1
|
Zolnoori M, Zolnour A, Vergez S, Sridharan S, Spens I, Topaz M, Noble JM, Bakken S, Hirschberg J, Bowles K, Onorato N, McDonald MV. Beyond electronic health record data: leveraging natural language processing and machine learning to uncover cognitive insights from patient-nurse verbal communications. J Am Med Inform Assoc 2025; 32:328-340. [PMID: 39667364 PMCID: PMC11756603 DOI: 10.1093/jamia/ocae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Mild cognitive impairment and early-stage dementia significantly impact healthcare utilization and costs, yet more than half of affected patients remain underdiagnosed. This study leverages audio-recorded patient-nurse verbal communication in home healthcare settings to develop an artificial intelligence-based screening tool for early detection of cognitive decline. OBJECTIVE To develop a speech processing algorithm using routine patient-nurse verbal communication and evaluate its performance when combined with electronic health record (EHR) data in detecting early signs of cognitive decline. METHOD We analyzed 125 audio-recorded patient-nurse verbal communication for 47 patients from a major home healthcare agency in New York City. Out of 47 patients, 19 experienced symptoms associated with the onset of cognitive decline. A natural language processing algorithm was developed to extract domain-specific linguistic and interaction features from these recordings. The algorithm's performance was compared against EHR-based screening methods. Both standalone and combined data approaches were assessed using F1-score and area under the curve (AUC) metrics. RESULTS The initial model using only patient-nurse verbal communication achieved an F1-score of 85 and an AUC of 86.47. The model based on EHR data achieved an F1-score of 75.56 and an AUC of 79. Combining patient-nurse verbal communication with EHR data yielded the highest performance, with an F1-score of 88.89 and an AUC of 90.23. Key linguistic indicators of cognitive decline included reduced linguistic diversity, grammatical challenges, repetition, and altered speech patterns. Incorporating audio data significantly enhanced the risk prediction models for hospitalization and emergency department visits. DISCUSSION Routine verbal communication between patients and nurses contains critical linguistic and interactional indicators for identifying cognitive impairment. Integrating audio-recorded patient-nurse communication with EHR data provides a more comprehensive and accurate method for early detection of cognitive decline, potentially improving patient outcomes through timely interventions. This combined approach could revolutionize cognitive impairment screening in home healthcare settings.
Collapse
Affiliation(s)
- Maryam Zolnoori
- Columbia University Irving Medical Center, New York, NY 10032, United States
- School of Nursing, Columbia University, New York, NY 10032, United States
- Center for Home Care Policy & Research, VNS Health, New York, NY 10017, United States
| | - Ali Zolnour
- Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Sasha Vergez
- Center for Home Care Policy & Research, VNS Health, New York, NY 10017, United States
| | - Sridevi Sridharan
- Center for Home Care Policy & Research, VNS Health, New York, NY 10017, United States
| | - Ian Spens
- Center for Home Care Policy & Research, VNS Health, New York, NY 10017, United States
| | - Maxim Topaz
- Columbia University Irving Medical Center, New York, NY 10032, United States
- School of Nursing, Columbia University, New York, NY 10032, United States
- Center for Home Care Policy & Research, VNS Health, New York, NY 10017, United States
- Data Science Institute, Columbia University, New York, NY 10027, United States
| | - James M Noble
- Columbia University Irving Medical Center, New York, NY 10032, United States
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, GH Sergievsky Center, Columbia University, New York, NY 10032, United States
| | - Suzanne Bakken
- School of Nursing, Columbia University, New York, NY 10032, United States
- Data Science Institute, Columbia University, New York, NY 10027, United States
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, United States
| | - Julia Hirschberg
- Department of Computer Science, Columbia University, New York, NY 10027, United States
| | - Kathryn Bowles
- Center for Home Care Policy & Research, VNS Health, New York, NY 10017, United States
- University of Pennsylvania School of Nursing, Philadelphia, PA 19104, United States
| | - Nicole Onorato
- Center for Home Care Policy & Research, VNS Health, New York, NY 10017, United States
| | - Margaret V McDonald
- Center for Home Care Policy & Research, VNS Health, New York, NY 10017, United States
| |
Collapse
|
2
|
Yang X, Hong K, Zhang D, Wang K. Early diagnosis of Alzheimer's Disease based on multi-attention mechanism. PLoS One 2024; 19:e0310966. [PMID: 39316606 PMCID: PMC11421808 DOI: 10.1371/journal.pone.0310966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Alzheimer's Disease is a neurodegenerative disorder, and one of its common and prominent early symptoms is language impairment. Therefore, early diagnosis of Alzheimer's Disease through speech and text information is of significant importance. However, the multimodal data is often complex and inconsistent, which leads to inadequate feature extraction. To address the problem, We propose a model for early diagnosis of Alzheimer's Disease based on multimodal attention(EDAMM). Specifically, we first evaluate and select three optimal feature extraction methods, Wav2Vec2.0, TF-IDF and Word2Vec, to extract acoustic and linguistic features. Next, by leveraging self-attention mechanism and cross-modal attention mechanisms, we generate fused features to enhance and capture the inter-modal correlation information. Finally, we concatenate the multimodal features into a composite feature vector and employ a Neural Network(NN) classifier to diagnose Alzheimer's Disease. To evaluate EDAMM, we perform experiments on two public datasets, i.e., NCMMSC2021 and ADReSSo. The results show that EDAMM improves the performance of Alzheimer's Disease diagnosis over state-of-the-art baseline approaches on both datasets.
Collapse
Affiliation(s)
- Xinli Yang
- College of Information Technology, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Kefen Hong
- College of Information Engineering, Huzhou University, Huzhou, Zhejiang, China
| | - Denghui Zhang
- College of Information Technology, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Ke Wang
- College of Information Technology, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Wilson SC, Teghipco A, Sayers S, Newman-Norlund R, Newman-Norlund S, Fridriksson J. Story Recall in Peer Conflict Resolution Discourse Task to Identify Older Adults Testing Within Range of Cognitive Impairment. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024:1-17. [PMID: 39173074 DOI: 10.1044/2024_ajslp-24-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
PURPOSE The current study used behavioral measures of discourse complexity and story recall accuracy in an expository discourse task to distinguish older adults testing within range of cognitive impairment according to a standardized cognitive screening tool in a sample of self-reported healthy older adults. METHOD Seventy-three older adults who self-identified as healthy completed an expository discourse task and neuropsychological screener. Discourse data were used to classify participants testing within range of cognitive impairment using multiple machine learning algorithms and stability analysis for identifying reliably predictive features in an effort to maximize prediction accuracy. We hypothesized that a higher rate of pronoun use and lower scores on story recall would best classify older adults testing within range of cognitive impairment. RESULTS The highest classification accuracy exploited a single variable in a remarkably intuitive way: using 66% story recall as a cutoff for cognitive impairment. Forcing this decision tree model to use more features or increasing its complexity did not improve accuracy. Permutation testing confirmed that the 77% accuracy and 0.18 Brier skill score achieved by the model were statistically significant (p < .00001). CONCLUSIONS These results suggest that expository discourse tasks that place demands on executive functions, such as working memory, can be used to identify aging adults who test within range of cognitive impairment. Accurate representation of story elements in working memory is critical for coherent discourse. Our simple yet highly accurate predictive model of expository discourse provides a promising assessment for easy identification of cognitive impairment in older adults. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.26543824.
Collapse
Affiliation(s)
- Sarah C Wilson
- Linguistics Program, University of South Carolina, Columbia
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
| | - Alex Teghipco
- Department of Psychology, University of South Carolina, Columbia
| | - Sara Sayers
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
| | | | - Sarah Newman-Norlund
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
| |
Collapse
|
4
|
Themistocleous C. Open Brain AI and language assessment. Front Hum Neurosci 2024; 18:1421435. [PMID: 39165904 PMCID: PMC11333242 DOI: 10.3389/fnhum.2024.1421435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
Neurolinguistic assessments play a vital role in neurological examinations, revealing a wide range of language and communication impairments associated with developmental disorders and acquired neurological conditions. Yet, a thorough neurolinguistic assessment is time-consuming and laborious and takes valuable resources from other tasks. To empower clinicians, healthcare providers, and researchers, we have developed Open Brain AI (OBAI). The aim of this computational platform is twofold. First, it aims to provide advanced AI tools to facilitate spoken and written language analysis, automate the analysis process, and reduce the workload associated with time-consuming tasks. The platform currently incorporates multilingual tools for English, Danish, Dutch, Finnish, French, German, Greek, Italian, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, and Swedish. The tools involve models for (i) audio transcription, (ii) automatic translation, (iii) grammar error correction, (iv) transcription to the International Phonetic Alphabet, (v) readability scoring, (vi) phonology, morphology, syntax, semantic measures (e.g., counts and proportions), and lexical measures. Second, it aims to support clinicians in conducting their research and automating everyday tasks with "OBAI Companion," an AI language assistant that facilitates language processing, such as structuring, summarizing, and editing texts. OBAI also provides tools for automating spelling and phonology scoring. This paper reviews OBAI's underlying architectures and applications and shows how OBAI can help professionals focus on higher-value activities, such as therapeutic interventions.
Collapse
|
5
|
Kim H, Hillis AE, Themistocleous C. Machine Learning Classification of Patients with Amnestic Mild Cognitive Impairment and Non-Amnestic Mild Cognitive Impairment from Written Picture Description Tasks. Brain Sci 2024; 14:652. [PMID: 39061392 PMCID: PMC11274603 DOI: 10.3390/brainsci14070652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Individuals with Mild Cognitive Impairment (MCI), a transitional stage between cognitively healthy aging and dementia, are characterized by subtle neurocognitive changes. Clinically, they can be grouped into two main variants, namely patients with amnestic MCI (aMCI) and non-amnestic MCI (naMCI). The distinction of the two variants is known to be clinically significant as they exhibit different progression rates to dementia. However, it has been particularly challenging to classify the two variants robustly. Recent research indicates that linguistic changes may manifest as one of the early indicators of pathology. Therefore, we focused on MCI's discourse-level writing samples in this study. We hypothesized that a written picture description task can provide information that can be used as an ecological, cost-effective classification system between the two variants. We included one hundred sixty-nine individuals diagnosed with either aMCI or naMCI who received neurophysiological evaluations in addition to a short, written picture description task. Natural Language Processing (NLP) and a BERT pre-trained language model were utilized to analyze the writing samples. We showed that the written picture description task provided 90% overall classification accuracy for the best classification models, which performed better than cognitive measures. Written discourses analyzed by AI models can automatically assess individuals with aMCI and naMCI and facilitate diagnosis, prognosis, therapy planning, and evaluation.
Collapse
Affiliation(s)
- Hana Kim
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL 33620, USA;
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | | |
Collapse
|
6
|
Pourramezan Fard A, Mahoor MH, Alsuhaibani M, Dodge HH. Linguistic-based Mild Cognitive Impairment detection using Informative Loss. Comput Biol Med 2024; 176:108606. [PMID: 38763068 DOI: 10.1016/j.compbiomed.2024.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%.
Collapse
Affiliation(s)
- Ali Pourramezan Fard
- Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA.
| | - Mohammad H Mahoor
- Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA; DreamFace Technologies LLC, Centennial, CO 8011, USA.
| | - Muath Alsuhaibani
- Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA; Department of Electrical Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Hiroko H Dodge
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Ambrosini E, Giangregorio C, Lomurno E, Moccia S, Milis M, Loizou C, Azzolino D, Cesari M, Cid Gala M, Galán de Isla C, Gomez-Raja J, Borghese NA, Matteucci M, Ferrante S. Automatic Spontaneous Speech Analysis for the Detection of Cognitive Functional Decline in Older Adults: Multilanguage Cross-Sectional Study. JMIR Aging 2024; 7:e50537. [PMID: 38386279 DOI: 10.2196/50537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The rise in life expectancy is associated with an increase in long-term and gradual cognitive decline. Treatment effectiveness is enhanced at the early stage of the disease. Therefore, there is a need to find low-cost and ecological solutions for mass screening of community-dwelling older adults. OBJECTIVE This work aims to exploit automatic analysis of free speech to identify signs of cognitive function decline. METHODS A sample of 266 participants older than 65 years were recruited in Italy and Spain and were divided into 3 groups according to their Mini-Mental Status Examination (MMSE) scores. People were asked to tell a story and describe a picture, and voice recordings were used to extract high-level features on different time scales automatically. Based on these features, machine learning algorithms were trained to solve binary and multiclass classification problems by using both mono- and cross-lingual approaches. The algorithms were enriched using Shapley Additive Explanations for model explainability. RESULTS In the Italian data set, healthy participants (MMSE score≥27) were automatically discriminated from participants with mildly impaired cognitive function (20≤MMSE score≤26) and from those with moderate to severe impairment of cognitive function (11≤MMSE score≤19) with accuracy of 80% and 86%, respectively. Slightly lower performance was achieved in the Spanish and multilanguage data sets. CONCLUSIONS This work proposes a transparent and unobtrusive assessment method, which might be included in a mobile app for large-scale monitoring of cognitive functionality in older adults. Voice is confirmed to be an important biomarker of cognitive decline due to its noninvasive and easily accessible nature.
Collapse
Affiliation(s)
- Emilia Ambrosini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Chiara Giangregorio
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Eugenio Lomurno
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Sara Moccia
- BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Christos Loizou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Domenico Azzolino
- Geriatric Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Matteo Cesari
- Ageing and Health Unit, Department of Maternal, Newborn, Child, Adolescent Health and Ageing, World Health Organization, Geneva, Switzerland
| | - Manuel Cid Gala
- Consejería de Sanidad y Servicios Sociales, Junta de Extremadura, Merida, Spain
| | | | - Jonathan Gomez-Raja
- Consejería de Sanidad y Servicios Sociales, Junta de Extremadura, Merida, Spain
| | | | - Matteo Matteucci
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Simona Ferrante
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- Laboratory of E-Health Technologies and Artificial Intelligence Research in Neurology, Joint Research Platform, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
8
|
Harris C, Tang Y, Birnbaum E, Cherian C, Mendhe D, Chen MH. Digital Neuropsychology beyond Computerized Cognitive Assessment: Applications of Novel Digital Technologies. Arch Clin Neuropsychol 2024; 39:290-304. [PMID: 38520381 PMCID: PMC11485276 DOI: 10.1093/arclin/acae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
Compared with other health disciplines, there is a stagnation in technological innovation in the field of clinical neuropsychology. Traditional paper-and-pencil tests have a number of shortcomings, such as low-frequency data collection and limitations in ecological validity. While computerized cognitive assessment may help overcome some of these issues, current computerized paradigms do not address the majority of these limitations. In this paper, we review recent literature on the applications of novel digital health approaches, including ecological momentary assessment, smartphone-based assessment and sensors, wearable devices, passive driving sensors, smart homes, voice biomarkers, and electronic health record mining, in neurological populations. We describe how each digital tool may be applied to neurologic care and overcome limitations of traditional neuropsychological assessment. Ethical considerations, limitations of current research, as well as our proposed future of neuropsychological practice are also discussed.
Collapse
Affiliation(s)
- Che Harris
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Yingfei Tang
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Eliana Birnbaum
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
| | - Christine Cherian
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
| | - Dinesh Mendhe
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
| | - Michelle H Chen
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
9
|
Šubert M, Novotný M, Tykalová T, Hlavnička J, Dušek P, Růžička E, Škrabal D, Pelletier A, Postuma RB, Montplaisir J, Gagnon JF, Galbiati A, Ferini-Strambi L, Marelli S, St Louis EK, Timm PC, Teigen LN, Janzen A, Oertel W, Heim B, Holzknecht E, Stefani A, Högl B, Dauvilliers Y, Evangelista E, Šonka K, Rusz J. Spoken Language Alterations can Predict Phenoconversion in Isolated Rapid Eye Movement Sleep Behavior Disorder: A Multicenter Study. Ann Neurol 2024; 95:530-543. [PMID: 37997483 DOI: 10.1002/ana.26835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE This study assessed the relationship between speech and language impairment and outcome in a multicenter cohort of isolated/idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD). METHODS Patients with iRBD from 7 centers speaking Czech, English, German, French, and Italian languages underwent a detailed speech assessment at baseline. Story-tale narratives were transcribed and linguistically annotated using fully automated methods based on automatic speech recognition and natural language processing algorithms, leading to the 3 distinctive linguistic and 2 acoustic patterns of language deterioration and associated composite indexes of their overall severity. Patients were then prospectively followed and received assessments for parkinsonism or dementia during follow-up. The Cox proportional hazard was performed to evaluate the predictive value of language patterns for phenoconversion over a follow-up period of 5 years. RESULTS Of 180 patients free of parkinsonism or dementia, 156 provided follow-up information. After a mean follow-up of 2.7 years, 42 (26.9%) patients developed neurodegenerative disease. Patients with higher severity of linguistic abnormalities (hazard ratio [HR = 2.35]) and acoustic abnormalities (HR = 1.92) were more likely to develop a defined neurodegenerative disease, with converters having lower content richness (HR = 1.74), slower articulation rate (HR = 1.58), and prolonged pauses (HR = 1.46). Dementia-first (n = 16) and parkinsonism-first with mild cognitive impairment (n = 9) converters had higher severity of linguistic abnormalities than parkinsonism-first with normal cognition converters (n = 17). INTERPRETATION Automated language analysis might provide a predictor of phenoconversion from iRBD into synucleinopathy subtypes with cognitive impairment, and thus can be used to stratify patients for neuroprotective trials. ANN NEUROL 2024;95:530-543.
Collapse
Affiliation(s)
- Martin Šubert
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Michal Novotný
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Tereza Tykalová
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Hlavnička
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Dominik Škrabal
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Amelie Pelletier
- Department of Neurology, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Ronald B Postuma
- Department of Neurology, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Jean-François Gagnon
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Andrea Galbiati
- Sleep Disorders Center, Division of Neuroscience, Ospedale San Raffaele, Università Vita-Salute, Milan, Italy
- Department of Psychology, "Vita-Salute" San Raffaele University, Milan, Italy
| | - Luigi Ferini-Strambi
- Sleep Disorders Center, Division of Neuroscience, Ospedale San Raffaele, Università Vita-Salute, Milan, Italy
- Department of Psychology, "Vita-Salute" San Raffaele University, Milan, Italy
| | - Sara Marelli
- Sleep Disorders Center, Division of Neuroscience, Ospedale San Raffaele, Università Vita-Salute, Milan, Italy
| | - Erik K St Louis
- Mayo Center for Sleep Medicine, and Sleep Behavior and Neurophysiology Research Laboratory, Departments of Neurology and Medicine, Division of Pulmonary and Critical Care Medicine Mayo Clinic College of Medicine and Science Rochester, Rochester, MN, USA
- Mayo Clinic Health System Southwest Wisconsin, La Crosse, WI, USA
| | - Paul C Timm
- Mayo Center for Sleep Medicine, and Sleep Behavior and Neurophysiology Research Laboratory, Departments of Neurology and Medicine, Division of Pulmonary and Critical Care Medicine Mayo Clinic College of Medicine and Science Rochester, Rochester, MN, USA
| | - Luke N Teigen
- Mayo Center for Sleep Medicine, and Sleep Behavior and Neurophysiology Research Laboratory, Departments of Neurology and Medicine, Division of Pulmonary and Critical Care Medicine Mayo Clinic College of Medicine and Science Rochester, Rochester, MN, USA
| | - Annette Janzen
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Wolfgang Oertel
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Evi Holzknecht
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yves Dauvilliers
- National Reference Network for Narcolepsy, Sleep-Wake Disorder Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Elisa Evangelista
- National Reference Network for Narcolepsy, Sleep-Wake Disorder Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Department of Neurology & ARTORG Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Agmon G, Pradhan S, Ash S, Nevler N, Liberman M, Grossman M, Cho S. Automated Measures of Syntactic Complexity in Natural Speech Production: Older and Younger Adults as a Case Study. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:545-561. [PMID: 38215342 DOI: 10.1044/2023_jslhr-23-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
PURPOSE Multiple methods have been suggested for quantifying syntactic complexity in speech. We compared eight automated syntactic complexity metrics to determine which best captured verified syntactic differences between old and young adults. METHOD We used natural speech samples produced in a picture description task by younger (n = 76, ages 18-22 years) and older (n = 36, ages 53-89 years) healthy participants, manually transcribed and segmented into sentences. We manually verified that older participants produced fewer complex structures. We developed a metric of syntactic complexity using automatically extracted syntactic structures as features in a multidimensional metric. We compared our metric to seven other metrics: Yngve score, Frazier score, Frazier-Roark score, developmental level, syntactic frequency, mean dependency distance, and sentence length. We examined the success of each metric in identifying the age group using logistic regression models. We repeated the analysis with automatic transcription and segmentation using an automatic speech recognition (ASR) system. RESULTS Our multidimensional metric was successful in predicting age group (area under the curve [AUC] = 0.87), and it performed better than the other metrics. High AUCs were also achieved by the Yngve score (0.84) and sentence length (0.84). However, in a fully automated pipeline with ASR, the performance of these two metrics dropped (to 0.73 and 0.46, respectively), while the performance of the multidimensional metric remained relatively high (0.81). CONCLUSIONS Syntactic complexity in spontaneous speech can be quantified by directly assessing syntactic structures and considering them in a multivariable manner. It can be derived automatically, saving considerable time and effort compared to manually analyzing large-scale corpora, while maintaining high face validity and robustness. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24964179.
Collapse
Affiliation(s)
- Galit Agmon
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Sameer Pradhan
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia
| | - Sharon Ash
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Naomi Nevler
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Mark Liberman
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia
| | - Murray Grossman
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Sunghye Cho
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia
| |
Collapse
|
11
|
Gagliardi G. Natural language processing techniques for studying language in pathological ageing: A scoping review. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2024; 59:110-122. [PMID: 36960885 DOI: 10.1111/1460-6984.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In the past few years there has been a growing interest in the employment of verbal productions as digital biomarkers, namely objective, quantifiable behavioural data that can be collected and measured by means of digital devices, allowing for a low-cost pathology detection, classification and monitoring. Numerous research papers have been published on the automatic detection of subtle verbal alteration, starting from written texts, raw speech recordings and transcripts, and such linguistic analysis has been singled out as a cost-effective method for diagnosing dementia and other medical conditions common among elderly patients (e.g., cognitive dysfunctions associated with metabolic disorders, dysarthria). AIMS To provide a critical appraisal and synthesis of evidence concerning the application of natural language processing (NLP) techniques for clinical purposes in the geriatric population. In particular, we discuss the state of the art on studying language in healthy and pathological ageing, focusing on the latest research efforts to build non-intrusive language-based tools for the early identification of cognitive frailty due to dementia. We also discuss some challenges and open problems raised by this approach. METHODS & PROCEDURES We performed a scoping review to examine emerging evidence about this novel domain. Potentially relevant studies published up to November 2021 were identified from the databases of MEDLINE, Cochrane and Web of Science. We also browsed the proceedings of leading international conferences (e.g., ACL, COLING, Interspeech, LREC) from 2017 to 2021, and checked the reference lists of relevant studies and reviews. MAIN CONTRIBUTION The paper provides an introductory, but complete, overview of the application of NLP techniques for studying language disruption due to dementia. We also suggest that this technique can be fruitfully applied to other medical conditions (e.g., cognitive dysfunctions associated with dysarthria, cerebrovascular disease and mood disorders). CONCLUSIONS & IMPLICATIONS Despite several critical points need to be addressed by the scientific community, a growing body of empirical evidence shows that NLP techniques can represent a promising tool for studying language changes in pathological aging, with a high potential to lead a significant shift in clinical practice. WHAT THIS PAPER ADDS What is already known on this subject Speech and languages abilities change due to non-pathological neurocognitive ageing and neurodegenerative processes. These subtle verbal modifications can be measured through NLP techniques and used as biomarkers for screening/diagnostic purposes in the geriatric population (i.e., digital linguistic biomarkers-DLBs). What this paper adds to existing knowledge The review shows that DLBs can represent a promising clinical tool, with a high potential to spark a major shift to dementia assessment in the elderly. Some challenges and open problems are also discussed. What are the potential or actual clinical implications of this work? This methodological review represents a starting point for clinicians approaching the DLB research field for studying language in healthy and pathological ageing. It summarizes the state of the art and future research directions of this novel approach.
Collapse
Affiliation(s)
- Gloria Gagliardi
- Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Benítez-Burraco A, Ivanova O. Language in healthy and pathological ageing: Methodological milestones and challenges. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2024; 59:4-12. [PMID: 38149881 DOI: 10.1111/1460-6984.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Sevilla, Spain
| | - Olga Ivanova
- Spanish Language Department, Faculty of Philology, University of Salamanca/Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
| |
Collapse
|
13
|
Zolnoori M, Zolnour A, Topaz M. ADscreen: A speech processing-based screening system for automatic identification of patients with Alzheimer's disease and related dementia. Artif Intell Med 2023; 143:102624. [PMID: 37673583 PMCID: PMC10483114 DOI: 10.1016/j.artmed.2023.102624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease and related dementias (ADRD) present a looming public health crisis, affecting roughly 5 million people and 11 % of older adults in the United States. Despite nationwide efforts for timely diagnosis of patients with ADRD, >50 % of them are not diagnosed and unaware of their disease. To address this challenge, we developed ADscreen, an innovative speech-processing based ADRD screening algorithm for the protective identification of patients with ADRD. ADscreen consists of five major components: (i) noise reduction for reducing background noises from the audio-recorded patient speech, (ii) modeling the patient's ability in phonetic motor planning using acoustic parameters of the patient's voice, (iii) modeling the patient's ability in semantic and syntactic levels of language organization using linguistic parameters of the patient speech, (iv) extracting vocal and semantic psycholinguistic cues from the patient speech, and (v) building and evaluating the screening algorithm. To identify important speech parameters (features) associated with ADRD, we used the Joint Mutual Information Maximization (JMIM), an effective feature selection method for high dimensional, small sample size datasets. Modeling the relationship between speech parameters and the outcome variable (presence/absence of ADRD) was conducted using three different machine learning (ML) architectures with the capability of joining informative acoustic and linguistic with contextual word embedding vectors obtained from the DistilBERT (Bidirectional Encoder Representations from Transformers). We evaluated the performance of the ADscreen on an audio-recorded patients' speech (verbal description) for the Cookie-Theft picture description task, which is publicly available in the dementia databank. The joint fusion of acoustic and linguistic parameters with contextual word embedding vectors of DistilBERT achieved F1-score = 84.64 (standard deviation [std] = ±3.58) and AUC-ROC = 92.53 (std = ±3.34) for training dataset, and F1-score = 89.55 and AUC-ROC = 93.89 for the test dataset. In summary, ADscreen has a strong potential to be integrated with clinical workflow to address the need for an ADRD screening tool so that patients with cognitive impairment can receive appropriate and timely care.
Collapse
Affiliation(s)
- Maryam Zolnoori
- Columbia University Medical Center, New York, NY, United States of America; School of Nursing, Columbia University, New York, NY, United States of America.
| | - Ali Zolnour
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Maxim Topaz
- Columbia University Medical Center, New York, NY, United States of America; School of Nursing, Columbia University, New York, NY, United States of America
| |
Collapse
|
14
|
Quek LJ, Heikkonen MR, Lau Y. Use of artificial intelligence techniques for detection of mild cognitive impairment: A systematic scoping review. J Clin Nurs 2023; 32:5752-5762. [PMID: 37032649 DOI: 10.1111/jocn.16699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/10/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
AIMS AND OBJECTIVES The objective of this scoping review is to explore the types and mechanisms of Artificial intelligence (AI) techniques for detecting mild cognitive impairment (MCI). BACKGROUND Early detection of MCI is crucial because it may progress to Alzheimer's disease. DESIGN A systematic scoping review. METHODS Five-step framework of Arksey and O'Malley was used following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews checklist. A total of 11 databases (PubMed, EMBASE, CINAHL, Cochrane Library, Scopus, Web of Science, IEEE Explore, Science.gov, ACM digital library, arXIV and ProQuest) was used to search from inception till 17th December 2021. Grey literature and reference list were searched. Articles screening and data charting were conducted by two independent reviewers. RESULTS There were a total of 70 articles included from 2011 to 2022 across 16 countries. Four types of AI techniques were found, namely machine learning (ML), deep learning (DL), fuzzy logic (FL) and technique combinations. Herein, ML detects similar pattern within preselected data to classify subjects into non-MCI or MCI groups. Meanwhile, DL performs classification based on data patterns and data analyses are performed by themselves. Furthermore, FL utilises human-defined rules to decide the degree to which a person has MCI. A combination of AI techniques enhances the feature preparation phase for ML or DL to perform accurate classification. CONCLUSION Although AI-based MCI detection tool is critical for healthcare decision-making, clinical utility and risks remain underexplored. Hopefully, this review equips clinicians with background AI knowledge to address these clinical concerns. Hence, future research should explore more techniques and representative datasets to improve AI development. RELEVANCE TO CLINICAL PRACTICE Results of this review can increase the knowledge of AI-based MCI detection tools. REVIEW REGISTRATION This study protocol was registered in the Open Science Framework Registries (https://osf.io/45rdt).
Collapse
Affiliation(s)
- Li JuanVivian Quek
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore city, Singapore
| | - Maria Rosaliini Heikkonen
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore city, Singapore
| | - Ying Lau
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore city, Singapore
| |
Collapse
|
15
|
Oh C, Morris R, Wang X, Raskin MS. Analysis of emotional prosody as a tool for differential diagnosis of cognitive impairments: a pilot research. Front Psychol 2023; 14:1129406. [PMID: 37425151 PMCID: PMC10327638 DOI: 10.3389/fpsyg.2023.1129406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction This pilot research was designed to investigate if prosodic features from running spontaneous speech could differentiate dementia of the Alzheimer's type (DAT), vascular dementia (VaD), mild cognitive impairment (MCI), and healthy cognition. The study included acoustic measurements of prosodic features (Study 1) and listeners' perception of emotional prosody differences (Study 2). Methods For Study 1, prerecorded speech samples describing the Cookie Theft picture from 10 individuals with DAT, 5 with VaD, 9 with MCI, and 10 neurologically healthy controls (NHC) were obtained from the DementiaBank. The descriptive narratives by each participant were separated into utterances. These utterances were measured on 22 acoustic features via the Praat software and analyzed statistically using the principal component analysis (PCA), regression, and Mahalanobis distance measures. Results The analyses on acoustic data revealed a set of five factors and four salient features (i.e., pitch, amplitude, rate, and syllable) that discriminate the four groups. For Study 2, a group of 28 listeners served as judges of emotions expressed by the speakers. After a set of training and practice sessions, they were instructed to indicate the emotions they heard. Regression measures were used to analyze the perceptual data. The perceptual data indicated that the factor underlying pitch measures had the greatest strength for the listeners to separate the groups. Discussion The present pilot work showed that using acoustic measures of prosodic features may be a functional method for differentiating among DAT, VaD, MCI, and NHC. Future studies with data collected under a controlled environment using better stimuli are warranted.
Collapse
Affiliation(s)
- Chorong Oh
- School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH, United States
| | - Richard Morris
- School of Communication Science and Disorders, Florida State University, Tallahassee, FL, United States
| | - Xianhui Wang
- School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Morgan S. Raskin
- School of Communication Science and Disorders, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
16
|
Mefford JA, Zhao Z, Heilier L, Xu M, Zhou G, Mace R, Sloane KL, Sheppard SM, Glenn S. Varied performance of picture description task as a screening tool across MCI subtypes. PLOS DIGITAL HEALTH 2023; 2:e0000197. [PMID: 36913425 PMCID: PMC10010512 DOI: 10.1371/journal.pdig.0000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
A picture description task is a component of Miro Health's platform for self-administration of neurobehavioral assessments. Picture description has been used as a screening tool for identification of individuals with Alzheimer's disease and mild cognitive impairment (MCI), but currently requires in-person administration and scoring by someone with access to and familiarity with a scoring rubric. The Miro Health implementation allows broader use of this assessment through self-administration and automated processing, analysis, and scoring to deliver clinically useful quantifications of the users' speech production, vocal characteristics, and language. Picture description responses were collected from 62 healthy controls (HC), and 33 participants with MCI: 18 with amnestic MCI (aMCI) and 15 with non-amnestic MCI (naMCI). Speech and language features and contrasts between pairs of features were evaluated for differences in their distributions in the participant subgroups. Picture description features were selected and combined using penalized logistic regression to form risk scores for classification of HC versus MCI as well as HC versus specific MCI subtypes. A picture-description based risk score distinguishes MCI and HC with an area under the receiver operator curve (AUROC) of 0.74. When contrasting specific subtypes of MCI and HC, the classifiers have an AUROC of 0.88 for aMCI versus HC and and AUROC of 0.61 for naMCI versus HC. Tests of association of individual features or contrasts of pairs of features with HC versus aMCI identified 20 features with p-values below 5e-3 and False Discovery Rates (FDRs) at or below 0.113, and 61 contrasts with p-values below 5e-4 and FDRs at or below 0.132. Findings suggest that performance of picture description as a screening tool for MCI detection will vary greatly by MCI subtype or by the proportion of various subtypes in an undifferentiated MCI population.
Collapse
Affiliation(s)
- Joel A. Mefford
- Department of Neurology, University of California, Los Angeles, California, United States of America
| | - Zilong Zhao
- Miro Health, Inc., San Francisco, California, United States of America
| | - Leah Heilier
- Miro Health, Inc., San Francisco, California, United States of America
| | - Man Xu
- Miro Health, Inc., San Francisco, California, United States of America
| | - Guifeng Zhou
- Miro Health, Inc., San Francisco, California, United States of America
| | - Rachel Mace
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly L. Sloane
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shannon M. Sheppard
- Department of Communication Sciences & Disorders, Chapman University, Orange, California, United States of America
| | - Shenly Glenn
- Miro Health, Inc., San Francisco, California, United States of America
| |
Collapse
|
17
|
Petti U, Baker S, Korhonen A, Robin J. The Generalizability of Longitudinal Changes in Speech Before Alzheimer's Disease Diagnosis. J Alzheimers Dis 2023; 92:547-564. [PMID: 36776053 DOI: 10.3233/jad-220847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Language impairment in Alzheimer's disease (AD) has been widely studied but due to limited data availability, relatively few studies have focused on the longitudinal change in language in the individuals who later develop AD. Significant differences in speech have previously been found by comparing the press conference transcripts of President Bush and President Reagan, who was later diagnosed with AD. OBJECTIVE In the current study, we explored whether the patterns previously established in the single AD-healthy control (HC) participant pair apply to a larger group of individuals who later receive AD diagnosis. METHODS We replicated previous methods on two larger corpora of longitudinal spontaneous speech samples of public figures, consisting of 10 and 9 AD-HC participant pairs. As we failed to find generalizable patterns of language change using previous methodology, we proposed alternative methods for data analysis, investigating the benefits of using different language features and their change with age, and compiling the single features into aggregate scores. RESULTS The single features that showed the strongest results were moving average type:token ratio (MATTR) and pronoun-related features. The aggregate scores performed better than the single features, with lexical diversity capturing a similar change in two-thirds of the participants. CONCLUSION Capturing universal patterns of language change prior to AD can be challenging, but the decline in lexical diversity and changes in MATTR and pronoun-related features act as promising measures that reflect the cognitive changes in many participants.
Collapse
Affiliation(s)
- Ulla Petti
- University of Cambridge, Language Technology Lab, Cambridge, UK
| | - Simon Baker
- University of Cambridge, Language Technology Lab, Cambridge, UK
| | - Anna Korhonen
- University of Cambridge, Language Technology Lab, Cambridge, UK
| | | |
Collapse
|
18
|
Javeed A, Dallora AL, Berglund JS, Ali A, Ali L, Anderberg P. Machine Learning for Dementia Prediction: A Systematic Review and Future Research Directions. J Med Syst 2023; 47:17. [PMID: 36720727 PMCID: PMC9889464 DOI: 10.1007/s10916-023-01906-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023]
Abstract
Nowadays, Artificial Intelligence (AI) and machine learning (ML) have successfully provided automated solutions to numerous real-world problems. Healthcare is one of the most important research areas for ML researchers, with the aim of developing automated disease prediction systems. One of the disease detection problems that AI and ML researchers have focused on is dementia detection using ML methods. Numerous automated diagnostic systems based on ML techniques for early prediction of dementia have been proposed in the literature. Few systematic literature reviews (SLR) have been conducted for dementia prediction based on ML techniques in the past. However, these SLR focused on a single type of data modality for the detection of dementia. Hence, the purpose of this study is to conduct a comprehensive evaluation of ML-based automated diagnostic systems considering different types of data modalities such as images, clinical-features, and voice data. We collected the research articles from 2011 to 2022 using the keywords dementia, machine learning, feature selection, data modalities, and automated diagnostic systems. The selected articles were critically analyzed and discussed. It was observed that image data driven ML models yields promising results in terms of dementia prediction compared to other data modalities, i.e., clinical feature-based data and voice data. Furthermore, this SLR highlighted the limitations of the previously proposed automated methods for dementia and presented future directions to overcome these limitations.
Collapse
Affiliation(s)
- Ashir Javeed
- Aging Research Center, Karolinska Institutet, Tomtebodavagen, Stockholm, 17165, Solna, Sweden
- Department of Health, Blekinge Institute of Technology, Valhallavägen 1, Karlskrona, 37141, Blekinge, Sweden
| | - Ana Luiza Dallora
- Department of Health, Blekinge Institute of Technology, Valhallavägen 1, Karlskrona, 37141, Blekinge, Sweden
| | - Johan Sanmartin Berglund
- Department of Health, Blekinge Institute of Technology, Valhallavägen 1, Karlskrona, 37141, Blekinge, Sweden.
| | - Arif Ali
- Department of Computer Science, University of Science and Technology Bannu, Township, Bannu, 28100, Khyber-Pakhtunkhwa, Pakistan
| | - Liaqat Ali
- Department of Electrical Engineering, University of Science and Technology Bannu, Township, Bannu, 28100, Khyber-Pakhtunkhwa, Pakistan
| | - Peter Anderberg
- Department of Health, Blekinge Institute of Technology, Valhallavägen 1, Karlskrona, 37141, Blekinge, Sweden
- School of Health Sciences, University of Skovde, Högskolevägen 1, Skövde, SE-541 28, Skövde, Sweden
| |
Collapse
|
19
|
Sun X, Sun X, Wang Q, Wang X, Feng L, Yang Y, Jing Y, Yang C, Zhang S. Biosensors toward behavior detection in diagnosis of alzheimer’s disease. Front Bioeng Biotechnol 2022; 10:1031833. [PMID: 36338126 PMCID: PMC9626796 DOI: 10.3389/fbioe.2022.1031833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, a huge number of individuals all over the world, elderly people, in particular, have been suffering from Alzheimer’s disease (AD), which has had a significant negative impact on their quality of life. To intervene early in the progression of the disease, accurate, convenient, and low-cost detection technologies are gaining increased attention. As a result of their multiple merits in the detection and assessment of AD, biosensors are being frequently utilized in this field. Behavioral detection is a prospective way to diagnose AD at an early stage, which is a more objective and quantitative approach than conventional neuropsychological scales. Furthermore, it provides a safer and more comfortable environment than those invasive methods (such as blood and cerebrospinal fluid tests) and is more economical than neuroimaging tests. Behavior detection is gaining increasing attention in AD diagnosis. In this review, cutting-edge biosensor-based devices for AD diagnosis together with their measurement parameters and diagnostic effectiveness have been discussed in four application subtopics: body movement behavior detection, eye movement behavior detection, speech behavior detection, and multi-behavior detection. Finally, the characteristics of behavior detection sensors in various application scenarios are summarized and the prospects of their application in AD diagnostics are presented as well.
Collapse
Affiliation(s)
- Xiaotong Sun
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
| | - Xu Sun
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, Ningbo, China
- *Correspondence: Sheng Zhang, ; Xu Sun,
| | - Qingfeng Wang
- Nottingham University Business School China, University of Nottingham Ningbo China, Ningbo, Zhejiang, China
| | - Xiang Wang
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
| | - Luying Feng
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
| | - Yifan Yang
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
| | - Ying Jing
- Business School, NingboTech University, Ningbo, China
| | - Canjun Yang
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
| | - Sheng Zhang
- Ningbo Innovation Center, School of Mechanical Engineering, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
- *Correspondence: Sheng Zhang, ; Xu Sun,
| |
Collapse
|
20
|
Sprint G, Cook DJ, Schmitter-Edgecombe M, Holder LB. Multimodal Fusion of Smart Home and Text-based Behavior Markers for Clinical Assessment Prediction. ACM TRANSACTIONS ON COMPUTING FOR HEALTHCARE 2022; 3:41. [PMID: 36381500 PMCID: PMC9645787 DOI: 10.1145/3531231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/11/2022] [Indexed: 01/27/2023]
Abstract
New modes of technology are offering unprecedented opportunities to unobtrusively collect data about people's behavior. While there are many use cases for such information, we explore its utility for predicting multiple clinical assessment scores. Because clinical assessments are typically used as screening tools for impairment and disease, such as mild cognitive impairment (MCI), automatically mapping behavioral data to assessment scores can help detect changes in health and behavior across time. In this paper, we aim to extract behavior markers from two modalities, a smart home environment and a custom digital memory notebook app, for mapping to ten clinical assessments that are relevant for monitoring MCI onset and changes in cognitive health. Smart home-based behavior markers reflect hourly, daily, and weekly activity patterns, while app-based behavior markers reflect app usage and writing content/style derived from free-form journal entries. We describe machine learning techniques for fusing these multimodal behavior markers and utilizing joint prediction. We evaluate our approach using three regression algorithms and data from 14 participants with MCI living in a smart home environment. We observed moderate to large correlations between predicted and ground-truth assessment scores, ranging from r = 0.601 to r = 0.871 for each clinical assessment.
Collapse
Affiliation(s)
- Gina Sprint
- Department of Computer Science, Gonzaga University
| | - Diane J Cook
- School of Electrical Engineering and Computer Science, Washington State University
| | | | - Lawrence B Holder
- School of Electrical Engineering and Computer Science, Washington State University
| |
Collapse
|
21
|
Šubert M, Šimek M, Novotný M, Tykalová T, Bezdíček O, Růžička E, Šonka K, Dušek P, Rusz J. Linguistic Abnormalities in Isolated Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2022; 37:1872-1882. [PMID: 35799404 DOI: 10.1002/mds.29140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Patients with synucleinopathies frequently display language abnormalities. However, whether patients with isolated rapid eye movement sleep behavior disorder (iRBD) have prodromal language impairment remains unknown. OBJECTIVE We examined whether the linguistic abnormalities in iRBD can serve as potential biomarkers for conversion to synucleinopathy, including the possible effect of mild cognitive impairment (MCI), speaking task, and automation of analysis procedure. METHODS We enrolled 139 Czech native participants, including 40 iRBD without MCI and 14 iRBD with MCI, compared with 40 PD without MCI, 15 PD with MCI, and 30 healthy control subjects. Spontaneous discourse and story-tale narrative were transcribed and linguistically annotated. A quantitative analysis was performed computing three linguistic features. Human annotations were compared with fully automated annotations. RESULTS Compared with control subjects, patients with iRBD showed poorer content density, reflecting the reduction of content words and modifiers. Both PD and iRBD subgroups with MCI manifested less occurrence of unique words and a higher number of n-grams repetitions, indicating poorer lexical richness. The spontaneous discourse task demonstrated language impairment in iRBD without MCI with an area under the curve of 0.72, while the story-tale narrative task better reflected the presence of MCI, discriminating both PD and iRBD subgroups with MCI from control subjects with an area under the curve of up to 0.81. A strong correlation between manually and automatically computed results was achieved. CONCLUSIONS Linguistic features might provide a reliable automated method for detecting cognitive decline caused by prodromal neurodegeneration in subjects with iRBD, providing critical outcomes for future therapeutic trials. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Šubert
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Michal Šimek
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Michal Novotný
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Tereza Tykalová
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Ondřej Bezdíček
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic.,Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Neurology & ARTORG Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Ilias L, Askounis D. Explainable Identification of Dementia from Transcripts using Transformer Networks. IEEE J Biomed Health Inform 2022; 26:4153-4164. [PMID: 35511841 DOI: 10.1109/jbhi.2022.3172479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimers disease (AD) is the main cause of dementia which is accompanied by loss of memory and may lead to severe consequences in peoples everyday life if not diagnosed on time. Very few works have exploited transformer-based networks and despite the high accuracy achieved, little work has been done in terms of model interpretability. In addition, although Mini-Mental State Exam (MMSE) scores are inextricably linked with the identification of dementia, research works face the task of dementia identification and the task of the prediction of MMSE scores as two separate tasks. In order to address these limitations, we employ several transformer-based models, with BERT achieving the highest accuracy accounting for 87.50%. Concurrently, we propose an interpretable method to detect AD patients based on siamese networks reaching accuracy up to 83.75%. Next, we introduce two multi-task learning models, where the main task refers to the identification of dementia (binary classification), while the auxiliary one corresponds to the identification of the severity of dementia (multiclass classification). Our model obtains accuracy equal to 86.25% on the detection of AD patients in the multi-task learning setting. Finally, we present some new methods to identify the linguistic patterns used by AD patients and non-AD ones, including text statistics, vocabulary uniqueness, word usage, correlations via a detailed linguistic analysis, and explainability techniques (LIME). Findings indicate significant differences in language between AD and non-AD patients.
Collapse
|
23
|
Chen X, Pan Z. A Convenient and Low-Cost Model of Depression Screening and Early Warning Based on Voice Data Using for Public Mental Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6441. [PMID: 34198659 PMCID: PMC8296267 DOI: 10.3390/ijerph18126441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Depression is a common mental health disease, which has great harm to public health. At present, the diagnosis of depression mainly depends on the interviews between doctors and patients, which is subjective, slow and expensive. Voice data are a kind of data that are easy to obtain and have the advantage of low cost. It has been proved that it can be used in the diagnosis of depression. The voice data used for modeling in this study adopted the authoritative public data set, which had passed the ethical review. The features of voice data were extracted by Python programming, and the voice features were stored in the format of CSV files. Through data processing, a big database, containing 1479 voice feature samples, was generated for modeling. Then, the decision tree screening model of depression was established by 10-fold cross validation and algorithm selection. The experiment achieved 83.4% prediction accuracy on voice data set. According to the prediction results of the model, the patients can be given early warning and intervention in time, so as to realize the health management of personal depression.
Collapse
Affiliation(s)
- Xin Chen
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, China;
- Engineering Research Center of Mobile Health Management System, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- Institute of VR and Intelligent System, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhigeng Pan
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, China;
- Engineering Research Center of Mobile Health Management System, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- Institute of VR and Intelligent System, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
24
|
Lindsay H, Tröger J, König A. Language Impairment in Alzheimer's Disease-Robust and Explainable Evidence for AD-Related Deterioration of Spontaneous Speech Through Multilingual Machine Learning. Front Aging Neurosci 2021; 13:642033. [PMID: 34093165 PMCID: PMC8170097 DOI: 10.3389/fnagi.2021.642033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a pervasive neurodegenerative disease that affects millions worldwide and is most prominently associated with broad cognitive decline, including language impairment. Picture description tasks are routinely used to monitor language impairment in AD. Due to the high amount of manual resources needed for an in-depth analysis of thereby-produced spontaneous speech, advanced natural language processing (NLP) combined with machine learning (ML) represents a promising opportunity. In this applied research field though, NLP and ML methodology do not necessarily ensure robust clinically actionable insights into cognitive language impairment in AD and additional precautions must be taken to ensure clinical-validity and generalizability of results. In this study, we add generalizability through multilingual feature statistics to computational approaches for the detection of language impairment in AD. We include 154 participants (78 healthy subjects, 76 patients with AD) from two different languages (106 English speaking and 47 French speaking). Each participant completed a picture description task, in addition to a battery of neuropsychological tests. Each response was recorded and manually transcribed. From this, task-specific, semantic, syntactic and paralinguistic features are extracted using NLP resources. Using inferential statistics, we determined language features, excluding task specific features, that are significant in both languages and therefore represent "generalizable" signs for cognitive language impairment in AD. In a second step, we evaluated all features as well as the generalizable ones for English, French and both languages in a binary discrimination ML scenario (AD vs. healthy) using a variety of classifiers. The generalizable language feature set outperforms the all language feature set in English, French and the multilingual scenarios. Semantic features are the most generalizable while paralinguistic features show no overlap between languages. The multilingual model shows an equal distribution of error in both English and French. By leveraging multilingual statistics combined with a theory-driven approach, we identify AD-related language impairment that generalizes beyond a single corpus or language to model language impairment as a clinically-relevant cognitive symptom. We find a primary impairment in semantics in addition to mild syntactic impairment, possibly confounded by additional impaired cognitive functions.
Collapse
Affiliation(s)
- Hali Lindsay
- German Research Center for Artificial Intelligence, DFKI GmbH, Saarbrücken, Germany
| | - Johannes Tröger
- German Research Center for Artificial Intelligence, DFKI GmbH, Saarbrücken, Germany
- ki elements, Saarbrücken, Germany
| | - Alexandra König
- Institut national de recherche en informatique et en automatique (INRIA), Stars Team, Sophia Antipolis, Valbonne, France
- CoBteK (Cognition-Behavior-Technology) Lab, FRIS—University Côte d’azur, Nice, France
| |
Collapse
|
25
|
Wang T, Hong Y, Wang Q, Su R, Ng ML, Xu J, Wang L, Yan N. Identification of Mild Cognitive Impairment Among Chinese Based on Multiple Spoken Tasks. J Alzheimers Dis 2021; 82:185-204. [PMID: 33998535 DOI: 10.3233/jad-201387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies explored the use of noninvasive biomarkers of speech and language for the detection of mild cognitive impairment (MCI). Yet, most of them employed single task which might not have adequately captured all aspects of their cognitive functions. OBJECTIVE The present study aimed to achieve the state-of-the-art accuracy in detecting individuals with MCI using multiple spoken tasks and uncover task-specific contributions with a tentative interpretation of features. METHODS Fifty patients clinically diagnosed with MCI and 60 healthy controls completed three spoken tasks (picture description, semantic fluency, and sentence repetition), from which multidimensional features were extracted to train machine learning classifiers. With a late-fusion configuration, predictions from multiple tasks were combined and correlated with the participants' cognitive ability assessed using the Montreal Cognitive Assessment (MoCA). Statistical analyses on pre-defined features were carried out to explore their association with the diagnosis. RESULTS The late-fusion configuration could effectively boost the final classification result (SVM: F1 = 0.95; RF: F1 = 0.96; LR: F1 = 0.93), outperforming each individual task classifier. Besides, the probability estimates of MCI were strongly correlated with the MoCA scores (SVM: -0.74; RF: -0.71; LR: -0.72). CONCLUSION Each single task tapped more dominantly to distinct cognitive processes and have specific contributions to the prediction of MCI. Specifically, picture description task characterized communications at the discourse level, while semantic fluency task was more specific to the controlled lexical retrieval processes. With greater demands on working memory load, sentence repetition task uncovered memory deficits through modified speech patterns in the reproduced sentences.
Collapse
Affiliation(s)
- Tianqi Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China.,Speech Science Laboratory, The University of Hong Kong, Hong Kong, China
| | - Yin Hong
- Health Management Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quanyi Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Rongfeng Su
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Manwa Lawrence Ng
- Speech Science Laboratory, The University of Hong Kong, Hong Kong, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lan Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China
| |
Collapse
|
26
|
Jonell P, Moëll B, Håkansson K, Henter GE, Kucherenko T, Mikheeva O, Hagman G, Holleman J, Kivipelto M, Kjellström H, Gustafson J, Beskow J. Multimodal Capture of Patient Behaviour for Improved Detection of Early Dementia: Clinical Feasibility and Preliminary Results. FRONTIERS IN COMPUTER SCIENCE 2021. [DOI: 10.3389/fcomp.2021.642633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-invasive automatic screening for Alzheimer’s disease has the potential to improve diagnostic accuracy while lowering healthcare costs. Previous research has shown that patterns in speech, language, gaze, and drawing can help detect early signs of cognitive decline. In this paper, we describe a highly multimodal system for unobtrusively capturing data during real clinical interviews conducted as part of cognitive assessments for Alzheimer’s disease. The system uses nine different sensor devices (smartphones, a tablet, an eye tracker, a microphone array, and a wristband) to record interaction data during a specialist’s first clinical interview with a patient, and is currently in use at Karolinska University Hospital in Stockholm, Sweden. Furthermore, complementary information in the form of brain imaging, psychological tests, speech therapist assessment, and clinical meta-data is also available for each patient. We detail our data-collection and analysis procedure and present preliminary findings that relate measures extracted from the multimodal recordings to clinical assessments and established biomarkers, based on data from 25 patients gathered thus far. Our findings demonstrate feasibility for our proposed methodology and indicate that the collected data can be used to improve clinical assessments of early dementia.
Collapse
|
27
|
Zhang L, Ni H, Yu Z, Wang J, Qin J, Hou F, Yang A. Investigation on the Alteration of Brain Functional Network and Its Role in the Identification of Mild Cognitive Impairment. Front Neurosci 2020; 14:558434. [PMID: 33100958 PMCID: PMC7556272 DOI: 10.3389/fnins.2020.558434] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/04/2020] [Indexed: 01/13/2023] Open
Abstract
Mild cognitive impairment (MCI) is generally regarded as a prodromal stage of Alzheimer’s disease (AD). In coping with the challenges caused by AD, we analyzed resting-state functional magnetic resonance imaging data of 82 MCI subjects and 93 normal controls (NCs). The alteration of brain functional network in MCI was investigated on three scales, including global metrics, nodal characteristics, and modular properties. The results supported the existence of small worldness, hubs, and community structure in the brain functional networks of both groups. Compared with NCs, the network altered in MCI over all the three scales. In scale I, we found significantly decreased characteristic path length and increased global efficiency in MCI. Moreover, altered global network metrics were associated with cognitive level evaluated by neuropsychological assessments. In scale II, the nodal betweenness centrality of some global hubs, such as the right Crus II of cerebellar hemisphere (CERCRU2.R) and fusiform gyrus (FFG.R), changed significantly and associated with the severity and cognitive impairment in MCI. In scale III, although anatomically adjacent regions tended to be clustered into the same module regardless of group, discrepancies existed in the composition of modules in both groups, with a prominent separation of the cerebellum and a less localized organization of community structure in MCI compared with NC. Taking advantages of random forest approach, we achieved an accuracy of 91.4% to discriminate MCI patients from NCs by integrating cognitive assessments and network analysis. The importance of the used features fed into the classifier further validated the nodal characteristics of CERCRU2.R and FFG.R could be potential biomarkers in the identification of MCI. In conclusion, the present study demonstrated that the brain functional connectome data altered at the stage of MCI and could assist the automatic diagnosis of MCI patients.
Collapse
Affiliation(s)
- Lulu Zhang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, China
| | - Huangjing Ni
- Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Zhinan Yu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, China
| | - Jun Wang
- Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jiaolong Qin
- Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Fengzhen Hou
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, China
| | - Albert Yang
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|