1
|
Mou X, Nie P, Chen R, Cheng Y, Wang GZ. Feeding disruptions lead to a significant increase in disease modules in adult mice. Heliyon 2025; 11:e41774. [PMID: 39882459 PMCID: PMC11774769 DOI: 10.1016/j.heliyon.2025.e41774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Feeding disruption is closely linked to numerous diseases, yet the underlying molecular mechanisms remain an important but unresolved issue at the molecular level. We hypothesize that, at the network level, dietary disruptions can alter gene co-expression patterns, leading to an increase in disease-associated modules, and thereby elevating the likelihood of disease occurrence. Here, we investigate this hypothesis using transcriptomic data from a large cohort of adult mice subjected to feeding disruptions. Our computational analysis indicates that altered feeding schedules significantly increase disease-related modules in adult mouse livers, well before aging and disease onset. Conversely, calorie restriction significantly reduces these disease modules. This provides a critical missing link between feeding disruption and the molecular mechanisms of disease.
Collapse
Affiliation(s)
| | | | | | - Yang Cheng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
2
|
Chen YC, Wang WS, Lewis SJG, Wu SL. Fighting Against the Clock: Circadian Disruption and Parkinson's Disease. J Mov Disord 2024; 17:1-14. [PMID: 37989149 PMCID: PMC10846969 DOI: 10.14802/jmd.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Circadian disruption is being increasingly recognized as a critical factor in the development and progression of Parkinson's disease (PD). This review aims to provide an in-depth overview of the relationship between circadian disruption and PD by exploring the molecular, cellular, and behavioral aspects of this interaction. This review will include a comprehensive understanding of how the clock gene system and transcription-translation feedback loops function and how they are diminished in PD. The article also discusses the role of clock genes in the regulation of circadian rhythms, as well as the impact of clock gene dysregulation on mitochondrial function, oxidative stress, and neuroinflammation, including the microbiota-gut-brain axis, which have all been proposed as being crucial mechanisms in the pathophysiology of PD. Finally, this review highlights potential therapeutic strategies targeting the clock gene system and circadian rhythm for the treatment of PD.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Sheng Wang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Simon J G Lewis
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
3
|
Courtin C, Marie-Claire C, Gross G, Hennion V, Mundwiller E, Guégan J, Meyrel M, Bellivier F, Etain B. Gene expression of circadian genes and CIART in bipolar disorder: A preliminary case-control study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110691. [PMID: 36481223 DOI: 10.1016/j.pnpbp.2022.110691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Based on the observed circadian rhythms disruptions and sleep abnormalities in bipolar disorders (BD), a chronobiological model has been proposed suggesting that core clock genes play a central role in the vulnerability to the disorder. In this context, the analysis of circadian genes expression levels is particularly relevant, however studies focused on the whole set of core clock genes are scarce. We compared the levels of expression of 19 circadian genes (including the recently described circadian repressor (CIART)) in 37 euthymic individuals with BD and 20 healthy controls (HC), using data obtained by RNA sequencing of lymphoblastoid cell lines and validated the results using RT-qPCR. RNA sequencing data showed that CIART gene expression was correlated with those of ARNTL, ARNTL2, DBP, PER2 and TIMELESS. Data from RNA sequencing showed that the level of expression of four circadian genes (ARNTL, ARNTL2, BHLHE41 and CIART) discriminated individuals with BD from HC. We replicated this result using RT-qPCR for ARNTL and CIART. This study suggests that an imbalance between activation/repression of the transcription within the circadian system in individuals with BD as compared to HC and as such opens avenues for further research in larger independent samples combining both expression and epigenetic analyses.
Collapse
Affiliation(s)
- Cindie Courtin
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France
| | - Cynthia Marie-Claire
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France.
| | - Gregory Gross
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Vincent Hennion
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | | | - Justine Guégan
- Data Analysis Core platform, Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Manon Meyrel
- Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - Frank Bellivier
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - Bruno Etain
- Université de Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, OTeN, Paris, France; Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| |
Collapse
|
4
|
Zhang L, Turck CW, Wang GZ. Editorial: Time, genetics, and complex disease. Front Genet 2022; 13:1016049. [PMID: 36186477 PMCID: PMC9522546 DOI: 10.3389/fgene.2022.1016049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Christoph W. Turck
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, Munich, Germany
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Guang-Zhong Wang,
| |
Collapse
|
5
|
Gene networks under circadian control exhibit diurnal organization in primate organs. Commun Biol 2022; 5:764. [PMID: 35906476 PMCID: PMC9334736 DOI: 10.1038/s42003-022-03722-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/14/2022] [Indexed: 12/11/2022] Open
Abstract
Mammalian organs are individually controlled by autonomous circadian clocks. At the molecular level, this process is defined by the cyclical co-expression of both core transcription factors and their downstream targets across time. While interactions between these molecular clocks are necessary for proper homeostasis, these features remain undefined. Here, we utilize integrative analysis of a baboon diurnal transcriptome atlas to characterize the properties of gene networks under circadian control. We found that 53.4% (8120) of baboon genes are oscillating body-wide. Additionally, two basic network modes were observed at the systems level: daytime and nighttime mode. Daytime networks were enriched for genes involved in metabolism, while nighttime networks were enriched for genes associated with growth and cellular signaling. A substantial number of diseases only form significant disease modules at either daytime or nighttime. In addition, a majority of SARS-CoV-2-related genes and modules are rhythmically expressed, which have significant network proximities with circadian regulators. Our data suggest that synchronization amongst circadian gene networks is necessary for proper homeostatic functions and circadian regulators have close interactions with SARS-CoV-2 infection. Integrative analysis of the high-resolution baboon diurnal transcriptome, provides insights into the effect of circadian rhythm on the whole-body primate gene network.
Collapse
|
6
|
Lu Y, Liu B, Ma J, Yang S, Huang J. Disruption of Circadian Transcriptome in Lung by Acute Sleep Deprivation. Front Genet 2021; 12:664334. [PMID: 33859677 PMCID: PMC8042274 DOI: 10.3389/fgene.2021.664334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 11/15/2022] Open
Abstract
Inadequate sleep prevails in modern society and it impairs the circadian transcriptome. However, to what extent acute sleep deprivation (SD) has impact on the circadian rhythms of peripheral tissues is not clear. Here, we show that in mouse lung, a 10-h acute sleep deprivation can alter the circadian expression of approximately 3,000 genes. We found that circadian rhythm disappears in genes related to metabolism and signaling pathways regulating protein phosphorylation after acute sleep deprivation, while the core circadian regulators do not change much in rhythmicity. Importantly, the strong positive correlation between mean expression and amplitude (E-A correlation) of cycling genes has been validated in both control and sleep deprivation conditions, supporting the energetic cost optimization model of circadian gene expression. Thus, we reveal that acute sleep deprivation leads to a profound change in the circadian gene transcription that influences the biological functions in lung.
Collapse
Affiliation(s)
- Yuntao Lu
- Department of Pulmonary and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Bing Liu
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuo Yang
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ju Huang
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|