1
|
Villalba A, Brassington I, Smajdor A, Cutas D. Synthetic DNA and mitochondrial donation: no need for donor eggs? JOURNAL OF MEDICAL ETHICS 2025:jme-2024-110122. [PMID: 40335280 DOI: 10.1136/jme-2024-110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 04/18/2025] [Indexed: 05/09/2025]
Abstract
Mitochondrial replacement therapy has been developed in order to prevent the transmission of mitochondrial mutations, yet it raises ethical concerns, particularly regarding the involvement of third-party DNA and the risks associated with donor procedures. This paper explores an alternative approach using synthetic DNA (synDNA) to construct mitochondrial organelles, thereby bypassing the need for donor oocytes and bypassing risks to donors. We argue that those who support mitochondrial replacement techniques as an ethically acceptable means of preventing the transmission of mitochondrial disease should consider the use of synthetic mitochondria as a preferable ethical alternative, should it prove technically viable. That this will be viable is more than we can demonstrate here. However, progress in synDNA technology suggests that it is not unreasonable to think that synthetic mitochondria creation is feasible, and perhaps even probable.
Collapse
Affiliation(s)
- Adrian Villalba
- Université Paris Cité, Paris, France
- University of Granada, Granada, Spain
- GIBIO- Bioethics Research Group, Health Department, International University of Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
2
|
Win ZZ, Dokduang H, Kulwong S, Loilome W, Namwat N, Phetcharaburanin J, Wongsurawat T, Jenjaroenpun P, Klanrit P, Wangwiwatsin A. Characterization and identification of extrachromosomal circular DNA in cholangiocarcinoma. PLoS One 2025; 20:e0322173. [PMID: 40323971 PMCID: PMC12052172 DOI: 10.1371/journal.pone.0322173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/17/2025] [Indexed: 05/07/2025] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) have gained attention as key players in cancer heterogeneity, potentially associated with elevated oncogene copy numbers in many cancers. While the presence of eccDNA in both normal and cancer cells is confirmed, its influence on gene-level alterations in cancer cells remains largely unexplored. This study delves into the genomic profiles of eccDNA in cholangiocarcinoma (CCA), an aggressive biliary tract cancer with extensive heterogeneity and diverse molecular alterations, using a modified long-read CircleSeq method. We reveal distinct eccDNA characteristics in CCA compared to non-tumor cells, focusing on genic components and chromosomal origins. Analysing read depth differences in oncogene-containing eccDNA; we identified potential eccDNA candidates that may be relevant for CCA biology. Subsequent bioinformatics analysis was performed using the established CReSIL tool, revealing distinct patterns of these oncogenes, particularly genes in the RAS/BRAF pathway, suggesting a potential functional role. These findings highlight the remarkable heterogeneity and diverse origins of eccDNA in CCA. This study establishes the first profiling of eccDNA in cholangiocarcinoma and paves the way for further investigation of its potential contribution to oncogene amplification and disease progression.
Collapse
Affiliation(s)
- Zar Zar Win
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hasaya Dokduang
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Siriyakorn Kulwong
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Song Y, Guan C, Zhang Y, Xu Y, Li P, Luo L, Feng C, Chen G. A novel CRISPR-Cas9 nickase-mediated rolling circle amplification (CRIRCA) technique for gene identification and quantitative analysis of extrachromosomal DNA. J Adv Res 2025:S2090-1232(25)00275-9. [PMID: 40274228 DOI: 10.1016/j.jare.2025.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
INTRODUCTION Extrachromosomal DNA (ecDNA) plays an important role in the initiation and progression of cancerous tumors. Although Circle-seq and other genetic technologies can be utilized for ecDNA analysis, they fail to provide multi-dimensional information from ecDNA, which is time-consuming and laborious. OBJECTIVES Herein, by combining the netlike rolling circle amplification (NRCA) with CRISPR, we developed a novel CRISPR-Cas9 nickase-mediated RCA (CRIRCA) technology that can meet the clinical analysis needs of ecDNA. METHODS Atomic force microscope (AFM) was applied to confirm the circular structure of the ecDNA. Agarose gel electrophoresis was performed to analyze the CRIRCA products. Fluorescent detection was applied to characterize the fluorescence signal of amplified products. qPCR and FISH techniques were applied to verify the CRIRCA results of gene identification of ecDNA. RESULTS Our data revealed that CRIRCA achieved more efficient signal amplification compared to traditional RCA methods, allowing it to sensitively analyze small amounts of ecDNA in single tumor cells. Utilizing computer-aided design, we successfully constructed the primer library and sgRNA library of oncogene in ecDNA, and adopted CRIRCA technology to identify the oncogenes of ecDNA in breast cancer cells. CONCLUSION Therefore, CRIRCA can simultaneously obtain the information from structure, sequence and quantitation of ecDNA. This work will fill the gap in the current research on the early monitoring of cancer targeting ecDNA, and provide support for the accurate diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yuchen Song
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Chaoyang Guan
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yue Zhang
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yiming Xu
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Pengfei Li
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
4
|
Liang X, Arrey G, Qin Y, Álvarez-González L, Hariprakash JM, Ma J, Holt S, Han P, Luo Y, Li H, Ruiz-Herrera A, Pilegaard H, Regenberg B. EccDNA atlas in male mice reveals features protecting genes against transcription-induced eccDNA formation. Nat Commun 2025; 16:1872. [PMID: 39984484 PMCID: PMC11845583 DOI: 10.1038/s41467-025-57042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
eccDNA is a driver of many cancers and a potential intermediate in other age-related disorders. However, little is known about the mechanisms underlying eccDNA formation in healthy tissue and how aging affects these processes. Here, we present an atlas of eccDNA across seven tissues of male mice spanning four ages. EccDNA correlates with open chromatin characterized by signatures of H3K27ac and H3K4me1. Additionally, the mutational load of eccDNA on genes correlates with tissue-specific transcription and increases logarithmically as a function of transcript level. Still, a population of intron-dense genes with many splice forms remains sheltered from eccDNA formation. We also find that the total number of eccDNA molecules does not increase as mice age, unlike other types of mutations. Our data reveal a link between eccDNA formation and transcript level that may drive gene architecture in mammals.
Collapse
Affiliation(s)
- Xue Liang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Gerard Arrey
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yating Qin
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Judith Mary Hariprakash
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jie Ma
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Sylvester Holt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peng Han
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hanbo Li
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Regenberg
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Alaswad Z, Attallah NE, Aboalazm B, Elmeslhy ES, Mekawy AS, Afify FA, Mahrous HK, Abdalla A, Rahmoon MA, Mohamed AA, Shata AH, Mansour RH, Aboul-Ela F, Elhadidy M, Javierre BM, El-Khamisy SF, Elserafy M. Insights into the human cDNA: A descriptive study using library screening in yeast. J Genet Eng Biotechnol 2024; 22:100427. [PMID: 39674632 PMCID: PMC11533663 DOI: 10.1016/j.jgeb.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 12/16/2024]
Abstract
The utilization of human cDNA libraries in yeast genetic screens is an approach that has been used to identify novel gene functions and/or genetic and physical interaction partners through forward genetics using yeast two-hybrid (Y2H) and classical cDNA library screens. Here, we summarize several challenges that have been observed during the implementation of human cDNA library screens in Saccharomyces cerevisiae (budding yeast). Upon the utilization of DNA repair deficient-yeast strains to identify novel genes that rescue the toxic effect of DNA-damage inducing drugs, we have observed a wide range of transcripts that could rescue the strains. However, after several rounds of screening, most of these hits turned out to be false positives, most likely due to spontaneous mutations in the yeast strains that arise as a rescue mechanism due to exposure to toxic DNA damage inducing-drugs. The observed transcripts included mitochondrial hits, non-coding RNAs, truncated cDNAs, and transcription products that resulted from the internal priming of genomic regions. We have also noticed that most cDNA transcripts are not fused with the GAL4 activation domain (GAL4AD), rendering them unsuitable for Y2H screening. Consequently, we utilized Sanger sequencing to screen 282 transcripts obtained from either four different yeast screens or through direct fishing from a human kidney cDNA library. The aim was to gain insights into the different transcription products and to highlight the challenges of cDNA screening approaches in the presence of a significant number of undesired transcription products. In summary, this study describes the challenges encountering human cDNA library screening in yeast as a valuable technique that led to the identification of important molecular mechanisms. The results open research venues to further optimize the process and increase its efficiency.
Collapse
Affiliation(s)
- Zina Alaswad
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nayera E Attallah
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Basma Aboalazm
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Eman S Elmeslhy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Asmaa S Mekawy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Fatma A Afify
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Hesham K Mahrous
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ashrakat Abdalla
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mai A Rahmoon
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Ahmed A Mohamed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed H Shata
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Rana H Mansour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Fareed Aboul-Ela
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | - Sherif F El-Khamisy
- The Healthy Lifespan Institute and Institute of Neuroscience, School of Bioscience, University of Sheffield, South Yorkshire, UK; The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, UK
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
| |
Collapse
|
6
|
He H, Gao Z, Hu Z, Liang G, Huang Y, Zhou M, Liang R, Zhang K. Identification and Characterization of Extrachromosomal Circular DNA in Slimming Grass Carp. Biomolecules 2024; 14:1045. [PMID: 39334812 PMCID: PMC11430282 DOI: 10.3390/biom14091045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Slimming grass carp is a commercial variety with good body form and meat quality, which is cultured by starving common grass carp in a clean flowing water environment. Compared to common grass carp, slimming grass carp has a far higher economic value. Until now, no molecular study has concentrated on the regulation mechanism of the muscle characteristics of slimming grass carp. This study first reported the gene expression profile of the muscle characteristics of slimming grass carp based on the level of extrachromosomal circular DNAs (eccDNAs). EccDNAs are double-stranded circular DNAs derived from genomic DNAs and play crucial roles in the functional regulation of a wide range of biological processes, none of which have been shown to occur in fish. Here, muscle eccDNAs from slimming grass carp and common grass carp were both generally sequenced, and the information, as well as the expression profile of eccDNAs, were compared and analysed. The findings reveal that 82,238 and 25,857 eccDNAs were detected from slimming grass carp and common grass carp, respectively. The length distribution of eccDNAs was in the range of 1~1000 bp, with two peaks at about 200 bp and 400 bp. When the expression profiles of eccDNAs between slimming grass carp and common grass carp were compared, 3523 up-regulated and 175 down-regulated eccDNAs were found. Enrichment analysis showed that these eccDNA genes were correlated with cellular structure and response, cell immunology, enzyme activity, etc. Certain differentially expressed eccDNAs involved in muscle characteristics were detected, which include myosin heavy chain, myosin light chain, muscle segment homeobox C, calsequestrin, calmodulin, etc., among which the majority of genes were linked to muscle structure and contraction. This indicates that during the process of cultivating from common grass carp to slimming grass carp, the treatment primarily affected muscle structure and contraction, making the meat quality of slimming grass carp different from that of common grass carp. This result provides molecular evidence and new insights by which to elucidate the regulating mechanism of muscle phenotypic characterisation in slimming grass carp and other fish.
Collapse
Affiliation(s)
- Haobin He
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zihan Gao
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zehua Hu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guanyu Liang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Rishen Liang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Kai Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Yüksel A, Altungöz O. Gene amplifications and extrachromosomal circular DNAs: function and biogenesis. Mol Biol Rep 2023; 50:7693-7703. [PMID: 37433908 DOI: 10.1007/s11033-023-08649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Gene amplification is an increase in the copy number of restricted chromosomal segments that contain gene(s) and frequently results in the over-expression of the corresponding gene(s). Amplification may be found in the form of extrachromosomal circular DNAs (eccDNAs) or as linear repetitive amplicon regions that are integrated into chromosomes, which may form cytogenetically observable homogeneously staining regions or may be scattered throughout the genome. eccDNAs are structurally circular and in terms of their function and content, they can be classified into various subtypes. They play pivotal roles in many physiological and pathological phenomena such as tumor pathogenesis, aging, maintenance of telomere length and ribosomal DNAs (rDNAs), and gain of resistance against chemotherapeutic agents. Amplification of oncogenes is consistently seen in various types of cancers and can be associated with prognostic factors. eccDNAs are known to be originated from chromosomes as a consequence of various cellular events such as repair processes of damaged DNA or DNA replication errors. In this review, we highlighted the role of gene amplification in cancer, the functional aspects of eccDNAs subtypes, the proposed biogenesis mechanisms, and their role in gene or segmental-DNA amplification.
Collapse
Affiliation(s)
- Ali Yüksel
- Department of Medical Biology and Genetics, Institute of Health Sciences, Dokuz Eylul University, 35330, Izmir, Turkey.
| | - Oğuz Altungöz
- Department of Medical Biology and Genetics, Institute of Health Sciences, Dokuz Eylul University, 35330, Izmir, Turkey.
- Department of Medical Biology, Dokuz Eylül Medical School, 35330, Izmir, Turkey.
| |
Collapse
|
8
|
dos Santos CR, Hansen LB, Rojas-Triana M, Johansen AZ, Perez-Moreno M, Regenberg B. Variation of extrachromosomal circular DNA in cancer cell lines. Comput Struct Biotechnol J 2023; 21:4207-4214. [PMID: 37705597 PMCID: PMC10495552 DOI: 10.1016/j.csbj.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023] Open
Abstract
The presence of oncogene carrying eccDNAs is strongly associated with carcinogenesis and poor patient survival. Tumour biopsies and in vitro cancer cell lines are frequently utilized as models to investigate the role of eccDNA in cancer. However, eccDNAs are often lost during the in vitro growth of cancer cell lines, questioning the reproducibility of studies utilizing cancer cell line models. Here, we conducted a comprehensive analysis of eccDNA variability in seven cancer cell lines (MCA3D, PDV, HaCa4, CarC, MIA-PaCa-2, AsPC-1, and PC-3). We compared the content of unique eccDNAs between triplicates of each cell line and found that the number of unique eccDNA is specific to each cell line, while the eccDNA sequence content varied greatly among triplicates (∼ 0-1% eccDNA coordinate commonality). In the PC-3 cell line, we found that the large eccDNA (ecDNA) with MYC is present in high-copy number in an NCI cell line isolate but not present in ATCC isolates. Together, these results reveal that the sequence content of eccDNA is highly variable in cancer cell lines. This highlights the importance of testing cancer cell lines before use, and to enrich for subclones in cell lines with the desired eccDNA to get relatively pure population for studying the role of eccDNA in cancer.
Collapse
Affiliation(s)
| | | | - Monica Rojas-Triana
- Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark
| | - Astrid Zedlitz Johansen
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, DK-2730 Herlev, Denmark
| | - Mirna Perez-Moreno
- Cell biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Birgitte Regenberg
- Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Di Vincenzo F, Yadid Y, Petito V, Emoli V, Masi L, Gerovska D, Araúzo-Bravo MJ, Gasbarrini A, Regenberg B, Scaldaferri F. Circular and Circulating DNA in Inflammatory Bowel Disease: From Pathogenesis to Potential Molecular Therapies. Cells 2023; 12:1953. [PMID: 37566032 PMCID: PMC10417561 DOI: 10.3390/cells12151953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic multifactorial disorders which affect the gastrointestinal tract with variable extent. Despite extensive research, their etiology and exact pathogenesis are still unknown. Cell-free DNAs (cfDNAs) are defined as any DNA fragments which are free from the origin cell and able to circulate into the bloodstream with or without microvescicles. CfDNAs are now being increasingly studied in different human diseases, like cancer or inflammatory diseases. However, to date it is unclear how IBD etiology is linked to cfDNAs in plasma. Extrachromosomal circular DNA (eccDNA) are non-plasmidic, nuclear, circular and closed DNA molecules found in all eukaryotes tested. CfDNAs appear to play an important role in autoimmune diseases, inflammatory processes, and cancer; recently, interest has also grown in IBD, and their role in the pathogenesis of IBD has been suggested. We now suggest that eccDNAs also play a role in IBD. In this review, we have comprehensively collected available knowledge in literature regarding cfDNA, eccDNA, and structures involving them such as neutrophil extracellular traps and exosomes, and their role in IBD. Finally, we focused on old and novel potential molecular therapies and drug delivery systems, such as nanoparticles, for IBD treatment.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Ylenia Yadid
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Valentina Petito
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Valeria Emoli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Letizia Masi
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
| | - Marcos Jesus Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonio Gasbarrini
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Birgitte Regenberg
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 13, Room 426, DK-2100 Copenhagen, Denmark;
| | - Franco Scaldaferri
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| |
Collapse
|
10
|
Lin M, Chen Y, Xia S, He Z, Yu X, Huang L, Lin S, Liang B, Huang Z, Mei S, Liu D, Zheng L, Luo Y. Integrative profiling of extrachromosomal circular DNA in placenta and maternal plasma provides insights into the biology of fetal growth restriction and reveals potential biomarkers. Front Genet 2023; 14:1128082. [PMID: 37476414 PMCID: PMC10354665 DOI: 10.3389/fgene.2023.1128082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/24/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction: Fetal growth restriction (FGR) is a placenta-mediated pregnancy complication that predisposes fetuses to perinatal complications. Maternal plasma cell-free DNA harbors DNA originating from placental trophoblasts, which is promising for the prenatal diagnosis and prediction of pregnancy complications. Extrachromosomal circular DNA (eccDNA) is emerging as an ideal biomarker and target for several diseases. Methods: We utilized eccDNA sequencing and bioinformatic pipeline to investigate the characteristics and associations of eccDNA in placenta and maternal plasma, the role of placental eccDNA in the pathogenesis of FGR, and potential plasma eccDNA biomarkers of FGR. Results: Using our bioinformatics pipelines, we identified multi-chromosomal-fragment and single-fragment eccDNA in placenta, but almost exclusively single-fragment eccDNA in maternal plasma. Relative to that in plasma, eccDNA in placenta was larger and substantially more abundant in exons, untranslated regions, promoters, repetitive elements [short interspersed nuclear elements (SINEs)/Alu, SINEs/mammalian-wide interspersed repeats, long terminal repeats/endogenous retrovirus-like elements, and single recognition particle RNA], and transcription factor binding motifs. Placental multi-chromosomal-fragment eccDNA was enriched in confident enhancer regions predicted to pertain to genes in apoptosis, energy, cell growth, and autophagy pathways. Placental eccDNA-associated genes whose abundance differed between the FGR and control groups were associated with immunity-related gene ontology (GO) terms. The combined analysis of plasma and placental eccDNA-associated genes in the FGR and control groups led to the identification of potential biomarkers that were assigned to the GO terms of the epigenetic regulation of gene expression and nutrient-related processes, respectively. Conclusion: Together, our results highlight links between placenta functions and multi-chromosomal-fragment and single-fragment eccDNA. The integrative analysis of placental and plasma eccDNA confirmed the potential of these molecules as disease-specific biomarkers of FGR.
Collapse
Affiliation(s)
- Minhuan Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiqing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuting Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuegao Yu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Binrun Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziliang Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Mei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong Liu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Jiang R, Yang M, Zhang S, Huang M. Advances in sequencing-based studies of microDNA and ecDNA: Databases, identification methods, and integration with single-cell analysis. Comput Struct Biotechnol J 2023; 21:3073-3080. [PMID: 37273851 PMCID: PMC10238454 DOI: 10.1016/j.csbj.2023.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a class of circular DNA molecules that originate from genomic DNA but are separate from chromosomes. They are common in various organisms, with sizes ranging from a few hundred to millions of base pairs. A special type of large extrachromosomal DNA (ecDNA) is prevalent in cancer cells. Research on ecDNA has significantly contributed to our comprehension of cancer development, progression, evolution, and drug resistance. The use of next-generation (NGS) and third-generation sequencing (TGS) techniques to identify eccDNAs throughout the genome has become a trend in current research. Here, we briefly review current advances in the biological mechanisms and applications of two distinct types of eccDNAs: microDNA and ecDNA. In addition to presenting available identification tools based on sequencing data, we summarize the most recent efforts to integrate ecDNA with single-cell analysis and put forth suggestions to promote the process.
Collapse
Affiliation(s)
| | | | - Shufan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Wanchai V, Jenjaroenpun P, Leangapichart T, Arrey G, Burnham CM, Tümmler MC, Delgado-Calle J, Regenberg B, Nookaew I. CReSIL: accurate identification of extrachromosomal circular DNA from long-read sequences. Brief Bioinform 2022; 23:bbac422. [PMID: 36198068 PMCID: PMC10144670 DOI: 10.1093/bib/bbac422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) of chromosomal origin is found in many eukaryotic species and cell types, including cancer, where eccDNAs with oncogenes drive tumorigenesis. Most studies of eccDNA employ short-read sequencing for their identification. However, short-read sequencing cannot resolve the complexity of genomic repeats, which can lead to missing eccDNA products. Long-read sequencing technologies provide an alternative to constructing complete eccDNA maps. We present a software suite, Construction-based Rolling-circle-amplification for eccDNA Sequence Identification and Location (CReSIL), to identify and characterize eccDNA from long-read sequences. CReSIL's performance in identifying eccDNA, with a minimum F1 score of 0.98, is superior to the other bioinformatic tools based on simulated data. CReSIL provides many useful features for genomic annotation, which can be used to infer eccDNA function and Circos visualization for eccDNA architecture investigation. We demonstrated CReSIL's capability in several long-read sequencing datasets, including datasets enriched for eccDNA and whole genome datasets from cells containing large eccDNA products. In conclusion, the CReSIL suite software is a versatile tool for investigating complex and simple eccDNA in eukaryotic cells.
Collapse
Affiliation(s)
- Visanu Wanchai
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thongpan Leangapichart
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Gerard Arrey
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Charles M Burnham
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Maria C Tümmler
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, College of Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Birgitte Regenberg
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
13
|
Zhao Y, Yu L, Zhang S, Su X, Zhou X. Extrachromosomal circular DNA: Current status and future prospects. eLife 2022; 11:81412. [PMID: 36256570 PMCID: PMC9578701 DOI: 10.7554/elife.81412] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a double-stranded DNA molecule found in various organisms, including humans. In the past few decades, the research on eccDNA has mainly focused on cancers and their associated diseases. Advancements in modern omics technologies have reinvigorated research on eccDNA and shed light on the role of these molecules in a range of diseases and normal cell phenotypes. In this review, we first summarize the formation of eccDNA and its modes of action in eukaryotic cells. We then outline eccDNA as a disease biomarker and reveal its regulatory mechanism. We finally discuss the future prospects of eccDNA, including basic research and clinical application. Thus, with the deepening of understanding and exploration of eccDNAs, they hold great promise in future biomedical research and clinical translational application.
Collapse
Affiliation(s)
- Yiheng Zhao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Linchan Yu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuchen Zhang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangyu Su
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|