1
|
Porto SA, Birdsall GA, Harper NW, Honeywell ME, Lee MJ. Genome-wide profiling identifies the genetic dependencies of cell death following EGFR inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647273. [PMID: 40291701 PMCID: PMC12026739 DOI: 10.1101/2025.04.04.647273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
EGFR is a proto-oncogene that is mutationally activated in a variety of cancers. Small molecule inhibitors targeting EGFR can be effective in slowing the progression of disease, and in some settings these drugs even cause dramatic tumor regression. However, responses to EGFR inhibitors are rarely durable, and the mechanisms contributing to response variation remain unclear. In particular, several distinct mechanisms have been proposed for how EGFR inhibition activates cell death, and a consensus has yet to emerge. In this study, we use functional genomics with specialized analyses to infer how genetic perturbations effect the drug-induced death rate. Our data clarify that inhibition of PI3K signaling drives the lethality of EGFR inhibition. Inhibition of other pathways downstream of EGFR, including the RAS-MAPK pathway, promote growth suppression, but not the lethal effects of EGFR inhibitors. Taken together, our study reveals the first "reference map" for the genome-wide genetic dependencies of lethality for EGFR inhibitors.
Collapse
|
2
|
Gelles JD, Chipuk JE. The death gaze of MEDUSA. Nat Chem Biol 2024; 20:1391-1392. [PMID: 38531973 DOI: 10.1038/s41589-024-01594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Affiliation(s)
- Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Honeywell ME, Isidor MS, Harper NW, Fontana RE, Birdsall GA, Cruz-Gordillo P, Porto SA, Jerome M, Fraser CS, Sarosiek KA, Guertin DA, Spinelli JB, Lee MJ. Functional genomic screens with death rate analyses reveal mechanisms of drug action. Nat Chem Biol 2024; 20:1443-1452. [PMID: 38480981 PMCID: PMC11393183 DOI: 10.1038/s41589-024-01584-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because 'chemo-genetic profiles' are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. In this study, we developed Method for Evaluating Death Using a Simulation-assisted Approach (MEDUSA), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response. MEDUSA is uniquely effective at identifying death regulatory genes. We apply MEDUSA to characterize DNA damage-induced lethality in the presence and absence of p53. Loss of p53 switches the mechanism of DNA damage-induced death from apoptosis to a non-apoptotic death that requires high respiration. These findings demonstrate the utility of MEDUSA both for determining the genetic dependencies of lethality and for revealing opportunities to potentiate chemo-efficacy in a cancer-specific manner.
Collapse
Affiliation(s)
- Megan E Honeywell
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Marie S Isidor
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas W Harper
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Rachel E Fontana
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Gavin A Birdsall
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Peter Cruz-Gordillo
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Sydney A Porto
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Madison Jerome
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Cameron S Fraser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David A Guertin
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Michael J Lee
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Lin K, Chang YC, Billmann M, Ward HN, Le K, Hassan AZ, Bhojoo U, Chan K, Costanzo M, Moffat J, Boone C, Bielinsky AK, Myers CL. A scalable platform for efficient CRISPR-Cas9 chemical-genetic screens of DNA damage-inducing compounds. Sci Rep 2024; 14:2508. [PMID: 38291084 PMCID: PMC10828508 DOI: 10.1038/s41598-024-51735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Current approaches to define chemical-genetic interactions (CGIs) in human cell lines are resource-intensive. We designed a scalable chemical-genetic screening platform by generating a DNA damage response (DDR)-focused custom sgRNA library targeting 1011 genes with 3033 sgRNAs. We performed five proof-of-principle compound screens and found that the compounds' known modes-of-action (MoA) were enriched among the compounds' CGIs. These scalable screens recapitulated expected CGIs at a comparable signal-to-noise ratio (SNR) relative to genome-wide screens. Furthermore, time-resolved CGIs, captured by sequencing screens at various time points, suggested an unexpected, late interstrand-crosslinking (ICL) repair pathway response to camptothecin-induced DNA damage. Our approach can facilitate screening compounds at scale with 20-fold fewer resources than commonly used genome-wide libraries and produce biologically informative CGI profiles.
Collapse
Affiliation(s)
- Kevin Lin
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Henry N Ward
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Khoi Le
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Arshia Z Hassan
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Urvi Bhojoo
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Katherine Chan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael Costanzo
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Honeywell ME, Isidor MS, Harper NW, Fontana RE, Cruz-Gordillo P, Porto SA, Fraser CS, Sarosiek KA, Guertin DA, Spinelli JB, Lee MJ. p53 controls choice between apoptotic and non-apoptotic death following DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524444. [PMID: 36712034 PMCID: PMC9882237 DOI: 10.1101/2023.01.17.524444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA damage can activate apoptotic and non-apoptotic forms of cell death; however, it remains unclear what features dictate which type of cell death is activated. We report that p53 controls the choice between apoptotic and non-apoptotic death following exposure to DNA damage. In contrast to the conventional model, which suggests that p53-deficient cells should be resistant to DNA damage-induced cell death, we find that p53-deficient cells die at high rates following DNA damage, but exclusively using non-apoptotic mechanisms. Our experimental data and computational modeling reveal that non-apoptotic death in p53-deficient cells has not been observed due to use of assays that are either insensitive to cell death, or that specifically score apoptotic cells. Using functional genetic screening - with an analysis that enables computational inference of the drug-induced death rate - we find in p53-deficient cells that DNA damage activates a mitochondrial respiration-dependent form of cell death, called MPT-driven necrosis. Cells deficient for p53 have high basal respiration, which primes MPT-driven necrosis. Finally, using metabolite profiling, we identified mitochondrial activity-dependent metabolic vulnerabilities that can be targeted to potentiate the lethality of DNA damage specifically in p53-deficient cells. Our findings reveal how the dual functions of p53 in regulating mitochondrial activity and the DNA damage response combine to facilitate the choice between apoptotic and non-apoptotic death.
Collapse
Affiliation(s)
- Megan E. Honeywell
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, 01605 USA
| | - Marie S. Isidor
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605 USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas W. Harper
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, 01605 USA
| | - Rachel E. Fontana
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, 01605 USA
| | - Peter Cruz-Gordillo
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, 01605 USA
| | - Sydney A. Porto
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, 01605 USA
| | - Cameron S. Fraser
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115 USA
| | - Kristopher A. Sarosiek
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115 USA
| | - David A. Guertin
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605 USA
| | - Jessica B. Spinelli
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605 USA
| | - Michael J. Lee
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, 01605 USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605 USA
| |
Collapse
|
6
|
Salame N, Fooks K, El-Hachem N, Bikorimana JP, Mercier FE, Rafei M. Recent Advances in Cancer Drug Discovery Through the Use of Phenotypic Reporter Systems, Connectivity Mapping, and Pooled CRISPR Screening. Front Pharmacol 2022; 13:852143. [PMID: 35795568 PMCID: PMC9250974 DOI: 10.3389/fphar.2022.852143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Multi-omic approaches offer an unprecedented overview of the development, plasticity, and resistance of cancer. However, the translation from anti-cancer compounds identified in vitro to clinically active drugs have a notoriously low success rate. Here, we review how technical advances in cell culture, robotics, computational biology, and development of reporter systems have transformed drug discovery, enabling screening approaches tailored to clinically relevant functional readouts (e.g., bypassing drug resistance). Illustrating with selected examples of “success stories,” we describe the process of phenotype-based high-throughput drug screening to target malignant cells or the immune system. Second, we describe computational approaches that link transcriptomic profiling of cancers with existing pharmaceutical compounds to accelerate drug repurposing. Finally, we review how CRISPR-based screening can be applied for the discovery of mechanisms of drug resistance and sensitization. Overall, we explore how the complementary strengths of each of these approaches allow them to transform the paradigm of pre-clinical drug development.
Collapse
Affiliation(s)
- Natasha Salame
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC, Canada
| | - Katharine Fooks
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Nehme El-Hachem
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Bikorimana
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - François E. Mercier
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: François E. Mercier, ; Moutih Rafei,
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- *Correspondence: François E. Mercier, ; Moutih Rafei,
| |
Collapse
|
7
|
Common computational tools for analyzing CRISPR screens. Emerg Top Life Sci 2021; 5:779-788. [PMID: 34881774 PMCID: PMC8786280 DOI: 10.1042/etls20210222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
CRISPR–Cas technology offers a versatile toolbox for genome editing, with applications in various cancer-related fields such as functional genomics, immunotherapy, synthetic lethality and drug resistance, metastasis, genome regulation, chromatic accessibility and RNA-targeting. The variety of screening platforms and questions in which they are used have caused the development of a wide array of analytical methods for CRISPR analysis. In this review, we focus on the algorithms and frameworks used in the computational analysis of pooled CRISPR knockout (KO) screens and highlight some of the most significant target discoveries made using these methods. Lastly, we offer perspectives on the design and analysis of state-of-art multiplex screening for genetic interactions.
Collapse
|
8
|
Spreafico R, Soriaga LB, Grosse J, Virgin HW, Telenti A. Advances in Genomics for Drug Development. Genes (Basel) 2020; 11:E942. [PMID: 32824125 PMCID: PMC7465049 DOI: 10.3390/genes11080942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Drug development (target identification, advancing drug leads to candidates for preclinical and clinical studies) can be facilitated by genetic and genomic knowledge. Here, we review the contribution of population genomics to target identification, the value of bulk and single cell gene expression analysis for understanding the biological relevance of a drug target, and genome-wide CRISPR editing for the prioritization of drug targets. In genomics, we discuss the different scope of genome-wide association studies using genotyping arrays, versus exome and whole genome sequencing. In transcriptomics, we discuss the information from drug perturbation and the selection of biomarkers. For CRISPR screens, we discuss target discovery, mechanism of action and the concept of gene to drug mapping. Harnessing genetic support increases the probability of drug developability and approval.
Collapse
Affiliation(s)
| | | | | | | | - Amalio Telenti
- Vir Biotechnology, Inc., San Francisco, CA 94158, USA; (R.S.); (L.B.S.); (J.G.); (H.W.V.)
| |
Collapse
|