1
|
Milee M, Greeshma SP, Deeksha W, Rajakumara E. Regulatory and Catalytic Domains of Poly(ADP-ribose) Polymerases Cross-Complement for DNA-Break-Dependent Allosteric Stimulation of Catalytic Activity. ACS Chem Biol 2025; 20:607-619. [PMID: 39935093 DOI: 10.1021/acschembio.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Allosteric regulation is achieved by regulatory domains that sense stimuli and induce conformational changes in the functional domain that performs the catalytic activity of the enzyme. Poly-ADP-ribose polymerases (PARPs) are modular enzymes present across all domains of life including Archaea, Bacteria, and Eukarya. A typical domain architecture of PARPs consists of a conserved C-terminal catalytic domain (CAT) associated with multiple distinct N-terminal sensory and/or regulatory domains which together serve as regulatory region (REG). In this study, we investigated whether REG of different orthologs and paralogs of PARPs from mammals (hPARP1 and hPARP2), plants (atPARP2), and bacteria (haPARP) can assemble with CAT of each other to generate functional chimeric assemblies. We have employed qualitative and quantitative enzyme activity assays along with binding studies to examine these in vitro chimeric assemblies. The cis-complemented REG and CAT of hPARP2 exhibited micromolar binding affinity, suggesting that these domains can interact independent of allosteric ligands. Also, our results show that REG and CAT of PARP proteins can assemble in a functionally active conformation in the presence of DNA implying that REG and CAT are not required to be present on a single polypeptide for catalytic activity stimulation. Interestingly, only CAT of atPARP2 displayed functional complementation with REG of the other studied PARPs. Conversely, REG of hPARP1 and atPARP2 failed to cross-complement CAT of other PARPs while REG of hPARP2 showed robust cross-complementation. Our novel studies on chimeric PARP assemblies can be developed as a powerful synthetic biology tool to interrogate and control their activities in living cells. In addition, by co-engineering non-complementing REG and CAT domains of different PARPs, new functional chimeric PARPs can be developed for selective allosteric ligand-dependent regulation of PARP systems. Furthermore, our study can facilitate the understanding of the coevolution of REG and CAT domains in PARP enzymes.
Collapse
Affiliation(s)
- Makwana Milee
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Shanavas P Greeshma
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Waghela Deeksha
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
2
|
Ekambaram S, Arakelov G, Dokholyan NV. The Evolving Landscape of Protein Allostery: From Computational and Experimental Perspectives. J Mol Biol 2025:169060. [PMID: 40043838 DOI: 10.1016/j.jmb.2025.169060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Protein allostery is a fundamental biological regulatory mechanism that allows communication between distant locations within a protein, modifying its function in response to signals. Experimental techniques, such as NMR spectroscopy and cryo-electron microscopy (cryo-EM), are critical validation tools for computational predictions and provide valuable insights into dynamic conformational changes. Combining these approaches has greatly improved our understanding of classical conformational allostery and complex dynamic coupling mechanisms. Recent advances in machine learning and enhanced sampling methods have broadened the scope of allostery research, identifying cryptic allosteric sites and directing new drug discovery approaches. Despite progress, bridging static structural data with dynamic functional states remains challenging. This review underscores the importance of combining experimental and computational approaches to comprehensively understand protein allostery and its diverse applications in biology and medicine.
Collapse
Affiliation(s)
- Srinivasan Ekambaram
- Department of Neuroscience and Experimental Therapeutics, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Grigor Arakelov
- Department of Neuroscience and Experimental Therapeutics, Penn State College of Medicine, Hershey, PA 17033, USA; Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| | - Nikolay V Dokholyan
- Department of Neuroscience and Experimental Therapeutics, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Chemistry, Penn State University, University Park, PA 16802, USA; Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
Li R, He X, Wu C, Li M, Zhang J. Advances in structure-based allosteric drug design. Curr Opin Struct Biol 2025; 90:102974. [PMID: 39736214 DOI: 10.1016/j.sbi.2024.102974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025]
Abstract
The identification of allosteric binding sites forms a critical connection between structural and computational biology, substantially advancing the discovery of allosteric drugs. However, the prevailing strategies for allosteric drug development predominantly rely on high-throughput screening, which suffers from high failure rates due to a limited understanding of allosteric mechanisms. This review collects insights from case studies on allosteric mechanisms, protein structure databases and computation algorithm developments, aiming to enhance our comprehension of allostery and guide more effective allosteric drug development. A crucial element in this area is the integration of structural biology with computational biology, which is vital for translating three-dimensional structural datasets into available drug discovery knowledge. These datasets and AI algorithms underpin the establishment of the allosteric binding site identification leading to structure-activity relationships (SARs) and are fueling the development of computational algorithms tailored for allosteric proteins, thereby driving forward the field of allosteric drug discovery.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinheng He
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengwei Wu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development, and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptides & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
4
|
Tatulian SA. Analysis of protein-protein and protein-membrane interactions by isotope-edited infrared spectroscopy. Phys Chem Chem Phys 2024; 26:21930-21953. [PMID: 39108200 DOI: 10.1039/d4cp01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The objective of this work is to highlight the power of isotope-edited Fourier transform infrared (FTIR) spectroscopy in resolving important problems encountered in biochemistry, biophysics, and biomedical research, focusing on protein-protein and protein membrane interactions that play key roles in practically all life processes. An overview of the effects of isotope substitutions in (bio)molecules on spectral frequencies and intensities is given. Data are presented demonstrating how isotope-labeled proteins and/or lipids can be used to elucidate enzymatic mechanisms, the mode of membrane binding of peripheral proteins, regulation of membrane protein function, protein aggregation, and local and global structural changes in proteins during functional transitions. The use of polarized attenuated total reflection FTIR spectroscopy to identify the spatial orientation and the secondary structure of a membrane-bound interfacial enzyme and the mode of lipid hydrolysis is described. Methods of production of site-directed, segmental, and domain-specific labeling of proteins by the synthetic, semisynthetic, and recombinant strategies, including advanced protein engineering technologies such as nonsense suppression and frameshift quadruplet codons are overviewed.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
5
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|