1
|
Khan I, Arif M, Ghulam A, Albaradei S, Thafar MA, Worachartcheewan A. Improved in Silico Identification of Protein-Protein Interactions Using Deep Learning Approach. IET Syst Biol 2025; 19:e70008. [PMID: 40275540 PMCID: PMC12021994 DOI: 10.1049/syb2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 02/17/2025] [Indexed: 04/26/2025] Open
Abstract
Protein-protein interactions (PPIs) perform significant functions in many biological activities likewise gene regulation, metabolic pathways and signal transduction. The deregulation of PPIs may cause deadly diseases, such as cancer, autoimmune, pernicious anaemia etc. Detecting PPIs can aid in elucidating the cellular process's underlying molecular mechanisms and contribute to facilitating the discovery of new proteins for the development of novel drugs. Although high-throughput wet-lab technologies have been matured to identify large scale PPI identification; however, the traditional experimental methods are costly and slow and resource intensive. To support experimental techniques, numerous computational approaches have been emerged for identifying PPIs solely from protein sequences. However, the performance of available PPI tools are unsatisfactory and gaps remain for further improvement. In this study, a novel deep learning-based model, Deep_PPI, was developed for predicting multiple species PPIs. To extract the biological features, the authors used 21D vector representing 20 kinds' native and one special amino acid residue and implemented the Keras binary profile encoding technique to formulate each residue in proteins. The binary profile use the PaddVal strategy to equalise the length of positive and negative PPIs. After extracting the features, the authors fed them into one dimension convolutional neural network to build the final prediction model. The proposed Deep_PPI model, which consider the protein pairs into two convolutional heads. Finally, the authors concatenated the two outputs were concatenated from two branches concatenated by fully connected layer. The efficiency of the proposed predictor was demonstrated both on the cross validation and tested on various species datasets, for example, that is (Human, C. elegans, E. coli, and H. sapiens). The proposed model surpassed both the machine-learning models and existing state-of-the-art PPI methods. The proposed Deep_PPI will serve as valuable tool in the discovery of large-scale PPIs in particular and provide insights for drugs development in general.
Collapse
Affiliation(s)
- Irfan Khan
- Department of Computer ScienceAbdul Wali Khan University MardanKPKMardanPakistan
| | - Muhammad Arif
- College of Science and EngineeringHamad Bin Khalifa UniversityDohaQatar
| | - Ali Ghulam
- Information Technology CentreSindh Agriculture UniversityTandojamPakistan
| | - Somayah Albaradei
- Department of Computer ScienceFaculty of Computing and Information TechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Maha A. Thafar
- Department of Computer ScienceCollege of Computers and Information TechnologyTaif UniversityTaifSaudi Arabia
| | - Apilak Worachartcheewan
- Department of Community Medical TechnologyFaculty of Medical TechnologyMahidol UniversityBangkokThailand
| |
Collapse
|
2
|
Wu CY, Xu ZX, Li N, Qi DY, Hao ZH, Wu HY, Gao R, Jin YT. Accurately identifying positive and negative regulation of apoptosis using fusion features and machine learning methods. Comput Biol Chem 2024; 113:108207. [PMID: 39265463 DOI: 10.1016/j.compbiolchem.2024.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Apoptotic proteins play a crucial role in the apoptosis process, ensuring a balance between cell proliferation and death. Thus, further elucidating the regulatory mechanisms of apoptosis will enhance our understanding of their functions. However, the development of computational methods to accurately identify positive and negative regulation of apoptosis remains a significant challenge. This work proposes a machine learning model based on multi-feature fusion to effectively identify the roles of positive and negative regulation of apoptosis. Initially, we constructed a reliable benchmark dataset containing 200 positive regulation of apoptosis and 241 negative regulation of apoptosis proteins. Subsequently, we developed a classifier that combines the support vector machine (SVM) with pseudo composition of k-spaced amino acid pairs (PseCKSAAP), composition transition distribution (CTD), dipeptide deviation from expected mean (DDE), and PSSM-composition to identify these proteins. Analysis of variance (ANOVA) was employed to select optimized features that could yield the maximum prediction performance. Evaluating the proposed model on independent data revealed and achieved an accuracy of 0.781 with an AUROC of 0.837, demonstrating our model's potent capabilities.
Collapse
Affiliation(s)
- Cheng-Yan Wu
- Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teacher's College, Baotou 014010, China.
| | - Zhi-Xue Xu
- Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teacher's College, Baotou 014010, China.
| | - Nan Li
- Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teacher's College, Baotou 014010, China.
| | - Dan-Yang Qi
- Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teacher's College, Baotou 014010, China.
| | - Zhi-Hong Hao
- Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teacher's College, Baotou 014010, China.
| | - Hong-Ye Wu
- Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teacher's College, Baotou 014010, China.
| | - Ru Gao
- The People's Hospital of Wenjiang, Chengdu, Sichuan 611130, China.
| | - Yan-Ting Jin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
3
|
Iqbal MS, Belal Bin Heyat M, Parveen S, Ammar Bin Hayat M, Roshanzamir M, Alizadehsani R, Akhtar F, Sayeed E, Hussain S, Hussein HS, Sawan M. Progress and trends in neurological disorders research based on deep learning. Comput Med Imaging Graph 2024; 116:102400. [PMID: 38851079 DOI: 10.1016/j.compmedimag.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
In recent years, deep learning (DL) has emerged as a powerful tool in clinical imaging, offering unprecedented opportunities for the diagnosis and treatment of neurological disorders (NDs). This comprehensive review explores the multifaceted role of DL techniques in leveraging vast datasets to advance our understanding of NDs and improve clinical outcomes. Beginning with a systematic literature review, we delve into the utilization of DL, particularly focusing on multimodal neuroimaging data analysis-a domain that has witnessed rapid progress and garnered significant scientific interest. Our study categorizes and critically analyses numerous DL models, including Convolutional Neural Networks (CNNs), LSTM-CNN, GAN, and VGG, to understand their performance across different types of Neurology Diseases. Through particular analysis, we identify key benchmarks and datasets utilized in training and testing DL models, shedding light on the challenges and opportunities in clinical neuroimaging research. Moreover, we discuss the effectiveness of DL in real-world clinical scenarios, emphasizing its potential to revolutionize ND diagnosis and therapy. By synthesizing existing literature and describing future directions, this review not only provides insights into the current state of DL applications in ND analysis but also covers the way for the development of more efficient and accessible DL techniques. Finally, our findings underscore the transformative impact of DL in reshaping the landscape of clinical neuroimaging, offering hope for enhanced patient care and groundbreaking discoveries in the field of neurology. This review paper is beneficial for neuropathologists and new researchers in this field.
Collapse
Affiliation(s)
- Muhammad Shahid Iqbal
- Department of Computer Science and Information Technology, Women University of Azad Jammu & Kashmir, Bagh, Pakistan.
| | - Md Belal Bin Heyat
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| | - Saba Parveen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | - Mohamad Roshanzamir
- Department of Computer Engineering, Faculty of Engineering, Fasa University, Fasa, Iran.
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, VIC 3216, Australia.
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Eram Sayeed
- Kisan Inter College, Dhaurahara, Kushinagar, India.
| | - Sadiq Hussain
- Department of Examination, Dibrugarh University, Assam 786004, India.
| | - Hany S Hussein
- Electrical Engineering Department, Faculty of Engineering, King Khalid University, Abha 61411, Saudi Arabia; Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81528, Egypt.
| | - Mohamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Arif M, Musleh S, Fida H, Alam T. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation. Sci Rep 2024; 14:16992. [PMID: 39043738 PMCID: PMC11266708 DOI: 10.1038/s41598-024-67433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Anticancer peptides (ACPs) perform a promising role in discovering anti-cancer drugs. The growing research on ACPs as therapeutic agent is increasing due to its minimal side effects. However, identifying novel ACPs using wet-lab experiments are generally time-consuming, labor-intensive, and expensive. Leveraging computational methods for fast and accurate prediction of ACPs would harness the drug discovery process. Herein, a machine learning-based predictor, called PLMACPred, is developed for identifying ACPs from peptide sequence only. PLMACPred adopted a set of encoding schemes representing evolutionary-property, composition-property, and protein language model (PLM), i.e., evolutionary scale modeling (ESM-2)- and ProtT5-based embedding to encode peptides. Then, two-dimensional (2D) wavelet denoising (WD) was employed to remove the noise from extracted features. Finally, ensemble-based cascade deep forest (CDF) model was developed to identify ACP. PLMACPred model attained superior performance on all three benchmark datasets, namely, ACPmain, ACPAlter, and ACP740 over tenfold cross validation and independent dataset. PLMACPred outperformed the existing models and improved the prediction accuracy by 18.53%, 2.4%, 7.59% on ACPmain, ACPalter, ACP740 dataset, respectively. We showed that embedding from ProtT5 and ESM-2 was capable of capturing better contextual information from the entire sequence than the other encoding schemes for ACP prediction. For the explainability of proposed model, SHAP (SHapley Additive exPlanations) method was used to analyze the feature effect on the ACP prediction. A list of novel sequence motifs was proposed from the ACP sequence using MEME suites. We believe, PLMACPred will support in accelerating the discovery of novel ACPs as well as other activities of microbial peptides.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Saleh Musleh
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Huma Fida
- Department of Microbiology, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
5
|
Zhang L, Xiao K, Wang X, Kong L. A novel fusion technology utilizing complex network and sequence information for FAD-binding site identification. Anal Biochem 2024; 685:115401. [PMID: 37981176 DOI: 10.1016/j.ab.2023.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Flavin adenine dinucleotide (FAD) binding sites play an increasingly important role as useful targets for inhibiting bacterial infections. To reveal protein topological structural information as a reasonable complement for the identification FAD-binding sites, we designed a novel fusion technology according to sequence and complex network. The specially designed feature vectors were combined and fed into CatBoost for model construction. Moreover, due to the minority class (positive samples) is more significant for biological researches, a random under-sampling technique was applied to solve the imbalance. Compared with the previous methods, our methods achieved the best results for two independent test datasets. Especially, the MCC obtained by FADsite and FADsite_seq were 14.37 %-53.37 % and 21.81 %-60.81 % higher than the results of existing methods on Test6; and they showed improvements ranging from 6.03 % to 21.96 % and 19.77 %-35.70 % on Test4. Meanwhile, statistical tests show that our methods significantly differ from the state-of-the-art methods and the cross-entropy loss shows that our methods have high certainty. The excellent results demonstrated the effectiveness of using sequence and complex network information in identifying FAD-binding sites. It may be complementary to other biological studies. The data and resource codes are available at https://github.com/Kangxiaoneuq/FADsite.
Collapse
Affiliation(s)
- Lichao Zhang
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, PR China; Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, PR China
| | - Kang Xiao
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, PR China
| | - Xueting Wang
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, PR China
| | - Liang Kong
- Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, PR China; School of Mathematics and Information Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, PR China.
| |
Collapse
|
6
|
Liu T, Song C, Wang C. NCSP-PLM: An ensemble learning framework for predicting non-classical secreted proteins based on protein language models and deep learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:1472-1488. [PMID: 38303473 DOI: 10.3934/mbe.2024063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Non-classical secreted proteins (NCSPs) refer to a group of proteins that are located in the extracellular environment despite the absence of signal peptides and motifs. They usually play different roles in intercellular communication. Therefore, the accurate prediction of NCSPs is a critical step to understanding in depth their associated secretion mechanisms. Since the experimental recognition of NCSPs is often costly and time-consuming, computational methods are desired. In this study, we proposed an ensemble learning framework, termed NCSP-PLM, for the identification of NCSPs by extracting feature embeddings from pre-trained protein language models (PLMs) as input to several fine-tuned deep learning models. First, we compared the performance of nine PLM embeddings by training three neural networks: Multi-layer perceptron (MLP), attention mechanism and bidirectional long short-term memory network (BiLSTM) and selected the best network model for each PLM embedding. Then, four models were excluded due to their below-average accuracies, and the remaining five models were integrated to perform the prediction of NCSPs based on the weighted voting. Finally, the 5-fold cross validation and the independent test were conducted to evaluate the performance of NCSP-PLM on the benchmark datasets. Based on the same independent dataset, the sensitivity and specificity of NCSP-PLM were 91.18% and 97.06%, respectively. Particularly, the overall accuracy of our model achieved 94.12%, which was 7~16% higher than that of the existing state-of-the-art predictors. It indicated that NCSP-PLM could serve as a useful tool for the annotation of NCSPs.
Collapse
Affiliation(s)
- Taigang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chen Song
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chunhua Wang
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Zulfiqar H, Ahmad RM, Raza A, Shahzad S, Lin H. Promoter Prediction in Agrobacterium tumefaciens Strain C58 by Using Artificial Intelligence Strategies. Methods Mol Biol 2024; 2844:33-44. [PMID: 39068330 DOI: 10.1007/978-1-0716-4063-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Promoters are the genomic regions upstream of genes that RNA polymerase binds in order to initiate gene transcription. Understanding the regulation of gene expression depends on being able to identify promoters, because they are the most important component of gene expression. Agrobacterium tumefaciens (A. tumefaciens) strain C58 was the subject of this study with the goal of creating a machine learning-based model to predict promoters. In this study, nucleotide density (ND), k-mer, and one-hot were used to encode the promoter sequence. Support vector machine (SVM) on fivefold cross-validation with incremental feature selection (IFS) was used to optimize the generated features. These improved characteristics were then used to distinguish promoter sequences by feeding them into the random forest (RF) classifier. Tenfold cross-validation (CV) analysis revealed that the projected model has the ability to produce an accuracy of 84.22%.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China.
| | - Ramala Masood Ahmad
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ali Raza
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China
| | - Sana Shahzad
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hao Lin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China.
| |
Collapse
|
8
|
Lin Y, Sun M, Zhang J, Li M, Yang K, Wu C, Zulfiqar H, Lai H. Computational identification of promoters in Klebsiella aerogenes by using support vector machine. Front Microbiol 2023; 14:1200678. [PMID: 37250059 PMCID: PMC10215528 DOI: 10.3389/fmicb.2023.1200678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Promoters are the basic functional cis-elements to which RNA polymerase binds to initiate the process of gene transcription. Comprehensive understanding gene expression and regulation depends on the precise identification of promoters, as they are the most important component of gene expression. This study aimed to develop a machine learning-based model to predict promoters in Klebsiella aerogenes (K. aerogenes). In the prediction model, the promoter sequences in K. aerogenes genome were encoded by pseudo k-tuple nucleotide composition (PseKNC) and position-correlation scoring function (PCSF). Numerical features were obtained and then optimized using mRMR by combining with support vector machine (SVM) and 5-fold cross-validation (CV). Subsequently, these optimized features were inputted into SVM-based classifier to discriminate promoter sequences from non-promoter sequences in K. aerogenes. Results of 10-fold CV showed that the model could yield the overall accuracy of 96.0% and the area under the ROC curve (AUC) of 0.990. We hope that this model will provide help for the study of promoter and gene regulation in K. aerogenes.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Meili Sun
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Junjie Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingyan Li
- Chifeng Product Quality Inspection and Testing Centre, Chifeng, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Chengyan Wu
- Baotou Teacher’s College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China
| | - Hongyan Lai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
9
|
Zulfiqar H, Ahmed Z, Kissanga Grace-Mercure B, Hassan F, Zhang ZY, Liu F. Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique. Front Microbiol 2023; 14:1170785. [PMID: 37125199 PMCID: PMC10133480 DOI: 10.3389/fmicb.2023.1170785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Promotors are those genomic regions on the upstream of genes, which are bound by RNA polymerase for starting gene transcription. Because it is the most critical element of gene expression, the recognition of promoters is crucial to understand the regulation of gene expression. This study aimed to develop a machine learning-based model to predict promotors in Agrobacterium tumefaciens (A. tumefaciens) strain C58. In the model, promotor sequences were encoded by three different kinds of feature descriptors, namely, accumulated nucleotide frequency, k-mer nucleotide composition, and binary encodings. The obtained features were optimized by using correlation and the mRMR-based algorithm. These optimized features were inputted into a random forest (RF) classifier to discriminate promotor sequences from non-promotor sequences in A. tumefaciens strain C58. The examination of 10-fold cross-validation showed that the proposed model could yield an overall accuracy of 0.837. This model will provide help for the study of promoters in A. tumefaciens C58 strain.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zahoor Ahmed
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Bakanina Kissanga Grace-Mercure
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Farwa Hassan
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao-Yue Zhang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fen Liu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Hospital, Hohhot, China
| |
Collapse
|