• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5070450)   Today's Articles (9)
For: Farooq M, Steinwart I. An SVM-like approach for expectile regression. Comput Stat Data Anal 2017. [DOI: 10.1016/j.csda.2016.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Number Cited by Other Article(s)
1
Cui Y, Zheng S. Iteratively reweighted least square for kernel expectile regression with random features. J STAT COMPUT SIM 2023. [DOI: 10.1080/00949655.2023.2182304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
2
Barry A, Bhagwat N, Misic B, Poline JB, Greenwood CMT. Asymmetric influence measure for high dimensional regression. COMMUN STAT-THEOR M 2022. [DOI: 10.1080/03610926.2020.1841793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
3
Xu Q, Ding X, Jiang C, Yu K, Shi L. An elastic-net penalized expectile regression with applications. J Appl Stat 2021;48:2205-2230. [DOI: 10.1080/02664763.2020.1787355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
4
Barry A, Oualkacha K, Charpentier A. A new GEE method to account for heteroscedasticity using asymmetric least-square regressions. J Appl Stat 2021;49:3564-3590. [PMID: 36246864 PMCID: PMC9559327 DOI: 10.1080/02664763.2021.1957789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
5
Computing Expectiles Using k-Nearest Neighbours Approach. Symmetry (Basel) 2021. [DOI: 10.3390/sym13040645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
6
Jiang XW, Yan TH, Zhu JJ, He B, Li WH, Du HP, Sun SS. Densely Connected Deep Extreme Learning Machine Algorithm. Cognit Comput 2020. [DOI: 10.1007/s12559-020-09752-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
7
Zheng S. KLERC: kernel Lagrangian expectile regression calculator. Comput Stat 2020. [DOI: 10.1007/s00180-020-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
8
Yang L, Ding G, Yuan C, Zhang M. Robust regression framework with asymmetrically analogous to correntropy-induced loss. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2019.105211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
9
Chen T, Su Z, Yang Y, Ding S. Efficient estimation in expectile regression using envelope models. Electron J Stat 2020. [DOI: 10.1214/19-ejs1664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
10
Quantile and expectile smoothing based on L1-norm and L2-norm fuzzy transforms. Int J Approx Reason 2019. [DOI: 10.1016/j.ijar.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
11
Dumpert F, Christmann A. Universal consistency and robustness of localized support vector machines. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.06.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
12
Farooq M, Steinwart I. Learning rates for kernel-based expectile regression. Mach Learn 2018. [DOI: 10.1007/s10994-018-5762-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA