1
|
Freitas R, Felipe S, Pacheco C, Faria E, Martins J, Fortes J, Silva D, Oliveira P, Ceccatto V. Loss of miRNA-Mediated VEGFA Regulation by SNP-Induced Impairment: A Bioinformatic Analysis in Diabetic Complications. Biomedicines 2025; 13:1192. [PMID: 40427019 PMCID: PMC12109573 DOI: 10.3390/biomedicines13051192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: MicroRNAs (miRNAs) are molecules involved in biological regulation processes, including type 2 diabetes and its complications development. Single nucleotide polymorphisms (SNPs) can alter miRNA mechanisms, resulting in loss or gain effects. VEGFA is recognized for its role in angiogenesis. However, its overexpression can lead to deleterious effects, such as disorganized and inefficient vasculature. Under hyperglycemic conditions, VEGFA expression seems to increase, which may contribute to the development of microvascular and macrovascular diabetic complications. Several miRNAs are associated with VEGFA regulation and seem to act in the prevention of dysregulated expression. This study aimed to investigate SNPs in miRNA regions related to the loss effect in VEGFA regulation, examining their frequency and potential physiological effects in the development of diabetic complications. Methods: VEGFA-targeting miRNAs were identified using the R package multimiR, with validated and predicted results. Tissue expression analysis and SNP search were data-mined with Python 3 for miRNASNP-v3 SNP raw databases. Allele frequencies were obtained from dbSNP. The miRNA-mRNA interaction comparison was obtained in the miRmap tool through Python 3. MalaCards were used to infer physiological disease association. Results: The variant rs371699284 was selected in hsa-miR-654-3p among 103 potential VEGFA-targeting miRNAs. This selected SNP demonstrated promising results in bioinformatics predictions, tissue-specific expression, and population frequency, highlighting its potential role in miRNA regulation and the resulting loss in VEGFA-silencing efficiency. Conclusions: Our findings suggest that carriers of rs1238947970 may increase susceptibility to diabetic microvascular and macrovascular complications. Furthermore, in vitro and in silico studies are necessary to better understand these processes.
Collapse
Affiliation(s)
- Raquel Freitas
- Laboratory of Biochemistry and Molecular Biology of UECE—LABIEX, Superior Institute of Biomedical Science—ISCB, State University of Ceará—UECE, Silas Munguba Avenue, 1700, Fortaleza 60714-903, CE, Brazil; (S.F.); (E.F.); (J.M.); (D.S.); (P.O.); (V.C.)
| | - Stela Felipe
- Laboratory of Biochemistry and Molecular Biology of UECE—LABIEX, Superior Institute of Biomedical Science—ISCB, State University of Ceará—UECE, Silas Munguba Avenue, 1700, Fortaleza 60714-903, CE, Brazil; (S.F.); (E.F.); (J.M.); (D.S.); (P.O.); (V.C.)
| | - Christina Pacheco
- Departamento de Biologia Celular e Molecular, Federal University of Paraíba—UFPB, João Pessoa 58051-900, PB, Brazil;
| | - Emmanuelle Faria
- Laboratory of Biochemistry and Molecular Biology of UECE—LABIEX, Superior Institute of Biomedical Science—ISCB, State University of Ceará—UECE, Silas Munguba Avenue, 1700, Fortaleza 60714-903, CE, Brazil; (S.F.); (E.F.); (J.M.); (D.S.); (P.O.); (V.C.)
| | - Jonathan Martins
- Laboratory of Biochemistry and Molecular Biology of UECE—LABIEX, Superior Institute of Biomedical Science—ISCB, State University of Ceará—UECE, Silas Munguba Avenue, 1700, Fortaleza 60714-903, CE, Brazil; (S.F.); (E.F.); (J.M.); (D.S.); (P.O.); (V.C.)
| | - Jefferson Fortes
- Laboratory of Biochemistry and Molecular Biology of UECE—LABIEX, Superior Institute of Biomedical Science—ISCB, State University of Ceará—UECE, Silas Munguba Avenue, 1700, Fortaleza 60714-903, CE, Brazil; (S.F.); (E.F.); (J.M.); (D.S.); (P.O.); (V.C.)
| | - Denner Silva
- Laboratory of Biochemistry and Molecular Biology of UECE—LABIEX, Superior Institute of Biomedical Science—ISCB, State University of Ceará—UECE, Silas Munguba Avenue, 1700, Fortaleza 60714-903, CE, Brazil; (S.F.); (E.F.); (J.M.); (D.S.); (P.O.); (V.C.)
| | - Paulo Oliveira
- Laboratory of Biochemistry and Molecular Biology of UECE—LABIEX, Superior Institute of Biomedical Science—ISCB, State University of Ceará—UECE, Silas Munguba Avenue, 1700, Fortaleza 60714-903, CE, Brazil; (S.F.); (E.F.); (J.M.); (D.S.); (P.O.); (V.C.)
| | - Vania Ceccatto
- Laboratory of Biochemistry and Molecular Biology of UECE—LABIEX, Superior Institute of Biomedical Science—ISCB, State University of Ceará—UECE, Silas Munguba Avenue, 1700, Fortaleza 60714-903, CE, Brazil; (S.F.); (E.F.); (J.M.); (D.S.); (P.O.); (V.C.)
| |
Collapse
|