1
|
Ma Y, Zeng T, Li Z, Jue D, Sui Y, Wang X, Zhong H, Yang J. Transcriptomic analysis reveals long non-coding RNA involved in the key metabolic pathway in response to Botrytis cinerea in kiwifruit. BMC PLANT BIOLOGY 2025; 25:474. [PMID: 40234757 PMCID: PMC11998429 DOI: 10.1186/s12870-025-06499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Understanding the molecular mechanisms that confer kiwifruit resistance to Botrytis cinerea is essential for developing resistant cultivars. Long non-coding RNAs (lncRNAs), known to participate in various physiological processes including plant defense against diseases, have an undefined role in kiwifruit's resistance. RESULTS Our study aimed to identify lncRNAs induced by B. cinerea infection in 'Hongyang' kiwifruit at 0 to 3 days post-inoculation (dpi) through high-throughput sequencing. The differential expression analysis identified 126 differentially expressed lncRNAs (DELs). Subsequent GO and KEGG analyses indicated that these lncRNAs' target genes were predominantly associated with plant-pathogen interactions, carbohydrate metabolism including starch and sucrose, mitogen-activated protein kinase (MAPK) signaling pathways, and plant hormone signal transduction. Co-expression analysis revealed that lncRNAs modulate the expression of genes involved in phytohormone signaling pathways, such as those for auxin, ethylene (ETH), abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA), as well as the MAPK signaling pathway. This regulation affects the biosynthesis of defense-related secondary metabolites like ADP-glucose, sucrose, 1,3-β-glucan, and cellulose, thereby enhancing the fruit's disease resistance. CONCLUSION Our findings offer valuable insights into the mechanisms by which lncRNAs respond to biotic stress in kiwifruit, potentially aiding in the development of strategies for breeding kiwifruit with improved resistance to B. cinerea.
Collapse
Affiliation(s)
- Yijia Ma
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Tianjing Zeng
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Zhexin Li
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| | - Dengwei Jue
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Yuan Sui
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Xu Wang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Hongpan Zhong
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Jiaqi Yang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| |
Collapse
|
2
|
Liao Q, Zhao Y, Wang Z, Yu L, Su Q, Li J, Yuan A, Wang J, Tian D, Lin C, Huang X, Li W, Sun Z, Wang Q, Liu J. Kiwifruit resistance to gray mold is enhanced by yeast-induced modulation of the endophytic microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173109. [PMID: 38729361 DOI: 10.1016/j.scitotenv.2024.173109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The influence of endophytic microbial community on plant growth and disease resistance is of considerable importance. Prior research indicates that pre-treatment of kiwifruit with the biocontrol yeast Debaryomyces hansenii suppresses gray mold disease induced by Botrytis cinerea. However, the specific underlying mechanisms remain unclear. In this study, Metagenomic sequencing was utilized to analyze the composition of the endophytic microbiome of kiwifruit under three distinct conditions: the healthy state, kiwifruit inoculated with B. cinerea, and kiwifruit treated with D. hansenii prior to inoculation with B. cinerea. Results revealed a dominance of Proteobacteria in all treatment groups, accompanied by a notable increase in the relative abundance of Actinobacteria and Firmicutes. Ascomycota emerged as the major dominant group within the fungal community. Treatment with D. hansenii induced significant alterations in microbial community diversity, specifically enhancing the relative abundance of yeast and exerting an inhibitory effect on B. cinerea. The introduction of D. hansenii also enriched genes associated with energy metabolism and signal transduction, positively influencing the overall structure and function of the microbial community. Our findings highlight the potential of D. hansenii to modulate microbial dynamics, inhibit pathogenic organisms, and positively influence functional attributes of the microbial community.
Collapse
Affiliation(s)
- Qinhong Liao
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Yu Zhao
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhenshuo Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Longfeng Yu
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunnan 677000, China
| | - Qiqian Su
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunnan 677000, China
| | - Jiaoqian Li
- Yantai Laishan District Agricultural Technology Extension Center, Yantai, Shandong 264003, China
| | - Anran Yuan
- Yantai Laishan District Agricultural Technology Extension Center, Yantai, Shandong 264003, China
| | - Junkui Wang
- Yantai Lvyun Biotechnology Co., Ltd, Yantai, Shandong 264003, China
| | - Dawei Tian
- Yantai Lvyun Biotechnology Co., Ltd, Yantai, Shandong 264003, China
| | - Chenglin Lin
- Yantai Lvyun Biotechnology Co., Ltd, Yantai, Shandong 264003, China
| | - Xiaoya Huang
- Yantai Lvyun Biotechnology Co., Ltd, Yantai, Shandong 264003, China
| | - Wenhua Li
- Yantai Lvyun Biotechnology Co., Ltd, Yantai, Shandong 264003, China
| | - Zhiqiang Sun
- Yantai Lvyun Biotechnology Co., Ltd, Yantai, Shandong 264003, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Jia Liu
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou District, Chongqing 404120, China.
| |
Collapse
|
3
|
Zhang W, Yang Y, Zhu X, Yang S, Liao X, Li H, Li Z, Liao Q, Tang J, Zhao G, Wu L. Integrated analyses of metabolomics and transcriptomics reveal the potential regulatory roles of long non-coding RNAs in gingerol biosynthesis. BMC Genomics 2023; 24:490. [PMID: 37633894 PMCID: PMC10464350 DOI: 10.1186/s12864-023-09553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND As the characteristic functional component in ginger, gingerols possess several health-promoting properties. Long non-coding RNAs (lncRNAs) act as crucial regulators of diverse biological processes. However, lncRNAs in ginger are not yet identified so far, and their potential roles in gingerol biosynthesis are still unknown. In this study, metabolomic and transcriptomic analyses were performed in three main ginger cultivars (leshanhuangjiang, tonglingbaijiang, and yujiang 1 hao) in China to understand the potential roles of the specific lncRNAs in gingerol accumulation. RESULTS A total of 744 metabolites were monitored by metabolomics analysis, which were divided into eleven categories. Among them, the largest group phenolic acid category contained 143 metabolites, including 21 gingerol derivatives. Of which, three gingerol analogs, [8]-shogaol, [10]-gingerol, and [12]-shogaol, accumulated significantly. Moreover, 16,346 lncRNAs, including 2,513, 1,225, and 2,884 differentially expressed (DE) lncRNA genes (DELs), were identified in all three comparisons by transcriptomic analysis. Gene ontology enrichment (GO) analysis showed that the DELs mainly enriched in the secondary metabolite biosynthetic process, response to plant hormones, and phenol-containing compound metabolic process. Correlation analysis revealed that the expression levels of 11 DE gingerol biosynthesis enzyme genes (GBEGs) and 190 transcription factor genes (TF genes), such as MYB1, ERF100, WRKY40, etc. were strongly correlation coefficient with the contents of the three gingerol analogs. Furthermore, 7 and 111 upstream cis-acting lncRNAs, 1,200 and 2,225 upstream trans-acting lncRNAs corresponding to the GBEGs and TF genes were identified, respectively. Interestingly, 1,184 DELs might function as common upstream regulators to these GBEGs and TFs genes, such as LNC_008452, LNC_006109, LNC_004340, etc. Furthermore, protein-protein interaction networks (PPI) analysis indicated that three TF proteins, MYB4, MYB43, and WRKY70 might interact with four GBEG proteins (PAL1, PAL2, PAL3, and 4CL-4). CONCLUSION Based on these findings, we for the first time worldwide proposed a putative regulatory cascade of lncRNAs, TFs genes, and GBEGs involved in controlling of gingerol biosynthesis. These results not only provide novel insights into the lncRNAs involved in gingerol metabolism, but also lay a foundation for future in-depth studies of the related molecular mechanism.
Collapse
Affiliation(s)
- Wenlin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
- College of Food Science, Southwest University, Beibei, 400715, China
| | - Yang Yang
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, China
| | - Xuedong Zhu
- Southeast Chongqing Academy of Agricultural Sciences, Fuling, 408000, China
| | - Suyu Yang
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, China
| | - Ximei Liao
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, China
| | - Honglei Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Zhexin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Qinhong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| | - Guohua Zhao
- College of Food Science, Southwest University, Beibei, 400715, China.
| | - Lin Wu
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, China.
| |
Collapse
|
4
|
Zhao Q, Shi Y, Legrand Ngolong Ngea G, Zhang X, Yang Q, Zhang Q, Xu X, Zhang H. Changes of the microbial community in kiwifruit during storage after postharvest application of Wickerhamomyces anomalus. Food Chem 2023; 404:134593. [DOI: 10.1016/j.foodchem.2022.134593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
5
|
Lai R, Wu X, Feng X, Gao M, Long Y, Wu R, Cheng C, Chen Y. Identification and Characterization of Long Non-Coding RNAs: Implicating Insights into Their Regulatory Role in Kiwifruit Ripening and Softening during Low-Temperature Storage. PLANTS (BASEL, SWITZERLAND) 2023; 12:1070. [PMID: 36903929 PMCID: PMC10005093 DOI: 10.3390/plants12051070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) are crucial players regulating many biological processes in plants. However, limited knowledge is available regarding their roles in kiwifruit ripening and softening. In this study, using lncRNA-seq technology, 591 differentially expressed (DE) lncRNAs (DELs) and 3107 DE genes (DEGs) were identified from kiwifruit stored at 4 °C for 1, 2, and 3 weeks in comparison with non-treated control fruits. Of note, 645 DEGs were predicted to be targets of DELs (DEGTLs), including some DE protein-coding genes (such as β-amylase and pectinesterase). DEGTL-based GO enrichment analysis revealed that these genes were significantly enriched in cell wall modification and pectinesterase activity in 1 W vs. CK and 3 W vs. CK, which might be closely related to the fruit softening during low-temperature storage. Moreover, KEGG enrichment analysis revealed that DEGTLs were significantly associated with starch and sucrose metabolism. Our study revealed that lncRNAs play critical regulatory roles in kiwifruit ripening and softening under low-temperature storage, mainly by mediating the expression of starch and sucrose metabolism and cell wall modification related genes.
Collapse
Affiliation(s)
- Ruilian Lai
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiaopei Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xin Feng
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Minxia Gao
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yu Long
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Rujian Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yiting Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
6
|
Leng J, Dai Y, Qiu D, Zou Y, Wu X. Utilization of the antagonistic yeast, Wickerhamomyces anomalus, combined with UV-C to manage postharvest rot of potato tubers caused by Alternaria tenuissima. Int J Food Microbiol 2022; 377:109782. [DOI: 10.1016/j.ijfoodmicro.2022.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/21/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
|