1
|
Bouchali R, Mandon C, Danty-Berger E, Géloën A, Marjolet L, Youenou B, Pozzi ACM, Vareilles S, Galia W, Kouyi GL, Toussaint JY, Cournoyer B. Runoff microbiome quality assessment of a city center rainwater harvesting zone shows a differentiation of pathogen loads according to human mobility patterns. Int J Hyg Environ Health 2024; 260:114391. [PMID: 38781750 DOI: 10.1016/j.ijheh.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The hygienic quality of urban surfaces can be impaired by multiple sources of microbiological contaminants. These surfaces can trigger the development of multiple bacterial taxa and favor their spread during rain events through the circulation of runoff waters. These runoff waters are commonly directed toward sewer networks, stormwater infiltration systems or detention tanks prior a release into natural water ways. With water scarcity becoming a major worldwide issue, these runoffs are representing an alternative supply for some usage like street cleaning and plant watering. Microbiological hazards associated with these urban runoffs, and surveillance guidelines must be defined to favor these uses. Runoff microbiological quality from a recently implemented city center rainwater harvesting zone was evaluated through classical fecal indicator bacteria (FIB) assays, quantitative PCR and DNA meta-barcoding analyses. The incidence of socio-urbanistic patterns on the organization of these urban microbiomes were investigated. FIB and DNA from Human-specific Bacteroidales and pathogens such as Staphylococcus aureus were detected from most runoffs and showed broad distribution patterns. 16S rRNA DNA meta-barcoding profilings further identified core recurrent taxa of health concerns like Acinetobacter, Mycobacterium, Aeromonas and Pseudomonas, and divided these communities according to two main groups of socio-urbanistic patterns. One of these was highly impacted by heavy traffic, and showed recurrent correlation networks involving bacterial hydrocarbon degraders harboring significant virulence properties. The tpm-based meta-barcoding approach identified some of these taxa at the species level for more than 30 genera. Among these, recurrent pathogens were recorded such as P. aeruginosa, P. paraeruginosa, and Aeromonas caviae. P. aeruginosa and A. caviae tpm reads were found evenly distributed over the study site but those of P. paraeruginosa were higher among sub-catchments impacted by heavy traffic. Health risks associated with these runoff P. paraeruginosa emerging pathogens were high and associated with strong cytotoxicity on A549 lung cells. Recurrent detections of pathogens in runoff waters highlight the need of a microbiological surveillance prior allowing their use. Good microbiological quality can be obtained for certain typologies of sub-catchments with good hygienic practices but not all. A reorganization of Human mobility and behaviors would likely trigger changes in these bacterial diversity patterns and reduce the occurrences of the most hazardous groups.
Collapse
Affiliation(s)
- Rayan Bouchali
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Claire Mandon
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Emmanuelle Danty-Berger
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Alain Géloën
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Laurence Marjolet
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Benjamin Youenou
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Adrien C M Pozzi
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Sophie Vareilles
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Wessam Galia
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | | | - Jean-Yves Toussaint
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Benoit Cournoyer
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France.
| |
Collapse
|
2
|
Comprehensive Analysis of the Nocardia cyriacigeorgica Complex Reveals Five Species-Level Clades with Different Evolutionary and Pathogenicity Characteristics. mSystems 2022; 7:e0140621. [PMID: 35430877 PMCID: PMC9239197 DOI: 10.1128/msystems.01406-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nocardia cyriacigeorgica is a common etiological agent of nocardiosis that has increasingly been implicated in serious pulmonary infections, especially in immunocompromised individuals. However, the evolution, diversity, and pathogenesis of N. cyriacigeorgica have remained unclear. Here, we performed a comparative genomic analysis using 91 N. cyriacigeorgica strains, 45 of which were newly sequenced in this study. Phylogenetic and average nucleotide identity (ANI) analyses revealed that N. cyriacigeorgica contained five species-level clades (8.6 to 14.6% interclade genetic divergence), namely, the N. cyriacigeorgica complex (NCC). Further pan-genome analysis revealed extensive differences among the five clades in nine functional categories, such as energy production, lipid metabolism, secondary metabolites, and signal transduction mechanisms. All 2,935 single-copy core genes undergoing purifying selection were highly conserved across NCC. However, clades D and E exhibited reduced selective constraints, compared to clades A to C. Horizontal gene transfer (HGT) and mobile genetic elements contributed to genomic plasticity, and clades A and B had experienced a higher level of HGT events than other clades. A total of 129 virulence factors were ubiquitous across NCC, such as the mce operon, hemolysin, and type VII secretion system (T7SS). However, different distributions of three toxin-coding genes and two new types of mce operons were detected, which might contribute to pathogenicity differences among the members of the NCC. Overall, our study provides comprehensive insights into the evolution, genetic diversity, and pathogenicity of NCC, facilitating the prevention of infections. IMPORTANCENocardia species are opportunistic bacterial pathogens that can affect all organ systems, primarily the skin, lungs, and brain. N. cyriacigeorgica is the most prevalent species within the genus, exhibits clinical significance, and can cause severe infections when disseminated throughout the body. However, the evolution, diversity, and pathogenicity of N. cyriacigeorgica remain unclear. Here, we have conducted a comparative genomic analysis of 91 N. cyriacigeorgica strains and revealed that N. cyriacigeorgica is not a single species but is composed of five closely related species. In addition, we discovered that these five species differ in many ways, involving selection pressure, horizontal gene transfer, functional capacity, pathogenicity, and antibiotic resistance. Overall, our work provides important clues in dissecting the evolution, genetic diversity, and pathogenicity of NCC, thereby advancing prevention measures against these infections.
Collapse
|
3
|
Buresova‐Faitova A, Kopecky J, Sagova‐Mareckova M, Alonso L, Vautrin F, Moënne‐Loccoz Y, Rodriguez‐Nava V. Comparison of
Actinobacteria
communities from human‐impacted and pristine karst caves. Microbiologyopen 2022; 11:e1276. [PMID: 35478281 PMCID: PMC8988830 DOI: 10.1002/mbo3.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/07/2022] Open
Abstract
Actinobacteria are important cave inhabitants, but knowledge of how anthropization and anthropization‐related visual marks affect this community on cave walls is lacking. We compared Actinobacteria communities among four French limestone caves (Mouflon, Reille, Rouffignac, and Lascaux) ranging from pristine to anthropized, and within Lascaux Cave between marked (wall visual marks) and unmarked areas in different rooms (Sas‐1, Passage, Apse, and Diaclase). In addition to the 16S rRNA gene marker, 441 bp fragments of the hsp65 gene were used and an hsp65‐related taxonomic database was constructed for the identification of Actinobacteria to the species level by Illumina‐MiSeq analysis. The hsp65 marker revealed higher resolution for species and higher richness (99% operational taxonomic units cutoff) versus the 16S rRNA gene; however, more taxa were identified at higher taxonomic ranks. Actinobacteria communities varied between Mouflon and Reille caves (both pristine), and Rouffignac and Lascaux (both anthropized). Rouffignac displayed high diversity of Nocardia, suggesting human inputs, and Lascaux exhibited high Mycobacterium relative abundance, whereas Gaiellales were typical in pristine caves and the Diaclase (least affected area of Lascaux Cave). Within Lascaux, Pseudonocardiaceae dominated on unmarked walls and Streptomycetaceae (especially Streptomyces mirabilis) on marked walls, indicating a possible role in mark formation. A new taxonomic database was developed. Although not all Actinobacteria species were represented, the use of the hsp65 marker enabled species‐level variations of the Actinobacteria community to be documented based on the extent of anthropogenic pressure. This approach proved effective when comparing different limestone caves or specific conditions within one cave.
Collapse
Affiliation(s)
- Andrea Buresova‐Faitova
- CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie MicrobienneUniversité de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
- Department of Ecology, Faculty of ScienceCharles University in PraguePrague 2PragueCzech Republic
- Laboratory for Epidemiology and Ecology of MicroorganismsCrop Research InstitutePrahaCzech Republic
| | - Jan Kopecky
- Laboratory for Epidemiology and Ecology of MicroorganismsCrop Research InstitutePrahaCzech Republic
| | - Marketa Sagova‐Mareckova
- Laboratory for Epidemiology and Ecology of MicroorganismsCrop Research InstitutePrahaCzech Republic
| | - Lise Alonso
- CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie MicrobienneUniversité de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
| | - Florian Vautrin
- CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie MicrobienneUniversité de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
| | - Yvan Moënne‐Loccoz
- CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie MicrobienneUniversité de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
| | - Veronica Rodriguez‐Nava
- CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie MicrobienneUniversité de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
| |
Collapse
|
4
|
Wright L, Katouli M, Kurtböke Dİ. Isolation and Characterization of Nocardiae Associated with Foaming Coastal Marine Waters. Pathogens 2021; 10:579. [PMID: 34068658 PMCID: PMC8151412 DOI: 10.3390/pathogens10050579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Nocardiosis is an infectious disease caused by Nocardia species that occurs worldwide, albeit more prevalently in tropical/subtropical regions. It can appear as either acute, subacute or as a chronic infection mostly with those with a compromised/weakened immune system. Inhalation of spores and or mycelium fragments is the main transmission route for developing pulmonary nocardiosis. In contrast, cutaneous nocardiosis usually occurs via direct contact. In the subtropical region of the Sunshine Coast in Australia foaming events with thick and persistent and orange-brown color foam have been observed during summer seasons in the near shore marine environments. This study reports the existence of nocardiae in these near shore marine environments by the use of a novel isolation method which used the gas requirements of nocardiae as a selective battery. A total of 32 nocardiae were isolated with the use of this novel method and subsequently conducted molecular identification methods confirmed that the isolates belonged to the genus Nocardia. Twenty-one isolates out of the 32 were closely related to N. nova strains MGA115 and one was related to CBU 09/875, in addition when compared with human pathogenic nocardiae twenty of the isolates were found to be related to N. nova strain JCM 6044. Isolates displayed varied resistance against some of the antibiotics tested when interpretation threshold recommended the Comite de L'Antibiogramme de la Societe Francaise de Microbiologie were used. The highest level of resistance against cefotaxime (n = 27) and ceftriaxone (n = 24). Some of the isolates (n = 6) that displayed resistance to selected antibiotics also possessed potential human pathogenic characteristics such as adherence and translocation through human long epithelial cells as well as displaying phage resistance (n = 26). They might thus present a potential public health risk if frequently encountered through exposure to aerosols generated by the foam as well as direct contact through a wound. Preventative measures to control the growth of nocardiae in such environments such as the control of pollutants, might prevent potential infections that might be caused by these bacteria in humans as well as in marine animals.
Collapse
Affiliation(s)
| | | | - D. İpek Kurtböke
- Genecology Research Centre, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (L.W.); (M.K.)
| |
Collapse
|