1
|
Cheng J, Liang T, Xie XQ, Feng Z, Meng L. A new era of antibody discovery: an in-depth review of AI-driven approaches. Drug Discov Today 2024; 29:103984. [PMID: 38642702 DOI: 10.1016/j.drudis.2024.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Given their high affinity and specificity for a range of macromolecules, antibodies are widely used in the treatment of autoimmune diseases, cancers, inflammatory diseases, and Alzheimer's disease (AD). Traditional experimental methods are time-consuming, expensive, and labor-intensive. Recent advances in artificial intelligence (AI) technologies provide complementary methods that can reduce the time and costs required for antibody design by minimizing failures and increasing the success rate of experimental tests. In this review, we scrutinize the plethora of AI-driven methodologies that have been deployed over the past 4 years for modeling antibody structures, predicting antibody-antigen interactions, optimizing antibody affinity, and generating novel antibody candidates. We also briefly address the challenges faced in integrating AI-based models with traditional antibody discovery pipelines and highlight the potential future directions in this burgeoning field.
Collapse
Affiliation(s)
- Jin Cheng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Tianjian Liang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Li Meng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| |
Collapse
|
2
|
Yamacli S, Avci M. Investigation and comparison of graphene nanoribbon and carbon nanotube based SARS-CoV-2 detection sensors: An ab initio study. PHYSICA. B, CONDENSED MATTER 2023; 648:414438. [PMID: 36281340 PMCID: PMC9582926 DOI: 10.1016/j.physb.2022.414438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The rapid detection of SARS-CoV-2, the pathogen of the Covid-19 pandemic, is obviously of great importance for stopping the spread of the virus by detecting infected individuals. Here, we report the ab initio analysis results of graphene nanoribbon (GNR) and carbon nanotube (CNT) based SARS-CoV-2 detection sensors which are experimentally demonstrated in the literature. The investigated structures are the realistic molecular models of the sensors that are employing 1-pyrenebutyric acid N-hydroxysuccinimide ester as the antibody linker. Density functional theory in conjunction with non-equilibrium Green's function formalism (DFT-NEGF) is used to obtain the transmission spectra, current-voltage and resistance-voltage characteristics of the sensors before and after the attachment of the SARS-CoV-2 spike protein. The operation mechanism of the GNR and CNT based SARS-CoV-2 sensors are exposed using the transmission spectrum analysis. Moreover, it is observed that GNR based sensor has more definitive detection characteristics compared to its CNT based counterpart.
Collapse
Affiliation(s)
- Serhan Yamacli
- Nuh Naci Yazgan University, Dept. of Electrical-Electronics Engineering, Kayseri, Turkey
| | - Mutlu Avci
- Cukurova University, Dept. of Biomedical Engineering, Adana, Turkey
| |
Collapse
|
3
|
Martí D, Martín-Martínez E, Torras J, Betran O, Turon P, Alemán C. In silico study of substrate chemistry effect on the tethering of engineered antibodies for SARS-CoV-2 detection: Amorphous silica vs gold. Colloids Surf B Biointerfaces 2022; 213:112400. [PMID: 35158221 PMCID: PMC8820101 DOI: 10.1016/j.colsurfb.2022.112400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
Abstract
The influence of the properties of different solid substrates on the tethering of two antibodies, IgG1-CR3022 and IgG1-S309, which were specifically engineered for the detection of SARS-CoV-2, has been examined at the molecular level using conventional and accelerated Molecular Dynamics (cMD and aMD, respectively). Two surfaces with very different properties and widely used in immunosensors for diagnosis, amorphous silica and the most stable facet of the face-centered cubic gold structure, have been considered. The effects of such surfaces on the structure and orientation of the immobilized antibodies have been determined by quantifying the tilt and hinge angles that describe the orientation and shape of the antibody, respectively, and the dihedrals that measure the relative position of the antibody arms with respect to the surface. Results show that the interactions with amorphous silica, which are mainly electrostatic due to the charged nature of the surface, help to preserve the orientation and structure of the antibodies, especially of the IgG1-CR3022, indicating that the primary sequence of those antibodies also plays some role. Instead, short-range van der Waals interactions with the inert gold surface cause a higher degree tilting and fraying of the antibodies with respect to amorphous silica. The interactions between the antibodies and the surface also affect the correlation among the different angles and dihedrals, which increases with their strength. Overall, results explain why amorphous silica substrates are frequently used to immobilize antibodies in immunosensors.
Collapse
Affiliation(s)
- Didac Martí
- Departament d'Enginyeria Química (DEQ), EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Eduard Martín-Martínez
- Departament d'Enginyeria Química (DEQ), EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d'Enginyeria Química (DEQ), EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain.
| | - Oscar Betran
- Departament de Física, EETAC, Universitat Politècnica de Catalunya (UPC), c/ Esteve Terrades, 7, 08860 Castelldefels, Spain
| | - Pau Turon
- B. Braun Surgical, S.A.U. Carretera de Terrasa 121, Rubí, 08191 Barcelona, Spain.
| | - Carlos Alemán
- Departament d'Enginyeria Química (DEQ), EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|