1
|
Raajaraam L, Raman K. COmmunity and Single Microbe Optimisation System (COSMOS). NPJ Syst Biol Appl 2025; 11:51. [PMID: 40399328 PMCID: PMC12095823 DOI: 10.1038/s41540-025-00534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025] Open
Abstract
Bioprocessing utilises microbial monocultures and communities to convert renewable resources into valuable products. While monocultures offer simplicity, communities provide metabolic diversity and cooperative biosynthesis. To systematically evaluate these systems, we developed COmmunity and Single Microbe Optimisation System (COSMOS), a dynamic computational framework that simulates and compares monocultures and co-cultures to determine optimal microbial systems tailored to a specific environment. COSMOS revealed key factors shaping biosynthetic performance, such as environmental conditions, microbial interactions, and carbon sources. Notably, it predicted the Shewanella oneidensis-Klebsiella pneumoniae co-culture as the most efficient producer of 1,3-propanediol under anaerobic conditions, aligning closely with experimental data, including optimal carbon source concentrations and inoculum ratios. Additional findings highlight the resilience of microbial communities in nutrient-limited processes and emphasise the role of computational tools in balancing productivity with operational simplicity. Overall, this study advances the rational design of microbial systems, paving the way for sustainable bioprocesses and circular bio-economies.
Collapse
Affiliation(s)
- Lavanya Raajaraam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Wadhwani School of Data Science and AI, IIT Madras, Chennai, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India.
- Centre for Integrative Biology and Systems mEdicine (IBSE), Wadhwani School of Data Science and AI, IIT Madras, Chennai, India.
- Department of Data Science and AI, Wadhwani School of Data Science and AI, IIT Madras, Chennai, India.
| |
Collapse
|
2
|
Tironi LS, Carletto LB, Silva EO, Schripsema J, Luiz JHH. Endophytic Fungi Co-Culture: An Alternative Source of Antimicrobial Substances. Microorganisms 2024; 12:2413. [PMID: 39770616 PMCID: PMC11677400 DOI: 10.3390/microorganisms12122413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Antimicrobial resistance is becoming a critical issue due to the widespread and indiscriminate use of antibiotics and antifungals to treat common infections, leading to a growing shortage of effective drugs. Moreover, the increase in antimicrobial resistance is enhancing the pathogenicity and virulence of various pathogens. Microorganisms are key sources of chemically diverse specialized metabolites, which are produced in the final stages of their growth cycle. These metabolites hold significant value in chemical, pharmaceutical, and agrochemical industries. One of the major challenges researchers face in this field is the frequent isolation of already-known substances when classical protocols are used. To address this, several innovative strategies have been developed. The co-culture approach is a powerful tool for activating silent biosynthetic gene clusters, as it simulates natural microbial environments by creating artificial microbial communities. This method has shown promising results, with new compounds being isolated and the yields of target substances being improved. In this context, this review provides examples of antimicrobial compounds obtained from co-cultures of endophytic fungi, conducted in both liquid and solid media. Additionally, the review discusses the advantages and challenges of the co-culture technique. Significance and Impact of the Study: Microbial co-culture is a valuable strategy for discovering new natural products with antimicrobial activity, as well as for scaling up the production of target substances. This review aims to summarize important examples of endophyte co-cultures and highlights the potential of endophytic fungi co-culture for pharmacological applications.
Collapse
Affiliation(s)
- Lucas Silva Tironi
- Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (L.S.T.); (L.B.C.)
| | - Lucilene Bento Carletto
- Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (L.S.T.); (L.B.C.)
| | - Eliane Oliveira Silva
- Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador 40170-115, BA, Brazil;
| | - Jan Schripsema
- Metabolomics Group, Laboratory of Chemical Sciences, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, RJ, Brazil
| | | |
Collapse
|
3
|
Newman DJ. Something 'Old, New, Borrowed, or Blue', the Search for Mother Nature's Bioactive Agents. Curr Opin Biotechnol 2024; 88:103162. [PMID: 38917764 DOI: 10.1016/j.copbio.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
In the following examples, the time frames and ultimate results are measured in years, not days or months. In particular, the application of genetic techniques to complex systems requires many investigators and a multitude of false leads. The areas chosen are all related to the identification and use of techniques from many scientific fields. Except for the necessity of describing the many years of work required to identify and then utilize the genetic information from yet uncultivated microbes, and identifying the true sources of the dolastatins, the rest of the examples are quite short with commentaries on most of the references given.
Collapse
|
4
|
Atasoy M, Scott WT, Regueira A, Mauricio-Iglesias M, Schaap PJ, Smidt H. Biobased short chain fatty acid production - Exploring microbial community dynamics and metabolic networks through kinetic and microbial modeling approaches. Biotechnol Adv 2024; 73:108363. [PMID: 38657743 DOI: 10.1016/j.biotechadv.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
In recent years, there has been growing interest in harnessing anaerobic digestion technology for resource recovery from waste streams. This approach has evolved beyond its traditional role in energy generation to encompass the production of valuable carboxylic acids, especially volatile fatty acids (VFAs) like acetic acid, propionic acid, and butyric acid. VFAs hold great potential for various industries and biobased applications due to their versatile properties. Despite increasing global demand, over 90% of VFAs are currently produced synthetically from petrochemicals. Realizing the potential of large-scale biobased VFA production from waste streams offers significant eco-friendly opportunities but comes with several key challenges. These include low VFA production yields, unstable acid compositions, complex and expensive purification methods, and post-processing needs. Among these, production yield and acid composition stand out as the most critical obstacles impacting economic viability and competitiveness. This paper seeks to offer a comprehensive view of combining complementary modeling approaches, including kinetic and microbial modeling, to understand the workings of microbial communities and metabolic pathways in VFA production, enhance production efficiency, and regulate acid profiles through the integration of omics and bioreactor data.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Department of Environmental Technology, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| | - William T Scott
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Alberte Regueira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, Belgium.
| | - Miguel Mauricio-Iglesias
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Peter J Schaap
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Hauke Smidt
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|