1
|
Li R, Li J, Wang Y, Liu X, Xu W, Sun R, Xue B, Zhang X, Ai Y, Du Y, Jiang J. The artificial intelligence revolution in gastric cancer management: clinical applications. Cancer Cell Int 2025; 25:111. [PMID: 40119433 PMCID: PMC11929235 DOI: 10.1186/s12935-025-03756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/18/2025] [Indexed: 03/24/2025] Open
Abstract
Nowadays, gastric cancer has become a significant issue in the global cancer burden, and its impact cannot be ignored. The rapid development of artificial intelligence technology is attempting to address this situation, aiming to change the clinical management landscape of gastric cancer fundamentally. In this transformative change, machine learning and deep learning, as two core technologies, play a pivotal role, bringing unprecedented innovations and breakthroughs in the diagnosis, treatment, and prognosis evaluation of gastric cancer. This article comprehensively reviews the latest research status and application of artificial intelligence algorithms in gastric cancer, covering multiple dimensions such as image recognition, pathological analysis, personalized treatment, and prognosis risk assessment. These applications not only significantly improve the sensitivity of gastric cancer risk monitoring, the accuracy of diagnosis, and the precision of survival prognosis but also provide robust data support and a scientific basis for clinical decision-making. The integration of artificial intelligence, from optimizing the diagnosis process and enhancing diagnostic efficiency to promoting the practice of precision medicine, demonstrates its promising prospects for reshaping the treatment model of gastric cancer. Although most of the current AI-based models have not been widely used in clinical practice, with the continuous deepening and expansion of precision medicine, we have reason to believe that a new era of AI-driven gastric cancer care is approaching.
Collapse
Affiliation(s)
- Runze Li
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Jingfan Li
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Yuman Wang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Xiaoyu Liu
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Weichao Xu
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China
| | - Runxue Sun
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China
| | - Binqing Xue
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Xinqian Zhang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Yikun Ai
- North China University of Science and Technology, Tanshan 063000, China
| | - Yanru Du
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China.
- Hebei Provincial Key Laboratory of Integrated Traditional and Western Medicine Research on Gastroenterology, Hebei, 050011, China.
- Hebei Key Laboratory of Turbidity and Toxicology, Hebei, 050011, China.
| | - Jianming Jiang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China.
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China.
| |
Collapse
|
2
|
Tao G, Yang S, Xu J, Wang L, Yang B. Global research trends and hotspots of artificial intelligence research in spinal cord neural injury and restoration-a bibliometrics and visualization analysis. Front Neurol 2024; 15:1361235. [PMID: 38628700 PMCID: PMC11018935 DOI: 10.3389/fneur.2024.1361235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Background Artificial intelligence (AI) technology has made breakthroughs in spinal cord neural injury and restoration in recent years. It has a positive impact on clinical treatment. This study explores AI research's progress and hotspots in spinal cord neural injury and restoration. It also analyzes research shortcomings related to this area and proposes potential solutions. Methods We used CiteSpace 6.1.R6 and VOSviewer 1.6.19 to research WOS articles on AI research in spinal cord neural injury and restoration. Results A total of 1,502 articles were screened, in which the United States dominated; Kadone, Hideki (13 articles, University of Tsukuba, JAPAN) was the author with the highest number of publications; ARCH PHYS MED REHAB (IF = 4.3) was the most cited journal, and topics included molecular biology, immunology, neurology, sports, among other related areas. Conclusion We pinpointed three research hotspots for AI research in spinal cord neural injury and restoration: (1) intelligent robots and limb exoskeletons to assist rehabilitation training; (2) brain-computer interfaces; and (3) neuromodulation and noninvasive electrical stimulation. In addition, many new hotspots were discussed: (1) starting with image segmentation models based on convolutional neural networks; (2) the use of AI to fabricate polymeric biomaterials to provide the microenvironment required for neural stem cell-derived neural network tissues; (3) AI survival prediction tools, and transcription factor regulatory networks in the field of genetics were discussed. Although AI research in spinal cord neural injury and restoration has many benefits, the technology has several limitations (data and ethical issues). The data-gathering problem should be addressed in future research, which requires a significant sample of quality clinical data to build valid AI models. At the same time, research on genomics and other mechanisms in this field is fragile. In the future, machine learning techniques, such as AI survival prediction tools and transcription factor regulatory networks, can be utilized for studies related to the up-regulation of regeneration-related genes and the production of structural proteins for axonal growth.
Collapse
Affiliation(s)
- Guangyi Tao
- College of Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shun Yang
- Department of Pain, Henan Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Junjie Xu
- College of Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Linzi Wang
- College of Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Bin Yang
- Department of Pain, Henan Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Ibrahim AA, Abdulkareem MG, Al-Jadir I. Medical Drug Data Cluster Analysis Using Mimetic Optimization Technique Combined with Chaotic Logistic Maps. 2023 AL-SADIQ INTERNATIONAL CONFERENCE ON COMMUNICATION AND INFORMATION TECHNOLOGY (AICCIT) 2023:234-239. [DOI: 10.1109/aiccit57614.2023.10218163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Alhasan Amer Ibrahim
- College of Industrial Management of oil and Gas Basrah University for Oil and Gas,Department of Petroleum Project Management,Basrah,Iraq
| | - Mohammed Ghassan Abdulkareem
- College of Industrial Management of oil and Gas Basrah University for Oil and Gas,Department of Petroleum Project Management,Basrah,Iraq
| | - Ibraheem Al-Jadir
- Ministry of Higher Education and Scientific Research,Department of Research and Development office,Baghdad,Iraq
| |
Collapse
|
4
|
Bhattamisra SK, Banerjee P, Gupta P, Mayuren J, Patra S, Candasamy M. Artificial Intelligence in Pharmaceutical and Healthcare Research. BIG DATA AND COGNITIVE COMPUTING 2023; 7:10. [DOI: 10.3390/bdcc7010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Artificial intelligence (AI) is a branch of computer science that allows machines to work efficiently, can analyze complex data. The research focused on AI has increased tremendously, and its role in healthcare service and research is emerging at a greater pace. This review elaborates on the opportunities and challenges of AI in healthcare and pharmaceutical research. The literature was collected from domains such as PubMed, Science Direct and Google scholar using specific keywords and phrases such as ‘Artificial intelligence’, ‘Pharmaceutical research’, ‘drug discovery’, ‘clinical trial’, ‘disease diagnosis’, etc. to select the research and review articles published within the last five years. The application of AI in disease diagnosis, digital therapy, personalized treatment, drug discovery and forecasting epidemics or pandemics was extensively reviewed in this article. Deep learning and neural networks are the most used AI technologies; Bayesian nonparametric models are the potential technologies for clinical trial design; natural language processing and wearable devices are used in patient identification and clinical trial monitoring. Deep learning and neural networks were applied in predicting the outbreak of seasonal influenza, Zika, Ebola, Tuberculosis and COVID-19. With the advancement of AI technologies, the scientific community may witness rapid and cost-effective healthcare and pharmaceutical research as well as provide improved service to the general public.
Collapse
Affiliation(s)
- Subrat Kumar Bhattamisra
- Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to Be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Priyanka Banerjee
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata 700126, West Bengal, India
| | - Pratibha Gupta
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata 700126, West Bengal, India
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Susmita Patra
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata 700126, West Bengal, India
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
5
|
Lu S, Zhou Y, Huang X, Lin J, Wu Y, Zhang Z. Prediction of individual mortality risk among patients with chronic obstructive pulmonary disease: a convenient, online, individualized, predictive mortality risk tool based on a retrospective cohort study. PeerJ 2022; 10:e14457. [PMID: 36523463 PMCID: PMC9745921 DOI: 10.7717/peerj.14457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a serious condition with a poor prognosis. No clinical study has reported an individual-level mortality risk curve for patients with COPD. As such, the present study aimed to construct a prognostic model for predicting individual mortality risk among patients with COPD, and to provide an online predictive tool to more easily predict individual mortality risk in this patient population. Patients and methods The current study retrospectively included data from 1,255 patients with COPD. Random survival forest plots and Cox proportional hazards regression were used to screen for independent risk factors in patients with COPD. A prognostic model for predicting mortality risk was constructed using eight risk factors. Results Cox proportional hazards regression analysis identified eight independent risk factors among COPD patients: B-type natriuretic peptide (hazard ratio [HR] 1.248 [95% confidence interval (CI) 1.155-1.348]); albumin (HR 0.952 [95% CI 0.931-0.974); age (HR 1.033 [95% CI 1.022-1.044]); globulin (HR 1.057 [95% CI 1.038-1.077]); smoking years (HR 1.011 [95% CI 1.006-1.015]); partial pressure of arterial carbon dioxide (HR 1.012 [95% CI 1.007-1.017]); granulocyte ratio (HR 1.018 [95% CI 1.010-1.026]); and blood urea nitrogen (HR 1.041 [95% CI 1.017-1.066]). A prognostic model for predicting risk for death was constructed using these eight risk factors. The areas under the time-dependent receiver operating characteristic curves for 1, 3, and 5 years were 0.784, 0.801, and 0.806 in the model cohort, respectively. Furthermore, an online predictive tool, the "Survival Curve Prediction System for COPD patients", was developed, providing an individual mortality risk predictive curve, and predicted mortality rate and 95% CI at a specific time. Conclusion The current study constructed a prognostic model for predicting an individual mortality risk curve for COPD patients after discharge and provides a convenient online predictive tool for this patient population. This predictive tool may provide valuable prognostic information for clinical treatment decision making during hospitalization and health management after discharge (https://zhangzhiqiao15.shinyapps.io/Smart_survival_predictive_system_for_COPD/).
Collapse
Affiliation(s)
- Shubiao Lu
- Department of Internal Medicine, The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Yuwen Zhou
- Emergency Department, The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Xuejuan Huang
- Obstetrics and Gynecology Department, The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Jinsong Lin
- Department of Internal Medicine, The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Yingyu Wu
- Department of Internal Medicine, The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Zhiqiao Zhang
- Department of Internal Medicine, The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| |
Collapse
|
6
|
Afrash MR, Shanbehzadeh M, Kazemi-Arpanahi H. Design and Development of an Intelligent System for Predicting 5-Year Survival in Gastric Cancer. Clin Med Insights Oncol 2022; 16:11795549221116833. [PMID: 36035639 PMCID: PMC9403452 DOI: 10.1177/11795549221116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Gastric cancer remains one of the leading causes of worldwide cancer-specific deaths. Accurately predicting the survival likelihood of gastric cancer patients can inform caregivers to boost patient prognostication and choose the best possible treatment path. This study intends to develop an intelligent system based on machine learning (ML) algorithms for predicting the 5-year survival status in gastric cancer patients. Methods A data set that includes the records of 974 gastric cancer patients retrospectively was used. First, the most important predictors were recognized using the Boruta feature selection algorithm. Five classifiers, including J48 decision tree (DT), support vector machine (SVM) with radial basic function (RBF) kernel, bootstrap aggregating (Bagging), hist gradient boosting (HGB), and adaptive boosting (AdaBoost), were trained for predicting gastric cancer survival. The performance of the used techniques was evaluated with specificity, sensitivity, likelihood ratio, and total accuracy. Finally, the system was developed according to the best model. Results The stage, position, and size of tumor were selected as the 3 top predictors for gastric cancer survival. Among the 6 selected ML algorithms, the HGB classifier with the mean accuracy, mean specificity, mean sensitivity, mean area under the curve, and mean F1-score of 88.37%, 86.24%, 89.72%, 88.11%, and 89.91%, respectively, gained the best performance. Conclusions The ML models can accurately predict the 5-year survival and potentially act as a customized recommender for decision-making in gastric cancer patients. The developed system in our study can improve the quality of treatment, patient safety, and survival rates; it may guide prescribing more personalized medicine.
Collapse
Affiliation(s)
- Mohammad Reza Afrash
- Department of Health Information
Technology and Management, School of Allied Medical Sciences, Shahid Beheshti
University of Medical Sciences, Tehran, Iran
| | - Mostafa Shanbehzadeh
- Department of Health Information
Technology, School of Paramedical, Ilam University of Medical Sciences, Ilam,
Iran
| | - Hadi Kazemi-Arpanahi
- Department of Health Information
Technology, Abadan University of Medical Sciences, Abadan, Iran
- Student Research Committee, Abadan
University of Medical Sciences, Abadan, Iran
| |
Collapse
|