1186/s12859-021-04174-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 01/25/2023] Open
Abstract
Background Illumina is the dominant sequencing technology at this time. Short length, short insert size, some systematic biases, and low-level carryover contamination in Illumina reads continue to make assembly of repeated regions a challenging problem. Some applications also require finding multiple well supported variants for assembled regions. Results To facilitate assembly of repeat regions and to report multiple well supported variants when a user can provide target sequences to assist the assembly, we propose SAUTE and SAUTE_PROT assemblers. Both assemblers use de Bruijn graph on reads. Targets can be transcripts or proteins for RNA-seq reads and transcripts, proteins, or genomic regions for genomic reads. Target sequences are nucleotide and protein sequences for SAUTE and SAUTE_PROT, respectively. Conclusions For RNA-seq, comparisons with Trinity, rnaSPAdes, SPAligner, and SPAdes assembly of reads aligned to target proteins by DIAMOND show that SAUTE_PROT finds more coding sequences that translate to benchmark proteins. Using AMRFinderPlus calls, we find SAUTE has higher sensitivity and precision than SPAdes, plasmidSPAdes, SPAligner, and SPAdes assembly of reads aligned to target regions by HISAT2. It also has better sensitivity than SKESA but worse precision. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04174-9.
Collapse
Affiliation(s)
| | - Richa Agarwala
- NCBI/NLM/NIH/DHHS, 8600 Rockville Pike, Bethesda, MD, 20894, USA.
| |
Collapse
|
13
|
Hutchins AP. Single cells and transposable element heterogeneity in stem cells and development. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:23. [PMID: 34226968 PMCID: PMC8257793 DOI: 10.1186/s13619-021-00085-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 01/03/2023]
Abstract
Recent innovations in single cell sequencing-based technologies are shining a light on the heterogeneity of cellular populations in unprecedented detail. However, several cellular aspects are currently underutilized in single cell studies. One aspect is the expression and activity of transposable elements (TEs). TEs are selfish sequences of DNA that can replicate, and have been wildly successful in colonizing genomes. However, most TEs are mutated, fragmentary and incapable of transposition, yet they are actively bound by multiple transcription factors, host complex patterns of chromatin modifications, and are expressed in mRNAs as part of the transcriptome in both normal and diseased states. The contribution of TEs to development and cellular function remains unclear, and the routine inclusion of TEs in single cell sequencing analyses will potentially lead to insight into stem cells, development and human disease.
Collapse
Affiliation(s)
- Andrew P Hutchins
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, 518055, China. .,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Impact of Repetitive DNA Elements on Snake Genome Biology and Evolution. Cells 2021; 10:cells10071707. [PMID: 34359877 PMCID: PMC8303610 DOI: 10.3390/cells10071707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
The distinctive biology and unique evolutionary features of snakes make them fascinating model systems to elucidate how genomes evolve and how variation at the genomic level is interlinked with phenotypic-level evolution. Similar to other eukaryotic genomes, large proportions of snake genomes contain repetitive DNA, including transposable elements (TEs) and satellite repeats. The importance of repetitive DNA and its structural and functional role in the snake genome, remain unclear. This review highlights the major types of repeats and their proportions in snake genomes, reflecting the high diversity and composition of snake repeats. We present snakes as an emerging and important model system for the study of repetitive DNA under the impact of sex and microchromosome evolution. We assemble evidence to show that certain repetitive elements in snakes are transcriptionally active and demonstrate highly dynamic lineage-specific patterns as repeat sequences. We hypothesize that particular TEs can trigger different genomic mechanisms that might contribute to driving adaptive evolution in snakes. Finally, we review emerging approaches that may be used to study the expression of repetitive elements in complex genomes, such as snakes. The specific aspects presented here will stimulate further discussion on the role of genomic repeats in shaping snake evolution.
Collapse
|
15
|
Sun L, Fu X, Ma G, Hutchins AP. Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Front Cell Dev Biol 2021; 9:637309. [PMID: 33681220 PMCID: PMC7930395 DOI: 10.3389/fcell.2021.637309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
A major event in embryonic development is the rearrangement of epigenetic information as the somatic genome is reprogrammed for a new round of organismal development. Epigenetic data are held in chemical modifications on DNA and histones, and there are dramatic and dynamic changes in these marks during embryogenesis. However, the mechanisms behind this intricate process and how it is regulating and responding to embryonic development remain unclear. As embryos develop from totipotency to pluripotency, they pass through several distinct stages that can be captured permanently or transiently in vitro. Pluripotent naïve cells resemble the early epiblast, primed cells resemble the late epiblast, and blastomere-like cells have been isolated, although fully totipotent cells remain elusive. Experiments using these in vitro model systems have led to insights into chromatin changes in embryonic development, which has informed exploration of pre-implantation embryos. Intriguingly, human and mouse cells rely on different signaling and epigenetic pathways, and it remains a mystery why this variation exists. In this review, we will summarize the chromatin rearrangements in early embryonic development, drawing from genomic data from in vitro cell lines, and human and mouse embryos.
Collapse
Affiliation(s)
| | | | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
16
|
María Hernández-Domínguez E, Sofía Castillo-Ortega L, García-Esquivel Y, Mandujano-González V, Díaz-Godínez G, Álvarez-Cervantes J. Bioinformatics as a Tool for the Structural and Evolutionary Analysis of Proteins. Comput Biol Chem 2020. [DOI: 10.5772/intechopen.89594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This chapter deals with the topic of bioinformatics, computational, mathematics, and statistics tools applied to biology, essential for the analysis and characterization of biological molecules, in particular proteins, which play an important role in all cellular and evolutionary processes of the organisms. In recent decades, with the next generation sequencing technologies and bioinformatics, it has facilitated the collection and analysis of a large amount of genomic, transcriptomic, proteomic, and metabolomic data from different organisms that have allowed predictions on the regulation of expression, transcription, translation, structure, and mechanisms of action of proteins as well as homology, mutations, and evolutionary processes that generate structural and functional changes over time. Although the information in the databases is greater every day, all bioinformatics tools continue to be constantly modified to improve performance that leads to more accurate predictions regarding protein functionality, which is why bioinformatics research remains a great challenge.
Collapse
|
17
|
Transcriptome reveals the important role of metabolic imbalances, immune disorders and apoptosis in the treatment of Procambarus clarkii at super high temperature. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100781. [PMID: 33316578 DOI: 10.1016/j.cbd.2020.100781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023]
Abstract
Temperature is an important environmental factor in the living environment of crustaceans. Changes in temperature can affect their normal growth and metabolism and even cause bacterial disease. Currently, the potential anti-reverse molecular reaction mechanism of crustaceans during high-temperature conditions has not yet been fully understood. Therefore, in this study, we characterised the transcriptome of Procambarus clarkii using RNA sequencing and performed a comparison between super-high-temperature treated samples and controls. After assembly and annotation, 81,097 unigenes with an average length of 069 bp and 358 differentially expressed genes (DEGs) were identified. Among these DEGs, 264 were differentially upregulated and 94 were differentially downregulated. To obtain comprehensive gene function information, we queried seven databases, namely, Nr, Nt, Pfam, KOG, Swiss-Prot, KEGG, and GO to annotate gene functions. Transcriptome analysis revealed that the identified DEGs have significant effects on immune-related pathways, including lysosomal and phagosomal pathways, and that super-high-temperature conditions can cause disease in P. clarkii. Some significantly downregulated genes are involved in oxidative phosphorylation and the PPAR signalling pathway; this suggests a metabolic imbalance in P. clarkia during extreme temperature conditions. In addition, elevated temperature changed the expression patterns of key apoptosis genes XIAP, CASP2, CASP2, CASP8, and CYTC, thereby confirming that high-temperature conditions caused immune disorders, metabolic imbalance, and, finally, triggered apoptosis. Our results provide a useful foundation for understanding the molecular mechanisms underlying the responses of P. clarkii during high-temperature conditions.
Collapse
|
18
|
Jung H, Ventura T, Chung JS, Kim WJ, Nam BH, Kong HJ, Kim YO, Jeon MS, Eyun SI. Twelve quick steps for genome assembly and annotation in the classroom. PLoS Comput Biol 2020; 16:e1008325. [PMID: 33180771 PMCID: PMC7660529 DOI: 10.1371/journal.pcbi.1008325] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic genome sequencing and de novo assembly, once the exclusive domain of well-funded international consortia, have become increasingly affordable, thus fitting the budgets of individual research groups. Third-generation long-read DNA sequencing technologies are increasingly used, providing extensive genomic toolkits that were once reserved for a few select model organisms. Generating high-quality genome assemblies and annotations for many aquatic species still presents significant challenges due to their large genome sizes, complexity, and high chromosome numbers. Indeed, selecting the most appropriate sequencing and software platforms and annotation pipelines for a new genome project can be daunting because tools often only work in limited contexts. In genomics, generating a high-quality genome assembly/annotation has become an indispensable tool for better understanding the biology of any species. Herein, we state 12 steps to help researchers get started in genome projects by presenting guidelines that are broadly applicable (to any species), sustainable over time, and cover all aspects of genome assembly and annotation projects from start to finish. We review some commonly used approaches, including practical methods to extract high-quality DNA and choices for the best sequencing platforms and library preparations. In addition, we discuss the range of potential bioinformatics pipelines, including structural and functional annotations (e.g., transposable elements and repetitive sequences). This paper also includes information on how to build a wide community for a genome project, the importance of data management, and how to make the data and results Findable, Accessible, Interoperable, and Reusable (FAIR) by submitting them to a public repository and sharing them with the research community.
Collapse
Affiliation(s)
- Hyungtaek Jung
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tomer Ventura
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - J. Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Woo-Jin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Min-Seung Jeon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Seong-il Eyun
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
19
|
Höllbacher B, Balázs K, Heinig M, Uhlenhaut NH. Seq-ing answers: Current data integration approaches to uncover mechanisms of transcriptional regulation. Comput Struct Biotechnol J 2020; 18:1330-1341. [PMID: 32612756 PMCID: PMC7306512 DOI: 10.1016/j.csbj.2020.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Advancements in the field of next generation sequencing lead to the generation of ever-more data, with the challenge often being how to combine and reconcile results from different OMICs studies such as genome, epigenome and transcriptome. Here we provide an overview of the standard processing pipelines for ChIP-seq and RNA-seq as well as common downstream analyses. We describe popular multi-omics data integration approaches used to identify target genes and co-factors, and we discuss how machine learning techniques may predict transcriptional regulators and gene expression.
Collapse
Affiliation(s)
- Barbara Höllbacher
- Institute for Diabetes and Cancer IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Neuherberg, Germany.,Institute of Computational Biology ICB, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Neuherberg, Germany.,Department of Informatics, TUM, Munich 85748, Garching, Germany
| | - Kinga Balázs
- Institute for Diabetes and Cancer IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Neuherberg, Germany
| | - Matthias Heinig
- Institute of Computational Biology ICB, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Neuherberg, Germany.,Department of Informatics, TUM, Munich 85748, Garching, Germany
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Cancer IDC, Helmholtz Zentrum Muenchen (HMGU) and German Center for Diabetes Research (DZD), Munich 85764, Neuherberg, Germany.,Metabolic Programming, TUM School of Life Sciences Weihenstephan, Munich 85354, Freising, Germany
| |
Collapse
|
20
|
Ng PC, Wong ED, MacPherson KA, Aleksander S, Argasinska J, Dunn B, Nash RS, Skrzypek MS, Gondwe F, Jha S, Karra K, Weng S, Miyasato S, Simison M, Engel SR, Cherry JM. Transcriptome visualization and data availability at the Saccharomyces Genome Database. Nucleic Acids Res 2020; 48:D743-D748. [PMID: 31612944 PMCID: PMC7061941 DOI: 10.1093/nar/gkz892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
The Saccharomyces Genome Database (SGD; www.yeastgenome.org) maintains the official annotation of all genes in the Saccharomyces cerevisiae reference genome and aims to elucidate the function of these genes and their products by integrating manually curated experimental data. Technological advances have allowed researchers to profile RNA expression and identify transcripts at high resolution. These data can be configured in web-based genome browser applications for display to the general public. Accordingly, SGD has incorporated published transcript isoform data in our instance of JBrowse, a genome visualization platform. This resource will help clarify S. cerevisiae biological processes by furthering studies of transcriptional regulation, untranslated regions, genome engineering, and expression quantification in S. cerevisiae.
Collapse
Affiliation(s)
- Patrick C Ng
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Edith D Wong
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | | | - Suzi Aleksander
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Joanna Argasinska
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Barbara Dunn
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Robert S Nash
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Marek S Skrzypek
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Felix Gondwe
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Sagar Jha
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Kalpana Karra
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Shuai Weng
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Stuart Miyasato
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Matt Simison
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Stacia R Engel
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - J Michael Cherry
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| |
Collapse
|
21
|
de Anda-Jáuregui G, Hernández-Lemus E. Computational Oncology in the Multi-Omics Era: State of the Art. Front Oncol 2020; 10:423. [PMID: 32318338 PMCID: PMC7154096 DOI: 10.3389/fonc.2020.00423] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is the quintessential complex disease. As technologies evolve faster each day, we are able to quantify the different layers of biological elements that contribute to the emergence and development of malignancies. In this multi-omics context, the use of integrative approaches is mandatory in order to gain further insights on oncological phenomena, and to move forward toward the precision medicine paradigm. In this review, we will focus on computational oncology as an integrative discipline that incorporates knowledge from the mathematical, physical, and computational fields to further the biomedical understanding of cancer. We will discuss the current roles of computation in oncology in the context of multi-omic technologies, which include: data acquisition and processing; data management in the clinical and research settings; classification, diagnosis, and prognosis; and the development of models in the research setting, including their use for therapeutic target identification. We will discuss the machine learning and network approaches as two of the most promising emerging paradigms, in computational oncology. These approaches provide a foundation on how to integrate different layers of biological description into coherent frameworks that allow advances both in the basic and clinical settings.
Collapse
Affiliation(s)
- Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Cátedras Conacyt Para Jóvenes Investigadores, National Council on Science and Technology, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
22
|
Yue J, Wang R, Ma X, Liu J, Lu X, Balaso Thakar S, An N, Liu J, Xia E, Liu Y. Full-length transcriptome sequencing provides insights into the evolution of apocarotenoid biosynthesis in Crocus sativus. Comput Struct Biotechnol J 2020; 18:774-783. [PMID: 32280432 PMCID: PMC7132054 DOI: 10.1016/j.csbj.2020.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/31/2022] Open
Abstract
Crocus sativus, containing remarkably amounts of crocin, picrocrocin and safranal, is the source of saffron with tremendous medicinal, economic and cultural importance. Here, we present a high-quality full-length transcriptome of the sterile triploid C. sativus, using the PacBio SMRT sequencing technology. This yields 31,755 high-confidence predictions of protein-coding genes, with 50.1% forming paralogous gene pairs. Analysis on distribution of Ks values suggests that the current genome of C. sativus is probably a product resulting from at least two rounds of whole-genome duplication (WGD) events occurred at ~28 and ~114 million years ago (Mya), respectively. We provide evidence demonstrating that the recent β WGD event confers a major impact on family expansion of secondary metabolite genes, possibly leading to an enhanced accumulation of three distinct compounds: crocin, picrocrocin and safranal. Phylogenetic analysis unravels that the founding member (CCD2) of CCD enzymes necessary for the biosynthesis of apocarotenoids in C. sativus might be evolved from the CCD1 family via the β WGD event. Based on the gene expression profiling, CCD2 is found to be expressed at an extremely high level in the stigma. These findings may shed lights on further genomic refinement of the characteristic biosynthesis pathways and promote germplasm utilization for the improvement of saffron quality.
Collapse
Affiliation(s)
- Junyang Yue
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.,School of Computer and Information, Hefei University of Technology, Hefei 230009, China.,State Key Laboratory of Tea Plant Biology and School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Ran Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaojing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jiayi Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaohui Lu
- College of Information Technology, Jiaxing Vocational Technical College, Jiaxing 314000, China
| | - Sambhaji Balaso Thakar
- State Key Laboratory of Tea Plant Biology and School of Horticulture, Anhui Agricultural University, Hefei 230036, China.,Department of Biotechnology, Shivaji University, Kolhapur 416003, India
| | - Ning An
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.,State Key Laboratory of Tea Plant Biology and School of Horticulture, Anhui Agricultural University, Hefei 230036, China.,Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|