1
|
Morgan D, Okwuone DD, Berggren KL, Arnold L, Schmidt A, Spiess C, Smith H, Yada R, Hendrikse N, Madan R, Shrock D, Lominska C, Hu M, Witek M, Soper S, Lin Y, Gao H, McCance DJ, Thomas SM, Beebe D, Kerr SC, Gan GN. MK2 promotes p16 negative head and neck cancer migration, invasion, and metastasis. Cancer Lett 2025; 622:217690. [PMID: 40185303 DOI: 10.1016/j.canlet.2025.217690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
For patients with locally advanced, p16-negative head and neck squamous cell carcinoma (HNSCC), overall survival remains poor due to primary locoregional failure and distant metastasis following curative therapy. We aimed to understand how MAPKAPK2 (MK2) regulates HNSCC tumor cell migration and invasion, important first steps in cancer metastases. The TCGA database and HNSCC tissue microarrays were used to show that MK2 expression was associated with more advanced cancers and faster cancer recurrence rates. We observed that silencing of tumor MK2 in human cell lines (shRNA) caused a significant reduction in tumor cell migration-invasion in a complex HNSCC microphysiologic system used to recapitulate the tumor microenvironment. Murine cells (Ly2) with MK2 silenced (CRISPR-Cas9) also demonstrated reduced migration and invasion using 2D and 3D monoculture cell migration-invasions assays. Ly2 cells are orthotopic p16-negative murine metastatic cells that spontaneously metastasize, and we observed that MK2 inhibition via genetic (Cas9/CRISPR) or pharmacologic (PF-3644022) methods led to a significant reduction in the number of circulating tumor cells, fewer lymph node and lung metastases, and MK2 inhibited mice showed improved overall survival. Our findings suggest that HNSCC MK2 regulates tumor cell migration-invasion and may be a promising therapeutic target to reduce metastases.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dakota Dd Okwuone
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Levi Arnold
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alyssa Schmidt
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Colby Spiess
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hannah Smith
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ravi Yada
- Carbone Cancer Center, University of Wisconsin Madison, WI, USA
| | | | - Rashna Madan
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin Shrock
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Chris Lominska
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mengjia Hu
- Department of Chemistry, University of Kansas, Topeka, KS, USA
| | | | - Steven Soper
- Department of Chemistry, University of Kansas, Topeka, KS, USA
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dennis J McCance
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sufi M Thomas
- Department of Pathology, The University of New Mexico, Albuquerque, NM, USA
| | - David Beebe
- Carbone Cancer Center, University of Wisconsin Madison, WI, USA
| | - Sheena C Kerr
- Carbone Cancer Center, University of Wisconsin Madison, WI, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Anand P, Chhimwal J, Dhiman S, Yamini, Patial V, Das P, Ahmed Z, Nandi U, Tavassoli M, Padwad Y. Evaluation of Pyrrolone-Fused Benzosuberene MK2 Inhibitors as Promising Therapeutic Agents for HNSCC: In Vitro Efficacy, In-Vivo Safety, and Pharmacokinetic Profiling. Drug Dev Res 2025; 86:e70062. [PMID: 40009048 DOI: 10.1002/ddr.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/18/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
MAPKAPK2/MK2 is well implicated in the progression of Head and Neck Squamous Cell Carcinoma (HNSCC), and potent MK2-inhibitors are required to suppress its activity. Several MK2-inhibitors have been developed in recent years to combat its effects on cancer. However, inadequate solubility, insufficient cellular permeability, systemic toxicity-mediated side effects, and low bioavailability have severely impeded the advancement of MK2-inhibitors to clinical trials. This void necessitates research to develop less toxic and more bioavailable potent MK2-inhibitors in HNSCC. In the present article, we have evaluated the in-vitro efficacy, in-vivo single-dose acute toxicity, and in-vivo pharmacokinetic profiling of recently developed PfBS (pyrrolone-fused benzosuberene) MK2-inhibitor analogues against HNSCC. The PfBS MK2 inhibitor analogues impeded HPV+ and HPV- HNSCC cell proliferation and two-dimensional migration. Moreover, MK2-inhibitors lowered HNSCC cell clonogenic survival in a dose-dependent manner, significantly enhancing radiation-induced cell death via exerting radio-sensitization effects. Furthermore, γ-H2AX immunostaining revealed that PfBS analogues impaired DNA damage repair in HNSCC cells exposed to gamma radiation. In mice, PfBS MK2 inhibitors at 300 mg/kg were well-tolerated without any lethal effects. Pharmacokinetic studies showed that PfBS analogues exhibited rapid absorption (Tmax), adequate plasma concentration above the micromolar level (C0 or Cmax), limited tissue distribution (Vd), and faster elimination from the body (Cl). Overall, this study summarizes in-vitro efficacy, safety, and pharmacokinetics of developed MK2-inhibitors and opens doors for pharmacodynamics and mechanism of action study of most effective leads in HNSCC.
Collapse
Affiliation(s)
- Prince Anand
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Centre for Host-Microbiome Interactions, King's College London, London, London, United Kingdom
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| | - Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| | - Sumit Dhiman
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, Jammu & Kashmir, India
| | - Yamini
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| | - Pralay Das
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
| | - Zabeer Ahmed
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, Jammu & Kashmir, India
| | - Utpal Nandi
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, Jammu & Kashmir, India
- Chemical Sciences, Unified Academic Campus, Bose Institute, Kolkata, West Bengal, India
| | - Mahvash Tavassoli
- Centre for Host-Microbiome Interactions, King's College London, London, London, United Kingdom
| | - Yogendra Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Liu S, Han B, Wang R, Fang J. Elucidating the role of FOS in modulating the immune microenvironment through fibroblast and myeloid cell regulation in locoregional recurrent HNSCC. ENVIRONMENTAL TOXICOLOGY 2024; 39:4531-4546. [PMID: 38567514 DOI: 10.1002/tox.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) presents a significant clinical challenge, particularly due to its high propensity for locoregional recurrence. Current research underscores the need to unravel the complex interactions within the tumor microenvironment. This study addresses the critical gap in understanding how FOS modulates the immune landscape in HNSCC, with a focus on its influence on fibroblast and myeloid cell dynamics. METHODS Employing a comprehensive approach, we analyzed tissue samples from HNSCC patients and adjacent non-cancerous tissues using bulk RNA sequencing complemented by in-depth bioinformatics analyses, including gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and immune infiltration assessment. A pivotal aspect of our research involved dissecting single-cell RNA-seq data from GSE234933 to elucidate the cell-type-specific expression of FOS. RESULTS We found that FOS expression varies significantly in different cell populations in the HNSCC tumor microenvironment, especially in fibroblasts and myeloid cells. This expression difference may reflect the different roles of these cells in tumor progression and their impact on the tumor microenvironment. CONCLUSION Our results uncover a significant correlation between FOS expression and key immune and hypoxia-related pathways, suggesting its integral role in the tumor microenvironment. These findings not only enhance our understanding of HNSCC pathogenesis but also highlight FOS as a potential therapeutic target. This study marks a significant step towards addressing the urgent need for targeted interventions in HNSCC, particularly in the context of locoregional recurrence.
Collapse
Affiliation(s)
- Shaokun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Boxuan Han
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Mao Y, Hou X, Fu S, Luan J. Transcriptomic and machine learning analyses identify hub genes of metabolism and host immune response that are associated with the progression of breast capsular contracture. Genes Dis 2024; 11:101087. [PMID: 38292203 PMCID: PMC10825289 DOI: 10.1016/j.gendis.2023.101087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 02/01/2024] Open
Abstract
Capsular contracture is a prevalent and severe complication that affects the postoperative outcomes of patients who receive silicone breast implants. At present, prosthesis replacement is the major treatment for capsular contracture after both breast augmentation procedures and breast reconstruction following breast cancer surgery. However, the mechanism(s) underlying breast capsular contracture remains unclear. This study aimed to identify the biological features of breast capsular contracture and reveal the potential underlying mechanism using RNA sequencing. Sample tissues from 12 female patients (15 breast capsules) were divided into low capsular contracture (LCC) and high capsular contracture (HCC) groups based on the Baker grades. Subsequently, 41 lipid metabolism-related genes were identified through enrichment analysis, and three of these genes were identified as candidate genes by SVM-RFE and LASSO algorithms. We then compared the proportions of the 22 types of immune cells between the LCC and HCC groups using a CIBERSORT analysis and explored the correlation between the candidate hub features and immune cells. Notably, PRKAR2B was positively correlated with the differentially clustered immune cells, which were M1 macrophages and follicular helper T cells (area under the ROC = 0.786). In addition, the expression of PRKAR2B at the mRNA or protein level was lower in the HCC group than in the LCC group. Potential molecular mechanisms were identified based on the expression levels in the high and low PRKAR2B groups. Our findings indicate that PRKAR2B is a novel diagnostic biomarker for breast capsular contracture and might also influence the grade and progression of capsular contracture.
Collapse
Affiliation(s)
- Yukun Mao
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
| | - Xueying Hou
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
| | - Su Fu
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
| | - Jie Luan
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China
| |
Collapse
|
5
|
Yamini, Anand P, Bhardwaj VK, Kumar A, Purohit R, Das P, Padwad Y. Novel pyrrolone-fused benzosuberene MK2 inhibitors: synthesis, pharmacophore modelling, molecular docking, and anti-cancer efficacy evaluation in HNSCC cells. J Biomol Struct Dyn 2023; 42:11954-11975. [PMID: 39540409 DOI: 10.1080/07391102.2023.2265993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/17/2023] [Indexed: 11/16/2024]
Abstract
Head and neck Squamous Cell Carcinoma (HNSCC) is a growing concern worldwide and MAPKAPK2/MK2 (Mitogen-Activated Protein Kinase Activated Protein Kinase 2) is crucially involved in HNSCC progression. Increased disease burden and lacuna of targeted therapies require novel and safe pharmacological inhibitors to suppress the well-explored molecular targets in HNSCC. Here, we used dibromo-substituted benzosuberene synthesized from the mixture of α, β, γ-himachalenes and utilized as a precursor for the synthesis of Pyrrolone-fused benzosuberenes (PfBS) as MK2 inhibitors through aminocarbonylation approach in a single-pot reaction. The devised protocol provides a broad substrate scope, facile recovery, recyclability of Polystyrene-supported palladium (Pd@PS) nanoparticle catalyst, and fewer synthesis steps. In-silico molecular docking, pharmacophore modeling, and ADMET revealed MK2-inhibitory potential and drug-likeliness of PfBS analogues. Surface plasmon resonance (SPR) analysis revealed effective high binding affinity (KD) and kinetics of PfBS analogues with MK2. Additionally, the SPR-mediated in-solution inhibition assay established the MK2-inhibition properties of PfBS analogues through abrogation of MK2-Hsp27 interaction. Further, in-vitro studies validate the findings in HNSCC cells. PfBS analogues exhibited significant anti-proliferative effects on CAL 27 tongue squamous carcinoma cells and were found safe on IEC-6 intestinal epithelial cells. Moreover, immunofluorescence analysis and western-blot assays potentiated, that selected analogues inhibited the inflammatory cytokine TNF-α induced activation of MK2 on cellular and molecular levels in HNSCC cells. In conclusion, this study presents novel MK2-inhibitors and opens the avenue for further pre-clinical and clinical efficacy evaluation of developed PfBS analogues in the treatment of HNSCC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yamini
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prince Anand
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
| | - Vijay Kumar Bhardwaj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India
| | - Ashish Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yogendra Padwad
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
| |
Collapse
|