1
|
Pradeep Kumar AK, Santra S, Ghosh D. Photophysics of Nitro-Substituted Unnatural Nucleic Acid Base. J Phys Chem A 2024; 128:9551-9558. [PMID: 39471278 DOI: 10.1021/acs.jpca.4c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The unnatural nucleic acid base (uNAB), 6-amino-3-methyl-5-nitropyridin-2(1H)one, often referred to as Z can form a base pair with the uNAB 2-aminoimidazo[1,2-a]-1,3,5-triazin-4(8H)-one (referred to as P) and is analogous to a guanine-cytosine (G-C) pair. However, it is well-known that the nonradiative decay pathway of the P-Z pair is significantly different from that of the G-C pair (Cui et al., Front. Chem. 2020, 8, 605117-605125). In this work, we study the excited state processes in Z using state-of-the-art multireference methods and dynamical techniques to ascertain the predominant nonradiative channels. We find that unlike in the natural NABs, the excited state processes in Z are driven primarily by the -NO2 group rotation. The electron-withdrawing effect of the -NO2 substituent plays a crucial role. We further ascertained that ultrafast deactivation channels are possible in Z and identified the stationary point geometries that are responsible for these channels.
Collapse
Affiliation(s)
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Cao B, Zheng Y, Shao Q, Liu Z, Xie L, Zhao Y, Wang B, Zhang Q, Wei X. Efficient data reconstruction: The bottleneck of large-scale application of DNA storage. Cell Rep 2024; 43:113699. [PMID: 38517891 DOI: 10.1016/j.celrep.2024.113699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 03/24/2024] Open
Abstract
Over the past decade, the rapid development of DNA synthesis and sequencing technologies has enabled preliminary use of DNA molecules for digital data storage, overcoming the capacity and persistence bottlenecks of silicon-based storage media. DNA storage has now been fully accomplished in the laboratory through existing biotechnology, which again demonstrates the viability of carbon-based storage media. However, the high cost and latency of data reconstruction pose challenges that hinder the practical implementation of DNA storage beyond the laboratory. In this article, we review existing advanced DNA storage methods, analyze the characteristics and performance of biotechnological approaches at various stages of data writing and reading, and discuss potential factors influencing DNA storage from the perspective of data reconstruction.
Collapse
Affiliation(s)
- Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China; Centre for Frontier AI Research, Agency for Science, Technology, and Research (A(∗)STAR), 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China
| | - Qi Shao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Zhenlu Liu
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Lei Xie
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Yunzhu Zhao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China.
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China
| |
Collapse
|
3
|
Cerdán L, Álvarez B, Fernández LÁ. Massive integration of large gene libraries in the chromosome of Escherichia coli. Microb Biotechnol 2024; 17:e14367. [PMID: 37971317 PMCID: PMC10832519 DOI: 10.1111/1751-7915.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Large gene libraries are frequently created in Escherichia coli plasmids, which can induce cell toxicity and expression instability due to the high gene dosage. To address these limitations, gene libraries can be integrated in a single copy into the bacterial chromosome. Here, we describe an efficient system for the massive integration (MAIN) of large gene libraries in the E. coli chromosome that generates in-frame gene fusions that are expressed stably. MAIN uses a thermosensitive integrative plasmid that is linearized in vivo to promote extensive integration of the gene library via homologous recombination. Positive and negative selections efficiently remove bacteria lacking gene integration in the target site. We tested MAIN with a library of 107 VHH genes that encode nanobodies (Nbs). The integration of VHH genes into a custom target locus of the E. coli chromosome enabled stable expression and surface display of the Nbs. Next-generation DNA sequencing confirmed that MAIN preserved the diversity of the gene library after integration. Finally, we screened the integrated library to select Nbs that bind a specific antigen using magnetic and fluorescence-activated cell sorting. This allowed us to identify Nbs binding the epidermal growth factor receptor that were not previously isolated in a similar screening of a multicopy plasmid library. Our results demonstrate that MAIN enables large gene library integration into the E. coli chromosome, creating stably expressed in-frame fusions for functional screening.
Collapse
Affiliation(s)
- Lidia Cerdán
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Beatriz Álvarez
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Luis Ángel Fernández
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
4
|
Zhao Y, Cao B, Wang P, Wang K, Wang B. DBTRG: De Bruijn Trim rotation graph encoding for reliable DNA storage. Comput Struct Biotechnol J 2023; 21:4469-4477. [PMID: 37736298 PMCID: PMC10510065 DOI: 10.1016/j.csbj.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
DNA is a high-density, long-term stable, and scalable storage medium that can meet the increased demands on storage media resulting from the exponential growth of data. The existing DNA storage encoding schemes tend to achieve high-density storage but do not fully consider the local and global stability of DNA sequences and the read and write accuracy of the stored information. To address these problems, this article presents a graph-based De Bruijn Trim Rotation Graph (DBTRG) encoding scheme. Through XOR between the proposed dynamic binary sequence and the original binary sequence, k-mers can be divided into the De Bruijn Trim graph, and the stored information can be compressed according to the overlapping relationship. The simulated experimental results show that DBTRG ensures base balance and diversity, reduces the likelihood of undesired motifs, and improves the stability of DNA storage and data recovery. Furthermore, the maintenance of an encoding rate of 1.92 while storing 510 KB images and the introduction of novel approaches and concepts for DNA storage encoding methods are achieved.
Collapse
Affiliation(s)
- Yunzhu Zhao
- The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian, Liaoning 116622, China
| | - Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Penghao Wang
- The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian, Liaoning 116622, China
| | - Kun Wang
- The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian, Liaoning 116622, China
| | - Bin Wang
- The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian, Liaoning 116622, China
| |
Collapse
|