1
|
Planas-Iglesias J, Majerova M, Pluskal D, Vasina M, Damborsky J, Prokop Z, Marek M, Bednar D. Automated Engineering Protein Dynamics via Loop Grafting: Improving Renilla Luciferase Catalysis. ACS Catal 2025; 15:3391-3404. [PMID: 40013243 PMCID: PMC11851775 DOI: 10.1021/acscatal.4c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
Engineering protein dynamics is a challenging and unsolved problem in protein design. Loop transplantation or loop grafting has been previously employed to transfer dynamic properties between proteins. We recently released a LoopGrafter Web server to execute the loop grafting task, employing eight computational tools and one database. The LoopGrafter method relies on the prediction of the local dynamic behavior of the elements to be transplanted and has successfully reconstructed previously engineered sequences. However, it was unclear whether catalytically competitive previously uncharacterized designs could be obtained by this method. Here, we address this question, showing how LoopGrafter generates viable loop-grafted chimeras of luciferases, how these chimeras encompass the activity of interest and unique kinetic properties, and how all this process is done fully automatically and agnostic of any previous knowledge. All constructed designs proved to be catalytically active, and the most active one improved the activity of the template enzyme by 4 orders of magnitude. The computational details and parameter optimization of the sequence pairing step of the LoopGrafter workflow are revealed. The optimized and experimentally validated loop grafting workflow available as a fully automated Web server represents a powerful approach for engineering catalytically efficient enzymes by modification of protein dynamics.
Collapse
Affiliation(s)
- Joan Planas-Iglesias
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Marika Majerova
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Daniel Pluskal
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Michal Vasina
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - Martin Marek
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
- International
Clinical Research Centre, St. Anne’s
University Hospital, Pekarska 53, Brno 602
00, Czech Republic
| |
Collapse
|
2
|
Planas-Iglesias J, Opaleny F, Ulbrich P, Stourac J, Sanusi Z, Pinto GP, Schenkmayerova A, Byska J, Damborsky J, Kozlikova B, Bednar D. LoopGrafter: a web tool for transplanting dynamical loops for protein engineering. Nucleic Acids Res 2022; 50:W465-W473. [PMID: 35438789 PMCID: PMC9252738 DOI: 10.1093/nar/gkac249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 01/01/2023] Open
Abstract
The transplantation of loops between structurally related proteins is a compelling method to improve the activity, specificity and stability of enzymes. However, despite the interest of loop regions in protein engineering, the available methods of loop-based rational protein design are scarce. One particular difficulty related to loop engineering is the unique dynamism that enables them to exert allosteric control over the catalytic function of enzymes. Thus, when engaging in a transplantation effort, such dynamics in the context of protein structure need consideration. A second practical challenge is identifying successful excision points for the transplantation or grafting. Here, we present LoopGrafter (https://loschmidt.chemi.muni.cz/loopgrafter/), a web server that specifically guides in the loop grafting process between structurally related proteins. The server provides a step-by-step interactive procedure in which the user can successively identify loops in the two input proteins, calculate their geometries, assess their similarities and dynamics, and select a number of loops to be transplanted. All possible different chimeric proteins derived from any existing recombination point are calculated, and 3D models for each of them are constructed and energetically evaluated. The obtained results can be interactively visualized in a user-friendly graphical interface and downloaded for detailed structural analyses.
Collapse
Affiliation(s)
- Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, 656 916 Brno, Czech Republic
| | - Filip Opaleny
- Department of Visual Computing, Faculty of Informatics, Masaryk University, 602 00 Brno, Czech Republic
| | - Pavol Ulbrich
- Department of Visual Computing, Faculty of Informatics, Masaryk University, 602 00 Brno, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, 656 916 Brno, Czech Republic
| | - Zainab Sanusi
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Gaspar P Pinto
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, 656 916 Brno, Czech Republic
| | - Andrea Schenkmayerova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, 656 916 Brno, Czech Republic
| | - Jan Byska
- Department of Visual Computing, Faculty of Informatics, Masaryk University, 602 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, 656 916 Brno, Czech Republic
| | - Barbora Kozlikova
- Department of Visual Computing, Faculty of Informatics, Masaryk University, 602 00 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, 656 916 Brno, Czech Republic
| |
Collapse
|