1
|
Chen M, An L, Zhang L, Xie X, Wang K, Niu T, Ni T, Zhao Q, Liu D. Ultra-thin Nb 2O 5 nanosheets construct 3D cross-linked architecture: Unraveling new coccine degradation pathways and toxicity changes. ENVIRONMENTAL RESEARCH 2025; 277:121571. [PMID: 40203982 DOI: 10.1016/j.envres.2025.121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
Photocatalytic technology offers a promising approach to address environmental and health challenges posed by the food colorant new coccine (NC). Nb2O5 is a notable candidate due to its stability and environmental compatibility, but faces limitations such as limited active sites and rapid charge carrier recombination. In the present study, we report a novel Nb2O5 catalyst featuring a three-dimensional (3D) cross-linked architecture constructed from ultra-thin nanosheets, with a catalyst thickness of less than 2 nm. This innovative structure offers an eminent superficial surface area combined with a substantial abundance of active sites, making it an efficient photocatalyst for the degradation of NC. The Nb2O5 3D catalyst demonstrated a remarkable degradation rate of 90.1 % for NC within just 30 min, accompanied by a rate constant of 73.5 × 10-3 min-1. This performance significantly surpasses that of three alternative Nb2O5 catalysts with varying morphologies (nanorods, nanoparticles, and nanospheres), which show rate constants more than seven times lower. Furthermore, we explore the degradation pathways associated with NC and provide a thorough examination of the toxicity changes occurring in its by-products. This work presents a promising framework for the development of advanced catalysts capable of effectively degrading NC, thereby contributing to the advancement of environmentally sustainable practices in the management of food colorants.
Collapse
Affiliation(s)
- Minghui Chen
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lei An
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Linxiu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaozhou Xie
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Kaiwei Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianqi Niu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianjun Ni
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Qian Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Dong Liu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Bilal M, Ullah W, Abbas T, Ali J, Hassan SS, Bakhsh EM, Akhtar K, Khan SB. Efficacy of activated carbon using Salvadora persica stem for remediation of potentially toxic dyes from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:757. [PMID: 39034311 DOI: 10.1007/s10661-024-12859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/22/2024] [Indexed: 07/23/2024]
Abstract
Potentially toxic dyes are introduced mainly to rivers through industrial effluents which have a high risk to human health and aquatic life. Activated carbon (AC) from the stem of Salvadora persica was synthesised to take off toxic industrial dyes from an aqueous solution. KOH was used as the activating agent throughout the preparation process for the AC. The morphology and composition of the prepared AC were studied by various analytical methods. From the overall results, it was found that the prepared AC is highly porous and thermal stability gained around 800 ℃. At room temperature, remediation of the dyes (cationic dye, methyl red and anionic dye, methylene blue) using the adsorption method was carried out to ascertain the impact of time and the quantity of AC on methylene blue (MB) and methyl red (MR) removal. During the initial 60 min, equilibrium was attained for the optimum dye concentration (200 mg/L). The data for adsorption on the AC obtained at equilibrium were examined by the Langmuir and Freundlich isotherm models. Both the isotherms accurately predicted the data, with regression values of 0.99 for MR and 0.90 for MB, respectively. The equilibrium adsorption data was also analysed by kinetic models. The adsorption data well fitted in 2nd order kinetic model. The results of MB and MR adsorption from solutions have demonstrated that the stem of Salvadora persica is one of the cheap and more eco-friendly options for remediation of toxic dyes from aqueous solutions.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Chemistry, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Wahid Ullah
- Department of Chemistry, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Tahir Abbas
- Department of Chemistry, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Javed Ali
- Department of Chemistry, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Syed Shah Hassan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Börklü Budak T. Adsorption of Basic Yellow 28 and Basic Blue 3 Dyes from Aqueous Solution Using Silybum Marianum Stem as a Low-Cost Adsorbent. Molecules 2023; 28:6639. [PMID: 37764414 PMCID: PMC10536612 DOI: 10.3390/molecules28186639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In the present study, the ability of an adsorbent (SLM Stem) obtained from the stem of the Silybum Marianum plant to treat wastewater containing the cationic dyes basic blue 3 (BB3) and basic yellow 28 (BY28) from aqueous solutions was investigated using a batch method. Then, the SLM Stem (SLM Stem-Natural) adsorbent was carbonized at different temperatures (200-900 °C) and the removal capacity of the products obtained for both dyes was examined again. The investigation continued with the product carbonized at 800 °C (SLM Stem-800 °C), the adsorbent with the highest removal capacity. The dyestuff removal studies were continued with the SLM Stem-Natural and SLM Stem-800 °C adsorbents because they had the highest removal values. The surface properties of these two adsorbents were investigated using IR, SEM, and XRD measurements. It was determined that the SLM Stem-Natural has mainly non-porous material, and the SLM Stem-800 °C has a microporous structure. The optimal values for various parameters, including adsorbent amount, initial dye solution concentration, contact time, temperature, pH, and agitation speed, were investigated for BY28 dye and were 0.05 g, 15 mg/L, 30 min, 40 °C, pH 6 and 100 rpm when SLM Stem-Natural adsorbent was used and, 0.15 g, 30 mg/L, 30 min, 40 °C, pH 10, and 150 rpm when SLM Stem-800 °C adsorbent was used. For BB3 dye, optimal parameter values of 0.20 g, 10 mg/L, 30 min, 25 °C, pH 7, and 100 rpm were obtained when SLM Stem-Natural adsorbent was used and 0.15 g, 15 mg/L, 40 min, 40 °C, pH 10, and 100 rpm when SLM Stem-800 °C adsorbent was used. The Langmuir isotherm described the adsorption process best, with a value of r2 = 0.9987. When SLM Stem-800 °C adsorbent was used for BY28 dye at 25 °C, the highest qm value in the Langmuir isotherm was 271.73 mg/g. When the study was repeated with actual water samples under optimum conditions, the highest removal for the BY28 dye was 99.9% in tap water with the SLM Stem-800 °C adsorbent. Furthermore, the reuse study showed the adsorbent's efficiency even after three repetitions.
Collapse
Affiliation(s)
- Türkan Börklü Budak
- Department of Chemistry, Faculty of Art and Science, Yildiz Technical University, 34220 Istanbul, Turkey
| |
Collapse
|
4
|
Rizwan K, Bilal M, Slimani Y, Show PL, Rtimi S, Roy A, Iqbal HM. Hydrogen-based sono-hybrid catalytic degradation and mitigation of industrially-originated dye-based pollutants. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2023; 48:6597-6612. [DOI: 10.1016/j.ijhydene.2022.03.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Alimohamadi M, Khataee A, Arefi-Oskoui S, Vahid B, Orooji Y, Yoon Y. Catalytic activation of hydrogen peroxide by Cr 2AlC MAX phase under ultrasound waves for a treatment of water contaminated with organic pollutants. ULTRASONICS SONOCHEMISTRY 2023; 93:106294. [PMID: 36640461 PMCID: PMC9852641 DOI: 10.1016/j.ultsonch.2023.106294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
This study aims to investigate the sonocatalytic activation of hydrogen peroxide (H2O2) using Cr2AlC MAX phase prepared by the reactive sintering process. The hexagonal structure of the crystalline MAX phase was confirmed by X-ray diffraction. Moreover, the compacted layered structure of the MAX phase was observed via scanning electron microscopy and high-resolution transmission electron microscopy. Under the desired operating conditions, Cr2AlC MAX phase (0.75 g/L) showed suitable potential to activate H2O2 (1 mmol/L) under sonication, thereby allowing a considerable removal efficiency for various organic pollutants, including dimethyl phthalate (69.1%), rifampin (94.5%), hydroxychloroquine (100%), and acid blue 7 (91.5%) with initial concentration of 15 mg/L within 120 min of treatment. Kinetic analysis proved that the degradation reaction followed pseudo-first-order kinetics. Scavenging tests demonstrated that hydroxyl radicals and singlet oxygen were effective species during degradation. Furthermore, a probable mechanism for dimethyl phthalate degradation was suggested according to gas chromatography-mass spectroscopy and nuclear magnetic resonance analyses. The obtained results confirmed the capability of the triple Cr2AlC/H2O2/US process as a promising method for treating contaminated water.
Collapse
Affiliation(s)
- Monireh Alimohamadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran
| | - Behrouz Vahid
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004 Jinhua, China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
6
|
Zhang Z, Ahmed AIS, Malik MZ, Ali N, Khan A, Ali F, Hassan MO, Mohamed BA, Zdarta J, Bilal M. Cellulose/inorganic nanoparticles-based nano-biocomposite for abatement of water and wastewater pollutants. CHEMOSPHERE 2023; 313:137483. [PMID: 36513201 DOI: 10.1016/j.chemosphere.2022.137483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Nanostructured materials offer a significant role in wastewater treatment with diminished capital and operational expense, low dose, and pollutant selectivity. Specifically, the nanocomposites of cellulose with inorganic nanoparticles (NPs) have drawn a prodigious interest because of the extraordinary cellulose properties, high specific surface area, and pollutant selectivity of NPs. Integrating inorganic NPs with cellulose biopolymers for wastewater treatment is a promising advantage for inorganic NPs, such as colloidal stability, agglomeration prevention, and easy isolation of magnetic material after use. This article presents a comprehensive overview of water treatment approaches following wastewater remediation by green and environmentally friendly cellulose/inorganic nanoparticles-based bio-nanocomposites. The functionalization of cellulose, functionalization mechanism, and engineered hybrid materials were thoroughly discussed. Moreover, we also highlighted the purification of wastewater through the composites of cellulose/inorganic nanoparticles via adsorption, photocatalytic and antibacterial approach.
Collapse
Affiliation(s)
- Zhen Zhang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Abdulrazaq Ibrahim Said Ahmed
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Muhammad Zeeshan Malik
- School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Mohamed Osman Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza 12613, Egypt
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| |
Collapse
|
7
|
Maxwell J, Baker BC, Faul CFJ. Controlled Removal of Organic Dyes from Aqueous Systems Using Porous Cross-Linked Conjugated Polyanilines. ACS APPLIED POLYMER MATERIALS 2023; 5:662-671. [PMID: 36660252 PMCID: PMC9841504 DOI: 10.1021/acsapm.2c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Porous organic materials, as a broad class of functional materials, offer a promising route for low-cost purification of contaminated wastewaters. We have synthesized a range of highly cross-linked conjugated porous polyanilines and optimized their porosity and water dispersibility by tuning reactant feed ratios, previously unreported in the synthesis of such networks. To demonstrate their ability to adsorb model dyes used in the textile industry, we exposed the networks to a range of cationic aromatic dyes, leading to absorption capacities of >100 mg/g, reported for the first time with respect to polyaniline networks. The versatility of the networks was further demonstrated by the preparation of gel composites, producing active gels for efficient and facile removal and recycling, ideal for real-world applications. Finally, chemical modifications of the networks were undertaken to target the removal of model anionic organic dye pollutants, showing the wide applicability of our approach.
Collapse
Affiliation(s)
- Julia
C. Maxwell
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Benjamin C. Baker
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Charl F. J. Faul
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
8
|
Azeem MK, Rizwan M, Islam A, Rasool A, Khan SM, Khan RU, Rasheed T, Bilal M, Iqbal HMN. In-house fabrication of macro-porous biopolymeric hydrogel and its deployment for adsorptive remediation of lead and cadmium from water matrices. ENVIRONMENTAL RESEARCH 2022; 214:113790. [PMID: 35809637 DOI: 10.1016/j.envres.2022.113790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
A novel adsorbent was prepared by blending chitosan (CS) and acrylic acid (AA) while using formaldehyde as a cross linker in the form of hydrogel beads. The adsorption properties of these hydrogel beads for the removal of toxic metal ions (Pb2+ and Cd2+) from aqueous solutions were evaluated. The hydrogel beads have a 3D macro-porous structure whose -NH2 groups were considered to be the dominant binding specie for Cd and Pb ions. The equilibrium adsorption capacity (qe) of beads was significantly affected by the mass ratio of sorbent and sorbate. The percentage removal of Cd and Pb ions was observed to be enhanced with the increase in sorbate concentration. The hydrogel beads maintained good adsorption properties at adsorption-desorption equilibrium. The Langmuir and Freundlich models were used to elaborate the isotherms as well as isotherm constants. Adsorption isothermal data is well explained by the Freundlich model. The data of experimental kinetics is interrelated with the second-order kinetic model, which showed that the chemical sorption phenomenon is the rate limiting step. The results of intraparticle diffusion model described the adsorption process occurred on a porous substance that proved chitosan/Formaldehyde beads to be the favorable adsorbent.
Collapse
Affiliation(s)
- Muhammad Khalid Azeem
- Institute of Polymer and Textile Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, University of Lahore, Lahore, 54000, Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Atta Rasool
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Shahzad Maqsood Khan
- Institute of Polymer and Textile Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Rafi Ullah Khan
- Institute of Polymer and Textile Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
9
|
Ali N, Gyllye EL, Duanmu C, Yang Y, Khan A, Ali F, Bilal M, Iqbal HMN. Robust bioinspired surfaces and their exploitation for petroleum hydrocarbon remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61881-61895. [PMID: 34545517 DOI: 10.1007/s11356-021-16525-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
The current improvement in science and engineering, actively dealing with surfaces and interfaces, turns into a functioning control with a thriving advancement propensity. Superlyophobic/superlyophilic phenomena in surface sciences have pulled in broad considerations of researchers and specialists. Inspired by the natural and living organism, researchers have designed different biomimetic materials with exceptional surface wettability, such as the smart wetting of asymmetric spider silk surfaces. These smart materials with superlyophobic/superlyophilic wettability are generally utilized for water assortment, self-cleaning, fluid transportation and separation, and many researchers' domains. Among them, emulsion separation, including division of oil-water blend, mixtures of immiscible liquids and oil-water emulsions, is highlighted by an increasing number of researchers. Numerous materials with one- and two-dimensional morphology, smart surfaces, and super wettability have been effectively designed and utilized in various scientific research applications. We expect that these bioinspired materials with super wettability can have promising applications in practical for emulsion destabilization and liquid transportation.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, People's Republic of China.
| | - Essoh Lionnelle Gyllye
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, People's Republic of China
| | - Chuansong Duanmu
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, People's Republic of China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, People's Republic of China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, Mexico.
| |
Collapse
|
10
|
Ali N, Funmilayo OR, Khan A, Ali F, Bilal M, Yang Y, Akhter MS, Zhou C, Wenjie Y, Iqbal HMN. Nanoarchitectonics: Porous Hydrogel as Bio-sorbent for Effective Remediation of Hazardous Contaminants. J Inorg Organomet Polym Mater 2022; 32:3301-3320. [DOI: 10.1007/s10904-022-02388-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022]
|
11
|
Recent Review of Titania-Clay-Based Composites Emerging as Advanced Adsorbents and Photocatalysts for Degradation of Dyes over the Last Decade. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3823008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Textile industry being one of the most flourishing industries keeps growing and developing every year, and the consequences are not very pleasant. Even though its contribution towards economy of a country is indisputable, there are many pros and cons associated with it that should not be brushed aside, one of them being textile dye waste which is also growing at alarming rate. Many techniques have been designed to deal with this environmental crisis including adsorption and photodegradation of dye waste by various substances, both natural and synthetic. TiO2 and clay both have gained immense popularity in this area. Over the last decade, many successful attempts have been made to design TiO2-clay-based composites to combine and make the most of their individual capabilities to degrade textile dye waste. While clay is an effective adsorbent, inexpensive, innocuous, and a great ion exchanger, TiO2 provides supplementary active sites and free radicals and speeds up the degradation rate of dyes. This review summarizes various features of TiO2-clay-based composites including their surface characteristics, their role as dye adsorbents and photocatalysts, challenges in their implementation, and modifications to overcome these challenges made over the last decade.
Collapse
|
12
|
Andries A, Feyaerts A, Mekahli D, Van Schepdael A. Quantification of allantoin and other metabolites of the purine degradation pathway in human plasma samples using a newly developed HILIC‐LC‐MS/MS method. Electrophoresis 2022; 43:1010-1018. [DOI: 10.1002/elps.202100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences Pharmaceutical Analysis KU Leuven – University of Leuven Leuven Belgium
| | - Alan Feyaerts
- Department of Pharmaceutical and Pharmacological Sciences Pharmaceutical Analysis KU Leuven – University of Leuven Leuven Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration Laboratory of Pediatrics KU Leuven – University of Leuven Leuven Belgium
- Department of Pediatric Nephrology University Hospitals Leuven Leuven Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences Pharmaceutical Analysis KU Leuven – University of Leuven Leuven Belgium
| |
Collapse
|
13
|
Chauhan G, González-González RB, Iqbal HMN. Bioremediation and decontamination potentials of metallic nanoparticles loaded nanohybrid matrices - A review. ENVIRONMENTAL RESEARCH 2022; 204:112407. [PMID: 34801543 DOI: 10.1016/j.envres.2021.112407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
The current nanotechnological advancements provide an astonishing insight to fabricate nanomaterials for nano-bioremediation purposes. Exciting characteristics possessed by hybrid matrices at the nanoscale knock endless opportunities to nano-remediate environmentally-related pollunanomaterials tants of emerging concern. Nanometals are considered among the oldest generation of the world has ever noticed. These tiny nanometals and nanometal oxides showed enormous potential in almost every extent of industrial and biotechnological domains, including their potential multipurpose approach to deal with water impurities. In this manuscript, we discussed their role in the diversity of water treatment technologies used to remove bacteria, viruses, heavy metals, pesticides, and organic impurities, providing an ample perspective on their recent advances in terms of their characteristics, attachment strategies, performance, and their scale-up challenges. Finally, we tried to explore their futuristic contribution to nano-remediate environmentally-related pollutants of emerging concern aiming to collect treated yet safe water that can be reused for multipurpose.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
14
|
Issaka E, Amu-Darko JNO, Yakubu S, Fapohunda FO, Ali N, Bilal M. Advanced catalytic ozonation for degradation of pharmaceutical pollutants-A review. CHEMOSPHERE 2022; 289:133208. [PMID: 34890622 DOI: 10.1016/j.chemosphere.2021.133208] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Various chemical treatment techniques are involved in removing refractory organic compounds from water and wastewater using the oxidation reaction of hydroxyl radicals (•OH). The use of catalysts in advanced catalytic ozonation is likely to improve the decomposition of molecular ozone to generate highly active free radicals that facilitate the rapid and efficient mineralization and degradation of numerous organics. For the degradation of toxic organic pollutants in wastewater, the advanced catalytic ozonation process has been widely applied in recent years. Low utilization efficiency of ozone and ineffective mineralization of organic contaminants by ozone can be remedied with advanced catalytic ozonation. Advanced catalytic ozonation has gained popularity because of these merits. However, homogeneous catalytic ozonation has the disadvantage of producing secondary contaminants from the addition of metallic ions. Heterogeneous catalytic ozonation can overcome this drawback by utilizing metals, metallic oxides, and carbon materials as a catalyst of efficacy and stability. This review discusses various aspects of catalytic ozonation in wastewater treatment of pharmaceutical pollutants, application of catalytic ozonation process in typical wastewater, and prospects in advancing the techniques in heterogeneous catalytic ozonation.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | | | - Salome Yakubu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | | | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
15
|
Gan J, Li X, Rizwan K, Adeel M, Bilal M, Rasheed T, Iqbal HMN. Covalent organic frameworks-based smart materials for mitigation of pharmaceutical pollutants from aqueous solution. CHEMOSPHERE 2022; 286:131710. [PMID: 34343918 DOI: 10.1016/j.chemosphere.2021.131710] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Covalent organic frameworks (COFs) are an emergent group of crystalline porous materials that have gained incredible interest in recent years. With foreseeable controllable functionalities and structural configurations, the constructions and catalytic properties of these organic polymeric materials can be controlled to fabricate targeted materials. The specified monomer linkers and pre-designed architecture of COFs facilitate the post-synthetic modifications for introducing novel functions and useful properties. By virtue of inherent porosity, robust framework, well-ordered geometry, functionality, higher stability, and amenability to functionalization, COFs and COFs-based composites are regarded as prospective nanomaterials for environmental clean-up and remediation. This report spotlights the state-of-the-art advances and progress in COFs-based materials to efficiently mitigate pharmaceutical-based environmental pollutants from aqueous solutions. Synthesis approaches, structure, functionalization, and sustainability aspects of COFs are discussed. Moreover, the adsorptive and photocatalytic potential of COFs and their derived nanocomposites for removal and degradation of pharmaceuticals are thoroughly vetted. In addition to deciphering adsorption mechanism/isotherms, the stability, regeneratability and reproducibility are also delineated. Lastly, the outcomes are summed up, and new directions are proposed to widen the promise of COF-based smart materials in diverse fields.
Collapse
Affiliation(s)
- JianSong Gan
- School of Food and Drug, Jiangsu Vocational College of Finance & Economics, Huaian, 223003, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China.
| | - XiaoBing Li
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Muhammad Adeel
- Faculty of Applied Engineering, iPRACS, University of Antwerp, 2020, Antwerp, Belgium
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
16
|
Gao M, Xu D, Gao Y, Chen G, Zhai R, Huang X, Xu X, Wang J, Yang X, Liu G. Mussel-inspired triple bionic adsorbent: Facile preparation of layered double hydroxide@polydopamine@metal-polyphenol networks and their selective adsorption of dyes in single and binary systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126609. [PMID: 34329113 DOI: 10.1016/j.jhazmat.2021.126609] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
To effectively address the serious human health challenges and ecological damage caused by organic dyes in wastewater, we developed a novel bionic adsorbent (LDH@PDA@MPNs) for the selective adsorption and removal of malachite green (MG) and crystalline violet (CV). The adsorbent was prepared using a facile two-step method based on mussel-inspired chemistry and metal complexation. The physicochemical structure, surface morphology, and composition of the LDH@PDA@MPNs were characterized by scanning electron microscopy, Fourier-transform infrared spectrometry, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Adsorption of MG and CV with the LDH@PDA@MPNs was evaluated. Under optimal conditions, the maximum adsorption of MG and CV by the adsorbent was 89.608 and 40.481 mg/g, respectively. The adsorption kinetics showed that the experimental data were in good agreement with the pseudo-second-order kinetic model, and the equilibrium adsorption isotherm data fitted well with the Freundlich model. The thermodynamic results indicated that the adsorption of the dyes on LDH@PDA@MPNs was a spontaneous endothermic process. Importantly, the bionic adsorbent not only shows high removal efficiency by easy regeneration with low-cost reagents but also exhibits high selectivity for dyes in both single and binary systems. Therefore, LDH@PDA@MPNs have the potential to adsorb and remove dyes from complex wastewater solutions.
Collapse
Affiliation(s)
- Mingkun Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China; Institute of Quality Standard and Testing Technology for Agro, Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture Beijing, 100081 Beijing, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, No.92, West Dazhi Street, Nangang District, Harbin, China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China.
| | - Yuhang Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Rongqi Zhai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro, Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture Beijing, 100081 Beijing, China.
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, No.92, West Dazhi Street, Nangang District, Harbin, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China.
| |
Collapse
|
17
|
Moradi O, Sharma G. Emerging novel polymeric adsorbents for removing dyes from wastewater: A comprehensive review and comparison with other adsorbents. ENVIRONMENTAL RESEARCH 2021; 201:111534. [PMID: 34146528 DOI: 10.1016/j.envres.2021.111534] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Dye molecules are one of the most hazardous compounds for human and animal health and the excess intake of these materials can create toxic impacts. Several studies show the practicality of the adsorption process for dye uptake from wastewaters. In recent years, various adsorbents were used to be efficient in this process. Among all, polymeric adsorbents demonstrate great applicability in different environmental conditions and attract many researchers to work on them, although there is not enough reliable and precise information regarding these adsorbents. This study aims to investigate some influential parameters such as their type, physical properties, experimental conditions, their capacity, and further modeling along with a comparison with non-polymeric adsorbents. The influence of the main factors of adsorption capacity was studied and the dominant mechanism is explained extensively.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; School of Life and Allied Health Sciences, Glocal University, Saharanpur, India.
| |
Collapse
|
18
|
Rápó E, Tonk S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017-2021). Molecules 2021; 26:5419. [PMID: 34500848 PMCID: PMC8433845 DOI: 10.3390/molecules26175419] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/07/2022] Open
Abstract
The primary, most obvious parameter indicating water quality is the color of the water. Not only can it be aesthetically disturbing, but it can also be an indicator of contamination. Clean, high-quality water is a valuable, essential asset. Of the available technologies for removing dyes, adsorption is the most used method due to its ease of use, cost-effectiveness, and high efficiency. The adsorption process is influenced by several parameters, which are the basis of all laboratories researching the optimum conditions. The main objective of this review is to provide up-to-date information on the most studied influencing factors. The effects of initial dye concentration, pH, adsorbent dosage, particle size and temperature are illustrated through examples from the last five years (2017-2021) of research. Moreover, general trends are drawn based on these findings. The removal time ranged from 5 min to 36 h (E = 100% was achieved within 5-60 min). In addition, nearly 80% efficiency can be achieved with just 0.05 g of adsorbent. It is important to reduce adsorbent particle size (with Φ decrease E = 8-99%). Among the dyes analyzed in this paper, Methylene Blue, Congo Red, Malachite Green, Crystal Violet were the most frequently studied. Our conclusions are based on previously published literature.
Collapse
Affiliation(s)
- Eszter Rápó
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
- Department of Genetics, Microbiology and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly No. 1, H-2100 Gödöllő, Hungary
| | - Szende Tonk
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Peng D, Cheng S, Li H, Guo X. Effective multi-functional biosorbent derived from corn stalk pith for dyes and oils removal. CHEMOSPHERE 2021; 272:129963. [PMID: 33592514 DOI: 10.1016/j.chemosphere.2021.129963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
In this study, malic acid-modified corn stalk pith (MA-CSP) was prepared as an environmentally friendly multi-functional bio-sorbent for adsorbing of dyes and oils. The sorption capacity of the MA-CSP for single and binary dyes is 328.46 mg/g - 566.27 mg/g. In addition, the MA-CSP also had good sorption for lubricating oil, soybean oil, diesel oil, and isopropyl alcohol, which were 37.2 g/g, 44.1 g/g, 33.8 g/g, and 29.3 g/g, respectively. Physical and statistical models were used to analyze the adsorption behavior of methylene blue (MB) and crystal violet (CV). And its sorption behavior for dyes was also affected by the co-existing salts in water. The sorption mechanism of the dye was mainly electrostatic attraction and hydrogen bonding action. The sorption of oil was primarily via the role of van der Waals force and hydrophobic interaction. The MA-CSP, as an eco-friendly, economical and efficient multi-functional sorbent, holds promise for effective dyes and oil removal from contaminated water, and its application in other fields is also highly anticipated.
Collapse
Affiliation(s)
- Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, PR China.
| | - Shuping Cheng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, PR China; School of Earth and Environment, Anhui University of Science & Technology, Huainan, 232001, China
| | - Huosheng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
20
|
Mahdizadeh H, Nasiri A, Gharaghani MA, Yazdanpanah G. Hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface for degradation of acid red 18 dye. MethodsX 2020; 7:101118. [PMID: 33204655 PMCID: PMC7653099 DOI: 10.1016/j.mex.2020.101118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022] Open
Abstract
Azo dyes are the largest group of synthetic organic dyes which containing the linkage C-N[bond, double bond]N-C and used in various industries such as textile industries leather articles, and some foods. Azo dyes are resistant compounds against the biodegradation processes. The purpose of this research was hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface for degradation of acid red 18 (AR18) Dye. In the hybrid process using some parameters such as the dye initial concentration, pH, contact time and catalyst concentration, the process efficiency was investigated. In order to the dye removal, the sole ozonation process (SOP), catalytic ozonation process (COP) and photocatalytic process (UV/ZnO) were used. The ZnO nanoparticles were characterized by XRD, SEM and TEM analyses. The maximum dye removal was achieved 97% at the dye initial concentration 25 mg/L, catalyst concentration 3 g/L, contact time 40 min and pH 5. As a real sample, the Yazdbaf textile factory wastewater was selected. After that, the physicochemical quality was evaluated. As well as, in the optimal conditions, the AR18 dye removal efficiency was achieved 65%. The kinetic results demonstrated that the degradation reaction was fitted by pseudo-first-order kinetic. The UV/COP hybrid process had high efficiency for removal of resistant dyes from the textile wastewater. Advantages of this technique were as follows:•ZnO nanoparticles were synthesized as catalyst by thermal method and were immobilized on the stones.•pH changes had no significant effect on the removal efficiency.•In the kinetic studies, the decomposition reaction followed pseudo-first order kinetic.
Collapse
Affiliation(s)
- Hakimeh Mahdizadeh
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Nasiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Amiri Gharaghani
- Department of Environmental Health Engineering, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Ghazal Yazdanpanah
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|