1
|
Xu Z, Liu D, Zhu J, Zhao J, Shen S, Wang Y, Yu P. Catalysts for sulfur: understanding the intricacies of enzymes orchestrating plant sulfur anabolism. PLANTA 2024; 261:16. [PMID: 39690279 DOI: 10.1007/s00425-024-04594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
MAIN CONCLUSION This review highlights the sulfur transporters, key enzymes and their encoding genes involved in plant sulfur anabolism, focusing on their occurrence, chemistry, location, function, and regulation within sulfur assimilation pathways. Sulfur, a vital element for plant life, plays diverse roles in metabolism and stress response. This review provides a comprehensive overview of the sulfur assimilation pathway in plants, highlighting the intricate network of enzymes and their regulatory mechanisms. The primary focus is on the key enzymes involved: ATP sulfurylase (ATPS), APS reductase (APR), sulfite reductase (SiR), serine acetyltransferase (SAT), and O-acetylserine(thiol)lyase (OAS-TL). ATPS initiates the process by activating sulfate to form APS, which is then reduced to sulfite by APR. SiR further reduces sulfite to sulfide, a crucial step that requires significant energy. The cysteine synthase complex (CSC), formed by SAT and OAS-TL, facilitates the synthesis of cysteine, thereby integrating serine metabolism with sulfur assimilation. The alternative sulfation pathway, catalyzed by APS kinase and sulfotransferases, is explored for its role in synthesizing essential secondary metabolites. This review also delves into the regulatory mechanism of these enzymes such as environmental stresses, sulfate availability, phytohormones, as well as translational and post-translational regulations. Understanding the key transporters and enzymes in sulfur assimilation pathways and their corresponding regulation mechanisms can help researchers grasp the importance of sulfur anabolism for the life cycle of plants, clarify how these enzymes and their regulatory processes are integrated to balance plant life systems in response to changes in both external conditions and intrinsic signals.
Collapse
Affiliation(s)
- Ziyue Xu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Dun Liu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiadong Zhu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
| | - Jiayi Zhao
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yueduo Wang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
| | - Pei Yu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China.
- Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
2
|
Wójcik-Augustyn A, Johansson AJ, Borowski T. Reaction Mechanism Catalyzed by the Dissimilatory Sulfite Reductase - The Role of the Siroheme-[4FeS4] Cofactor. Chemphyschem 2024; 25:e202400327. [PMID: 38602444 DOI: 10.1002/cphc.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024]
Abstract
The present work is another part of our investigation on the pathway of dissimilatory sulfate reduction and covers a theoretical study on the reaction catalyzed by dissimilatory sulfite reductase (dSIR). dSIR is the terminal enzyme involved in this metabolic pathway, which uses the siroheme-[4Fe4S] cofactor for six-electron reduction of sulfite to sulfide. In this study we use a large cluster model containing siroheme-[4Fe4S] cofactor and protein residues involved in the direct interactions with the substrate, to get insight into the most feasible reaction mechanism and to understand the role of each considered active site component. In combination with earlier studies reported in the literature, our results lead to several interesting insights. One of the most important conclusions is that the reaction mechanism consists of three steps of two-electron reduction of sulfur and the probable role of the siroheme-[4Fe4S] cofactor is to ensure the delivery of packages of two electrons to the reactant.
Collapse
Affiliation(s)
- Anna Wójcik-Augustyn
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Cracow, Poland
| | - A Johannes Johansson
- Swedish Nuclear Fuel and Waste Management Co (SKB), Box 3091, 169 03, Solna, Sweden
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239, Cracow, Poland
| |
Collapse
|
3
|
Yin W, Xu Y, Chen J, Liu T, Xu Y, Xiao S, Zhang Y, Zhou X. Simultaneous removal of carbamazepine and Cd(II) in groundwater by integration of peroxydisulfate oxidation and sulfidogenic process: The bridging role of SO 42. CHEMOSPHERE 2023; 311:137069. [PMID: 36332735 DOI: 10.1016/j.chemosphere.2022.137069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Heat-activated PDS oxidation (HAPO) has been widely used for in-situ chemical oxidation (ISCO) of micropollutants in groundwater, whereas the aesthetic demerit of additional SO42- production is largely overlooked. In this study, the sulfidogenic process is used to offset the aesthetic demerit, and the production of SO42- is then employed to recycle heavy metals. The innovative integration technology with PDS oxidation and sulfidogenic process via the bridging role of SO42- was reported to remove micropollutants and heavy metals in groundwater simultaneously. HAPO could completely degrade CBZ, producing 400 mg/L SO42- with the addition of 0.50 g/L PDS. Sulfate-reducing bacteria (SRB) utilize SO42- generated from HAPO as the electron acceptor in the sulfidogenic process, removing and recycling Cd(II) via the precipitation of CdS. The SRB tolerance experiment revealed the viability of PDS oxidation coupled with the sulfidogenic process via the bridging role of SO42-. Overall, the integration technology is a green and promising technology for simultaneous micropollutants removal and heavy metals recycling in groundwater.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yue Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Li X, Qi Z, Ni D, Lu S, Chen L, Chen X. Markov State Models and Molecular Dynamics Simulations Provide Understanding of the Nucleotide-Dependent Dimerization-Based Activation of LRRK2 ROC Domain. Molecules 2021; 26:5647. [PMID: 34577121 PMCID: PMC8467336 DOI: 10.3390/molecules26185647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 01/26/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are recognized as the most frequent cause of Parkinson's disease (PD). As a multidomain ROCO protein, LRRK2 is characterized by the presence of both a Ras-of-complex (ROC) GTPase domain and a kinase domain connected through the C-terminal of an ROC domain (COR). The bienzymatic ROC-COR-kinase catalytic triad indicated the potential role of GTPase domain in regulating kinase activity. However, as a functional GTPase, the detailed intrinsic regulation of the ROC activation cycle remains poorly understood. Here, combining extensive molecular dynamics simulations and Markov state models, we disclosed the dynamic structural rearrangement of ROC's homodimer during nucleotide turnover. Our study revealed the coupling between dimerization extent and nucleotide-binding state, indicating a nucleotide-dependent dimerization-based activation scheme adopted by ROC GTPase. Furthermore, inspired by the well-known R1441C/G/H PD-relevant mutations within the ROC domain, we illuminated the potential allosteric molecular mechanism for its pathogenetic effects through enabling faster interconversion between inactive and active states, thus trapping ROC in a prolonged activated state, while the implicated allostery could provide further guidance for identification of regulatory allosteric pockets on the ROC complex. Our investigations illuminated the thermodynamics and kinetics of ROC homodimer during nucleotide-dependent activation for the first time and provided guidance for further exploiting ROC as therapeutic targets for controlling LRRK2 functionality in PD treatment.
Collapse
Affiliation(s)
- Xinyi Li
- School of Medical Laboratory, Weifang Medical University, Weifang 261053, China;
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Duan Ni
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Xiangyu Chen
- School of Medical Laboratory, Weifang Medical University, Weifang 261053, China;
| |
Collapse
|
5
|
Wójcik-Augustyn A, Johansson AJ, Borowski T. Reaction mechanism catalyzed by the dissimilatory adenosine 5'-phosphosulfate reductase. Adenosine 5'-monophosphate inhibitor and key role of arginine 317 in switching the course of catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148333. [PMID: 33130026 DOI: 10.1016/j.bbabio.2020.148333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
The present research is a continuation of our work on dissimilatory reduction pathway of sulfate - involved in biogeochemical sulfur turnover. Adenosine 5'-phosphosulfate reductase (APSR) is the second enzyme in the dissimilatory pathway of the sulfate to sulfide reduction. It reversibly catalyzes formation of the sulfite anion (HSO3-) from adenosine 5'-phosphosulfate (APS) - the activated form of sulfate provided by ATP sulfurylase (ATPS). Two electrons required for this redox reaction derive from reduced FAD cofactor, which is suggested to be involved directly in the catalysis by formation of FADH-SO3- intermediate. The present work covers quantum-mechanical (QM) studies on APSR reaction performed for eight models of APSR active site. The cluster models were constructed based on two crystal structures (PDB codes: 2FJA and 2FJB), differing in conformation of Arg317 active site residue. The described results indicated the most feasible mechanism of APSR forward reaction, including formation of FADHN-SO3- adduct (with proton on N5 atom of isoalloxazine), tautomerization of FADHN-SO3- to FADHO-SO3- (with proton on CO moiety of isoalloxazine), and its reductive cleavage to oxidized FAD and sulfite anion. The reverse reaction proceeds in the backward direction. It is suggested that it requires two AMP molecules, one acting as a substrate and another as an inhibitor of forward reaction, which forces change of Arg317 conformation from "arginine in" (2FJA) to "arginine out" (2FJB). Important role of Arg317 in switching the course of the APSR catalytic reaction is revealed by changing the direction of thermodynamic driving force. The presented research also shows the importance of the protonation pattern of the reduced FAD cofactor and protein residues within the active site.
Collapse
Affiliation(s)
- Anna Wójcik-Augustyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University ul. Gronostajowa 7, 30-387 Cracow, Poland.
| | - A Johannes Johansson
- Swedish Nuclear Fuel and Waste Management Co (SKB), Box 3091, 169 03 Solna, Sweden.
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek, 8, 30-239 Cracow, Poland.
| |
Collapse
|