1
|
Svobodova B, Moravcova Z, Misiachna A, Novakova G, Marek A, Finger V, Odvarkova J, Pejchal J, Karasova JZ, Netolicky J, Ladislav M, Hrabinova M, Sorf A, Muckova L, Fikejzlova L, Benkova M, Novak M, Prchal L, Capek J, Handl J, Rousar T, Greber KE, Ciura K, Horak M, Soukup O, Korabecny J. Novel tacrine-based multi-target directed Ligands: Enhancing cholinesterase inhibition, NMDA receptor antagonism, and CNS bioavailability for Alzheimer's disease treatment. Eur J Med Chem 2025; 292:117678. [PMID: 40288120 DOI: 10.1016/j.ejmech.2025.117678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder for which current treatments provide only symptomatic relief, primarily through cholinesterase (ChE) inhibition and N-methyl-d-aspartate receptor (NMDAR) antagonism. To improve therapeutic efficacy and safety, we designed and synthesized 16 novel tacrine derivatives modified at position 7 with various (hetero)aryl groups or deuterium substitution. Initially, in silico screening predicted favorable CNS permeability and oral bioavailability. Subsequent in vitro evaluations demonstrated significant inhibitory potency against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with derivatives 5i and 5m displaying particularly promising profiles. Metabolic stability assessed using human liver microsomes revealed enhanced stability for compound 5e, whereas 5i and 5m underwent rapid metabolism. Notably, compound 7 showed improved metabolic stability attributed to deuterium incorporation. The newly synthesized compounds were further tested for antagonistic activity on the GluN1/GluN2B subtype of NMDAR, with compound 5m exhibiting the most potent and voltage-independent inhibition. The ability of these compounds to permeate the blood-brain barrier (BBB) was confirmed through in vitro PAMPA assays. In preliminary hepatotoxicity screening (HepG2 cells), most derivatives exhibited higher cytotoxicity than tacrine, emphasizing the ongoing challenge in hepatotoxicity management. Based on its overall favorable profile, compound 5m advanced to in vivo pharmacokinetic studies in mice, demonstrating efficient CNS penetration, with brain concentrations exceeding plasma levels (brain-to-plasma ratio 2.36), indicating active transport across the BBB. These findings highlight compound 5m as a promising tacrine-based multi-target-directed ligand, supporting further preclinical development as a potential therapeutic candidate for AD.
Collapse
Affiliation(s)
- Barbora Svobodova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Zuzana Moravcova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Anna Misiachna
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 2, 12843, Czech Republic
| | - Gabriela Novakova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Ales Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Vladimir Finger
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jitka Odvarkova
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jakub Netolicky
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 2, 12843, Czech Republic
| | - Marek Ladislav
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 2, 12843, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Ales Sorf
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Lenka Fikejzlova
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Marketa Benkova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martin Novak
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Katarzyna Ewa Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Aleja Generała Jozefa Hallera 107, 80-416, Gdansk, Poland
| | - Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Aleja Generała Jozefa Hallera 107, 80-416, Gdansk, Poland; Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Martin Horak
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Forouzanfar F, Ahmadzadeh AM, Pourbagher-Shahri AM, Gorji A. Significance of NMDA receptor-targeting compounds in neuropsychological disorders: An in-depth review. Eur J Pharmacol 2025; 999:177690. [PMID: 40315950 DOI: 10.1016/j.ejphar.2025.177690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/16/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
N-methyl-D-aspartate receptors (NMDARs), a subclass of glutamate-gated ion channels, play an integral role in the maintenance of synaptic plasticity and excitation-inhibition balance within the central nervous system (CNS). Any irregularities in NMDAR functions, whether hypo-activation or over-activation, can destabilize neural networks and impair CNS function. Several decades of experimental and clinical investigations have demonstrated that NMDAR dysfunction is implicated in the pathophysiology of various neurological disorders. Despite designing a long list of compounds that differentially modulate NMDARs, success in developing drugs that can selectively and effectively regulate various NMDAR subtypes while showing encouraging efficacy in clinical settings remains limited. A better understanding of the basic mechanism of NMDAR function, particularly its selective regulation in pathological conditions, could aid in designing effective drugs for the treatment of neurological conditions. Here, we reviewed the experimental and clinical investigations that studied the effects of available NMDAR modulators in various neurological disorders and weighed up the pros and cons of the use of these substances on the improvement of functional outcomes of these disorders. Despite numerous efforts to develop NMDAR modulatory drugs that did not produce the desired outcomes, NMDARs remain a significant target for advancing novel drugs to treat neurological disorders. This article reviews the complexity of NMDAR signaling dysfunction in different neurological diseases, the efforts taken to examine designed compounds targeting specific subtypes of NMDARs, including challenges associated with using these substances, and the potential enhancements in drug discovery for NMDAR modulatory compounds by innovative technologies.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Department of Neurosurgery, Münster University, Münster, Germany; Epilepsy Research Center, Münster University, Münster, Germany.
| |
Collapse
|
3
|
Jacob RS, Gunasekaran S, Kumar M, Omkumar RV. Intracortical Injection of Okadaic Acid Increases Locomotor Activity and Decreases Anxiety-like Behaviour in Adult Male Rats: Potential Involvement of NMDA Receptor. Ann Neurosci 2025:09727531251314999. [PMID: 40224300 PMCID: PMC11985480 DOI: 10.1177/09727531251314999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 04/15/2025] Open
Abstract
Background Neuronal transmission through the N-methyl-d-aspartate receptor (NMDAR) is a key event in synaptic plasticity and excitotoxicity. The channel properties and biochemical signalling activities of the receptor are regulated by phosphatases such as protein phosphatase 1. While the immediate consequences of NMDAR activation have been reported previously, the long-term behavioural changes remain unclear. Purpose We attempted to investigate the long-term behavioural effects of N-methyl-d-aspartic acid (NMDA) injection and the role of phosphatases during NMDAR signalling. Methods NMDAR was activated by stereotaxic injection of NMDA into the prefrontal cortex of adult rats. To elucidate the role of phosphatases in mediating NMDAR signalling and associated animal behaviour, okadaic acid (OA), a phosphatase inhibitor, was administered before NMDA injection. The animals were tested for their general locomotion and cognitive function using behavioural assays. Results A single injection of NMDA impaired cognition in the long term. Interestingly, intracortical OA injection resulted in increased locomotor activity and decreased anxiety-like behaviour in animals without major cognitive effects. Conclusion We demonstrate that the inhibition of phosphatases during NMDAR signalling can affect locomotion and anxiety-like behaviour in adult male rats. Our study underscores the potential of modulating phosphatases as a pharmacological target for anxiety disorders.
Collapse
Affiliation(s)
- Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Mantosh Kumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
4
|
Yepes AF, Cardona-Galeano W, Herrera-Ramírez A, Rada MS, Osorio E, Gonzalez-Molina LA, Miranda-Brand Y, Posada-Duque R. Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease. RSC Med Chem 2025:d4md00804a. [PMID: 39867586 PMCID: PMC11756598 DOI: 10.1039/d4md00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model. Most of the compounds showed promising activity. Among them, the hybrid with 2,5-dimetoxysubstitution (3b) was the most potent analogue, triggering dual potent AChE/BuChE inhibition with low nanomolar affinity (IC50 ∼ 300 nM) and low toxicity to human liver cancer cells (HepG2). This analogue prevented the glutamate excitotoxic stimulus during pre/post treatment testing, maintained ATP levels, possessed an astrocytic protective response, and abolished the glutamate-induced excitotoxicity. Besides, the hit compound 3b exhibited suitable permeability in the blood-brain barrier (BBB) and low degradability in human blood-plasma. In addition, the docking studies suggested that the neuroprotectant response exhibited by 3b can be related to the direct blockage of the NMDA channel pore. Finally, an ideal neuropharmacokinetic profile was estimated for 3b. Overall, the designed conjugates provide a novel multifunctional molecular scaffold that can be used as a prototype drug in further investigations toward novel multipotent therapeutics for treating AD.
Collapse
Affiliation(s)
- Andrés F Yepes
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Wilson Cardona-Galeano
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Angie Herrera-Ramírez
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Marlyn S Rada
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Luis Alfonso Gonzalez-Molina
- Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia A.A 1226 Medellin 050010 Colombia
| | - Yaneth Miranda-Brand
- Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia A.A 1226 Medellin 050010 Colombia
| | - Rafael Posada-Duque
- Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia
| |
Collapse
|
5
|
Tok F, Baltaş N, Abas Bİ, Tatar Yılmaz G, Kaya S, Koçyiğit-Kaymakçıoğlu B, Çevik Ö. Design, synthesis, molecular modeling, in vitro evaluation of novel piperidine-containing hydrazone derivatives as cholinesterase inhibitors. Drug Dev Res 2024; 85:e22240. [PMID: 39105636 DOI: 10.1002/ddr.22240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 07/14/2024] [Indexed: 08/07/2024]
Abstract
In an effort to develop new and effective therapeutic agents for Alzheimer's disease, a series of hydrazone derivatives bearing piperidine rings have been designed and synthesized. The chemical structures of the compounds were characterized by various spectroscopic techniques. In vitro antioxidant and cholinesterase activities of the compounds were evaluated. Among the compounds, N12 exhibited the most antioxidant activity in all methods (CUPRAC, FRAP, DPPH, ABTS). In vitro acetylcholinesterase (AChE) activity results of the compounds showed good IC50 values between 14.124 ± 0.084 and 49.680 ± 0.110 µM were obtained (IC50 = 38.842 ± 0.053 µM for Donepezil). Among the compounds, N7 and N6 are much more effective derivatives than the standard compound donepezil with IC50 values of 14.124 ± 0.084 and 17.968 ± 0.072 µM, respectively. In vitro, butyrylcholinesterase (BChE) inhibition values of the compounds were between 13.505 ± 0.025 and 52.230 ± 0.027 μm. Among the compounds, N6 has the highest BChE inhibition with an IC50 value of 13.505 μm in the series. The cytotoxicity and AChE inhibitory activity of the compounds on SH-SY5Y cell lines were also evaluated. Kinetic studies were also performed to determine the behavior of the compounds as competitive or noncompetitive inhibitors. The binding modes of N6, which was determined to be highly effective according to in vitro analyses, with AChE and BChE were investigated using molecular docking studies, and the stability of the complexes was determined by molecular dynamics simulations. These findings indicated that AChE and BChE enzymes maintained their overall structural stability and compactness during interactions with compound N6.
Collapse
Affiliation(s)
- Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Nimet Baltaş
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Burçin İrem Abas
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Gizem Tatar Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Süleyman Kaya
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | | | - Özge Çevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın, Türkiye
| |
Collapse
|
6
|
Misiachna A, Svobodova B, Netolicky J, Chvojkova M, Kleteckova L, Prchal L, Novak M, Hrabinova M, Kucera T, Muckova L, Moravcova Z, Karasova JZ, Pejchal J, Blazek F, Malinak D, Hakenova K, Krausova BH, Kolcheva M, Ladislav M, Korabecny J, Pahnke J, Vales K, Horak M, Soukup O. Phenoxytacrine derivatives: Low-toxicity neuroprotectants exerting affinity to ifenprodil-binding site and cholinesterase inhibition. Eur J Med Chem 2024; 266:116130. [PMID: 38218127 DOI: 10.1016/j.ejmech.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Tacrine (THA), a long withdrawn drug, is still a popular scaffold used in medicinal chemistry, mainly for its good reactivity and multi-targeted effect. However, THA-associated hepatotoxicity is still an issue and must be considered in drug discovery based on the THA scaffold. Following our previously identified hit compound 7-phenoxytacrine (7-PhO-THA), we systematically explored the chemical space with 30 novel derivatives, with a focus on low hepatotoxicity, anticholinesterase action, and antagonism at the GluN1/GluN2B subtype of the NMDA receptor. Applying the down-selection process based on in vitro and in vivo pharmacokinetic data, two candidates, I-52 and II-52, selective GluN1/GluN2B inhibitors thanks to the interaction with the ifenprodil-binding site, have entered in vivo pharmacodynamic studies. Finally, compound I-52, showing only minor affinity to AChE, was identified as a lead candidate with favorable behavioral and neuroprotective effects using open-field and prepulse inhibition tests, along with scopolamine-based behavioral and NMDA-induced hippocampal lesion models. Our data show that compound I-52 exhibits low toxicity often associated with NMDA receptor ligands, and low hepatotoxicity, often related to THA-based compounds.
Collapse
Affiliation(s)
- Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, 128 43, Prague, Czech Republic
| | - Barbora Svobodova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jakub Netolicky
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lenka Kleteckova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lukas Prchal
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Martin Novak
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Zuzana Moravcova
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika, Heyrovskeho 1203, 50005, Hradec Králové, Czech Republic
| | - Jana Zdarova Karasova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Filip Blazek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Kristina Hakenova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague 10, Czech Republic
| | - Barbora Hrcka Krausova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marharyta Kolcheva
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marek Ladislav
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague 10, Czech Republic
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
7
|
Remya C, Dileep KV, Variyar EJ, Omkumar RV, Sadasivan C. Lobeline: A multifunctional alkaloid modulates cholinergic and glutamatergic activities. IUBMB Life 2023; 75:844-855. [PMID: 37335270 DOI: 10.1002/iub.2762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Developing drugs for Alzheimer's disease (AD) is an extremely challenging task due to its devastating pathology. Previous studies have indicated that natural compounds play a crucial role as lead molecules in the development of drugs. Even though, there are remarkable technological advancements in the isolation and synthesis of natural compounds, the targets for many of them are still unknown. In the present study, lobeline, a piperidine alkaloid has been identified as a cholinesterase inhibitor through chemical similarity assisted target fishing method. The structural similarities between lobeline and donepezil, a known acetylcholinesterase (AChE) inhibitor encouraged us to hypothesize that lobeline may also exhibit AChE inhibitory properties. It was further confirmed by in silico, in vitro and biophysical studies that lobeline could inhibit cholinesterase. The binding profiles indicated that lobeline has a higher affinity for AChE than BChE. Since excitotoxicity is one of the major pathological events associated with AD progression, we also investigated the neuroprotective potential of lobeline against glutamate mediated excitotoxicity in rat primary cortical neurons. The cell based NMDA receptor (NMDAR) assay with lobeline suggested that neuroprotective potential of lobeline is mediated through the blockade of NMDAR activity.
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Kalarickal V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Elessery J Variyar
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Inter University Centre for Bioscience, Kannur University, Thalassery, Kerala, India
| | | | - Chittalakkottu Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Inter University Centre for Bioscience, Kannur University, Thalassery, Kerala, India
| |
Collapse
|
8
|
Sundius T, Brandán SA. Structural, harmonic force field and vibrational studies of cholinesterase inhibitor tacrine used for treatment of Alzheimer's disease. Heliyon 2023; 9:e17280. [PMID: 37441405 PMCID: PMC10333470 DOI: 10.1016/j.heliyon.2023.e17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Different structures of free base (FB), two cationic forms (CA) and three hydrochloride forms (HCl) of cholinesterase inhibitor tacrine used for treatment of Alzheimer 's disease was evaluated using hybrid B3LYP calculations in order to perform their complete vibrational assignments using the scaled harmonic force fields. Structures of anhydrous form of tacrine have been optimized in gas phase and in aqueous solution. The structure of form III HCl is in agreement with the experimental determined by X-ray diffraction while the predicted IR, Raman, 1H- 13C NMR and UV spectra show good correlations with the corresponding experimental ones. Energy values show that the three forms of HCl can exist in both media because these energetic values decrease from 35.15 kJ/mol in gas phase to 5.51 kJ/mol in solution. For the most stable species of tacrine, the following stability order using natural bond orbital (NBO) studies was found: form I HCl > form III HCl > form I CA > FB. CA presents the higher solvation energy value, as reported for hydrochloride species of alkaloids and antihypertensive agents. The structural parameters of form III of HCl present better concordance and corresponds to that experimental observed in the solid phase. Higher topological properties of form III together with the strong N2-H26⋯Cl31 interaction could justify the presence of this form in the solid phase and in solution and the higher stabilities in both media. The gap values support the higher reactivity of form III while FB is the less reactive species in both media. Complete vibrational assignments for FB, CA and HCl species together with the corresponding scaled force constants are reported.
Collapse
Affiliation(s)
- Tom Sundius
- Department of Physics, University of Helsinki, Finland
| | - Silvia Antonia Brandán
- Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
9
|
Ran G, Liao Y, Wang X, Liu Y, Gong B, Wu C, Cheng Z, Peng Y, Li W, Zheng J. Mechanistic Study of Xanthotoxin-Mediated Inactivation of CYP1A2 and Related Drug-Drug Interaction with Tacrine. Chem Res Toxicol 2023; 36:420-429. [PMID: 36892569 DOI: 10.1021/acs.chemrestox.2c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Xanthotoxin (XTT) is a biologically active furanocoumarin widely present in foods and plants. The present study is designed to systematically investigate the enzymatic interaction of XTT with CYP1A2, along with pharmacokinetic alteration of tacrine resulting from the co-administration of XTT. The results showed that XTT induced a time-, concentration-, and NADPH-dependent inhibition of CYP1A2, and the inhibition was irreversible. Co-incubation of glutathione (GSH) and catalase/superoxide dismutase was unable to prevent enzyme inactivation. Nevertheless, competitive inhibitor fluvoxamine exhibited a concentration-dependent protective effect against the XTT-induced CYP1A2 inactivation. A GSH trapping experiment provided strong evidence for the production of epoxide or/and γ-ketoenal intermediates resulting from the metabolic activation of XTT. Furthermore, pretreatment of rats with XTT was found to significantly increase the Cmax and area under the curve of plasma tacrine relative to those of tacrine administration alone.
Collapse
Affiliation(s)
- Guangyun Ran
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Yufen Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Xin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Bowen Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Chutian Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Zihao Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
10
|
Martins MM, Branco PS, Ferreira LM. Enhancing the Therapeutic Effect in Alzheimer's Disease Drugs: The role of Polypharmacology and Cholinesterase inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- M. Margarida Martins
- Department of Chemistry NOVA School of Science and Technology Campus da Caparica 2825-149 Caparica Portugal
| | - Paula S. Branco
- Department of Chemistry NOVA School of Science and Technology Campus da Caparica 2825-149 Caparica Portugal
| | - Luísa M. Ferreira
- Department of Chemistry NOVA School of Science and Technology Campus da Caparica 2825-149 Caparica Portugal
| |
Collapse
|
11
|
Babu A, John M, Liji MJ, Maria E, Bhaskar SJ, Binukmar BK, Sajith AM, Reddy EK, Dileep KV, Sunil K. Sub-pocket-focused designing of tacrine derivatives as potential acetylcholinesterase inhibitors. Comput Biol Med 2023; 155:106666. [PMID: 36841058 DOI: 10.1016/j.compbiomed.2023.106666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Human acetylcholinesterase (hAChE) has a potential role in the management of acetylcholine, one of the neurotransmitters that modulate the overall activity of cholinergic system, AChE inhibitors have a greater impact in the therapeutics. Though the atomic structure of hAChE has been extensively studied, the precise active site geometry upon binding to different ligands are yet to be explored. In the present study, an extensive structural analysis of our recently reported hAChE-tacrine complex has carried out and revealed the presence of two prominent sub-pockets located at the vicinity of the hAChE active site. Structural bioinformatics assisted studies designed 132 putative sub-pockets focused tacrine derivatives (SPFTDs), their molecular docking, free energy estimations revealed that they are stronger than tacrine in terms of binding affinity. Our in vitro studies also supported the in silico findings, all these SPFTDs are having better potencies than tacrine. Cytotoxic nature of these SPFTDs on HepG2 and Neuro-2a cell lines, diminishes the possibilities for future in vivo studies. However, the identification of these sub pockets and the SPFTDs paved a new way to the future drug discovery especially since AChE is one of the promising and approved drug targets in treatment of AD drug discovery.
Collapse
Affiliation(s)
- Aravinda Babu
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, 572107, Karnataka, India
| | - Mathew John
- Biochemistry Research Laboratory, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, 680005, India
| | - M J Liji
- Biochemistry Research Laboratory, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, 680005, India
| | - E Maria
- Biochemistry Research Laboratory, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, 680005, India
| | - S J Bhaskar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - B K Binukmar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Ayyiliath M Sajith
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, 572107, Karnataka, India
| | - Eeda Koti Reddy
- Division of Chemistry, Department of Science and Humanities, Vignan's Foundation for Science, Technology and Research University-VFSTRU (Vignan's University), Vadlamudi, Guntur, 522 213, Andhrapradesh, India
| | - K V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, 680005, India.
| | - K Sunil
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, 572107, Karnataka, India.
| |
Collapse
|
12
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 566] [Impact Index Per Article: 188.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
13
|
Prikhodko VA, Sysoev YI, Gerasimova EV, Okovityi SV. Novel Chromone-Containing Allylmorpholines Induce Anxiolytic-like and Sedative Effects in Adult Zebrafish. Biomedicines 2022; 10:2783. [PMID: 36359303 PMCID: PMC9687339 DOI: 10.3390/biomedicines10112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 08/30/2023] Open
Abstract
Chromone-containing allylmorpholines (CCAMs) are a novel class of compounds that have demonstrated acetyl- and butyryl-cholinesterase-inhibiting and N-methyl-D-aspartate (NMDA) receptor-blocking properties in vitro, but their in vivo pharmacological activity remains underexplored. In this work, we evaluated the psychotropic activity of five different CCAMs (1 (9a), 2 (9j), 3 (9l), 4 (33a), and 5 (33b)) using the novel tank test (NTT) and light/dark box (LDB) test in adult zebrafish. The CCAMs were screened in the NTT at a range of concentrations, and they were found to induce a dose-dependent sedative effect. Compound 4 (33a) was also evaluated using the LDB test, and it was found to have anxiolytic-like properties at low concentrations. To assess the potential contribution of the glutamate and cholinergic mechanisms in the effects of the CCAMs, we conducted experiments with pre-exposure to putative antagonists, NMDA and biperiden. Neither biperiden nor NMDA were able to diminish or cancel the effects of the CCAMs, countering the in vitro data obtained in previous studies. The apparent discrepancy could be related to the specifics of CCAM metabolism or to the interspecies differences between the putative target proteins, possibly due to the relatively low identity percentage of their sequences. Although further research in mammals is required in order to establish their pharmacological properties, novel CCAMs may represent an appealing group of psychoactive drug candidates.
Collapse
Affiliation(s)
- Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197376 Saint Petersburg, Russia
- Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | - Yuri I. Sysoev
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197376 Saint Petersburg, Russia
- Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
- Laboratory of Neuromodulation of Motor and Visceral Functions, I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Department of Neurobiology, Sirius University of Science and Technology, 353340 Sochi, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Elena V. Gerasimova
- Department of Neurobiology, Sirius University of Science and Technology, 353340 Sochi, Russia
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197376 Saint Petersburg, Russia
- Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| |
Collapse
|
14
|
Wu L, Liu W, Huang Y, Zhu C, Ma Q, Wu Q, Tian L, Feng X, Liu M, Wang N, Xu X, Liu X, Xu C, Qiu J, Xu Z, Liu W, Zhao Q. Development and structure-activity relationship of tacrine derivatives as highly potent CDK2/9 inhibitors for the treatment of cancer. Eur J Med Chem 2022; 242:114701. [DOI: 10.1016/j.ejmech.2022.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
|
15
|
Mitra S, Muni M, Shawon NJ, Das R, Emran TB, Sharma R, Chandran D, Islam F, Hossain MJ, Safi SZ, Sweilam SH. Tacrine Derivatives in Neurological Disorders: Focus on Molecular Mechanisms and Neurotherapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7252882. [PMID: 36035218 PMCID: PMC9410840 DOI: 10.1155/2022/7252882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
Tacrine is a drug used in the treatment of Alzheimer's disease as a cognitive enhancer and inhibitor of the enzyme acetylcholinesterase (AChE). However, its clinical application has been restricted due to its poor therapeutic efficacy and high prevalence of detrimental effects. An attempt was made to understand the molecular mechanisms that underlie tacrine and its analogues influence over neurotherapeutic activity by focusing on modulation of neurogenesis, neuroinflammation, endoplasmic reticulum stress, apoptosis, and regulatory role in gene and protein expression, energy metabolism, Ca2+ homeostasis modulation, and osmotic regulation. Regardless of this, analogues of tacrine are considered as a model inhibitor of cholinesterase in the therapy of Alzheimer's disease. The variety both in structural make-up and biological functions of these substances is the main appeal for researchers' interest in them. A new paradigm for treating neurological diseases is presented in this review, which includes treatment strategies for Alzheimer's disease, as well as other neurological disorders like Parkinson's disease and the synthesis and biological properties of newly identified versatile tacrine analogues and hybrids. We have also shown that these analogues may have therapeutic promise in the treatment of neurological diseases in a variety of experimental systems.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maniza Muni
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nusrat Jahan Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu 642109, India
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, 42610 Selangor, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
16
|
Li RY, Xie JL, Meng D, Deng P. Virtual screening of lead compounds for the treatment of Alzheimer’s disease based on multi-target strategy. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Ruo-yu Li
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
| | - Jia-li Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
| | - Dan Meng
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
| | - Ping Deng
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing, People’s Republic of China
| |
Collapse
|
17
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
18
|
Bhilare NV, Marulkar VS, Kumar D, Chatap VK, Patil KS, Shirote PJ. An insight into prodrug strategy for the treatment of Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02859-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Babu A, Joy MN, Sunil K, Sajith AM, Santra S, Zyryanov GV, Konovalova OA, Butorin II, Muniraju K. Towards novel tacrine analogues: Pd(dppf)Cl 2·CH 2Cl 2 catalyzed improved synthesis, in silico docking and hepatotoxicity studies. RSC Adv 2022; 12:22476-22491. [PMID: 36105950 PMCID: PMC9366599 DOI: 10.1039/d2ra03225b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 01/23/2023] Open
Abstract
A plethora of 6-(hetero)aryl C–C and C–N bonded tacrine analogues has been made accessible by employing palladium mediated (Suzuki–Miyaura, Heck, Sonogashira, Stille and Buchwald) cross-coupling reactions, starting from either halogenated or borylated residues. The successful use of Pd(dppf)Cl2·CH2Cl2 as a common catalytic system in realizing all these otherwise challenging transformations is the highlight of our optimized protocols. The analogues thus synthesized allow the available chemical space around the C-6 of this biologically relevant tacrine core to be explored. The in silico docking studies of the synthesized compounds were carried out against the acetylcholinesterase (AChE) enzyme. The hepatotoxicity studies of these compounds were done against complexes of CYP1A2 and CYP3A4 proteins with known inhibitors like 7,8-benzoflavone and ketoconazole, respectively. 24 synthesized compounds by various cross-coupling reactions on 6-bromo tacrine. Molecular docking and toxicity prediction studies were also performed.![]()
Collapse
Affiliation(s)
- Aravinda Babu
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, India-572107
| | - Muthipeedika Nibin Joy
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia-620002
| | - K. Sunil
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, India-572107
| | | | - Sougata Santra
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia-620002
| | - Grigory V. Zyryanov
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia-620002
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, Yekaterinburg, Russia-620219
| | - Olga A. Konovalova
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia-620002
| | - Ilya I. Butorin
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia-620002
| | - Keesaram Muniraju
- Government Degree College-Puttur (Affiliated to S. V. University, Tirupati), Narayanavanam Road, Puttur, Chittoor (Dt), Andhra Pradesh, India-517583
| |
Collapse
|