1
|
Czyrek AA, Baran K, Hruba E, Horackova A, Bosakova V, Chudzian J, Fafilek B, Laskova V, Stepankova V, Bednar D, Karl K, Kasparek P, Bosakova M, Killinger M, Szotkowska T, Prochazka J, Zieba JT, Rico-Llanos G, Fric J, Hadzic S, Loku E, Wujak M, Svozilova K, Stroblova M, Sedlacek R, Hristova K, Krakow D, Kubovciak J, Delattre M, Bartoszewski R, Buchtova M, Krowarsch D, Chaloupkova R, Zakrzewska M, Krejci P. Increased thermal stability of FGF10 leads to ectopic signaling during development. Cell Mol Life Sci 2025; 82:167. [PMID: 40257501 PMCID: PMC12011707 DOI: 10.1007/s00018-025-05681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Fibroblast growth factors (FGFs) control organ morphogenesis during development as well as tissue homeostasis and repair in the adult organism. Despite their importance, many mechanisms that regulate FGF function are still poorly understood. Interestingly, the thermodynamic stability of 22 mammalian FGFs varies widely, with some FGFs remaining stable at body temperature for more than 24 h, while others lose their activity within minutes. How thermodynamic stability contributes to the function of FGFs during development remains unknown. Here we show that FGF10, an important limb and lung morphogen, exists as an intrinsically unstable protein that is prone to unfolding and is rapidly inactivated at 37 °C. Using rationally driven directed mutagenesis, we have developed several highly stable (STAB) FGF10 variants with a melting temperature of over 19 °C more than that of wildtype FGF10. In cellular assays in vitro, the FGF10-STABs did not differ from wildtype FGF10 in terms of binding to FGF receptors, activation of downstream FGF receptor signaling in cells, and induction of gene expression. In mouse embryonal lung explants, FGF10-STABs, but not wildtype FGF10, suppressed branching, resulting in increased alveolarization and expansion of epithelial tissue. Similarly, FGF10-STAB1, but not FGF10 wildtype, inhibited the growth of mouse embryonic tibias and markedly altered limb morphogenesis when implanted into chicken limb buds, collectively demonstrating that thermal instability should be considered an important regulator of FGF function that prevents ectopic signaling. Furthermore, we show enhanced differentiation of human iPSC-derived lung organoids and improved regeneration in ex vivo lung injury models mediated by FGF10-STABs, suggesting an application in cell therapy.
Collapse
Affiliation(s)
- Aleksandra A Czyrek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Karolina Baran
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | | | - Veronika Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
| | - Julia Chudzian
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | | | | | - David Bednar
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Enantis Ltd, Brno, 62500, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Petr Kasparek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, 25250, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Michal Killinger
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Tereza Szotkowska
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Jan Prochazka
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, 25250, Czech Republic
| | - Jennifer T Zieba
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California Los Angeles, California Los Angeles, CA, 90095, USA
| | - Gustavo Rico-Llanos
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
| | - Jan Fric
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, 12800, Czech Republic
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392, Giessen, Germany
| | - Edma Loku
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392, Giessen, Germany
| | - Magdalena Wujak
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392, Giessen, Germany
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Bydgoszcz, 85-089, Poland
| | - Katerina Svozilova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Michaela Stroblova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
| | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, 25250, Czech Republic
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California Los Angeles, California Los Angeles, CA, 90095, USA
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14200, Czech Republic
| | - Mathys Delattre
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14200, Czech Republic
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Daniel Krowarsch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Radka Chaloupkova
- Enantis Ltd, Brno, 62500, Czech Republic.
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic.
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic.
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic.
| |
Collapse
|
2
|
de La Bourdonnaye G, Ghazalova T, Fojtik P, Kutalkova K, Bednar D, Damborsky J, Rotrekl V, Stepankova V, Chaloupkova R. Computer-aided engineering of stabilized fibroblast growth factor 21. Comput Struct Biotechnol J 2024; 23:942-951. [PMID: 38379823 PMCID: PMC10877085 DOI: 10.1016/j.csbj.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
FGF21 is an endocrine signaling protein belonging to the family of fibroblast growth factors (FGFs). It has emerged as a molecule of interest for treating various metabolic diseases due to its role in regulating glucogenesis and ketogenesis in the liver. However, FGF21 is prone to heat, proteolytic, and acid-mediated degradation, and its low molecular weight makes it susceptible to kidney clearance, significantly reducing its therapeutic potential. Protein engineering studies addressing these challenges have generally shown that increasing the thermostability of FGF21 led to improved pharmacokinetics. Here, we describe the computer-aided design and experimental characterization of FGF21 variants with enhanced melting temperature up to 15 °C, uncompromised efficacy at activation of MAPK/ERK signaling in Hep G2 cell culture, and ability to stimulate proliferation of Hep G2 and NIH 3T3 fibroblasts cells comparable with FGF21-WT. We propose that stabilizing the FGF21 molecule by rational design should be combined with other reported stabilization strategies to maximize the pharmaceutical potential of FGF21.
Collapse
Affiliation(s)
- Gabin de La Bourdonnaye
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| | - Tereza Ghazalova
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| | - Petr Fojtik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - David Bednar
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiri Damborsky
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | | | - Radka Chaloupkova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| |
Collapse
|