1
|
Yin P, Xu J, Liu Y, Wang S, Liu T, Tang X, Hong N. T2-weighted magnetic resonance imaging radiogenomic features for the prediction of neoadjuvant chemotherapy response in patients with osteosarcoma. Acta Radiol 2025:2841851251337849. [PMID: 40375792 DOI: 10.1177/02841851251337849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
BackgroundOsteosarcoma (OS) is the most common primary malignant bone tumor. Exploring quantitative parameters that reflect the outcome of neoadjuvant chemotherapy (NACT) in patients with OS can help advance the treatment of patients.PurposeTo explore the role of T2-weighted (T2W) magnetic resonance imaging (MRI) radiogenomic features in characterizing changes in patients with OS and on NACT.Material and MethodsA total of 21 patients with OS were examined retrospectively and divided into a poor-response group (n = 13) and a good-response group (n = 8). A total of 98 radiomic features and 31 gene expression profiles were analyzed for each patient. Age, sex, alkaline phosphatase, pathologic type, tumor size, and tumor location were also analyzed. Comparisons between the good- and poor-response groups were made using the t-test, Mann-Whitney U test, or Fisher's exact test. The relationships between radiomic features and gene expression profiles were conducted using Spearman's correlative analyses.ResultsStatistical differences in 19 radiomics features and glutathione-s-transferase 1 were found between the good- and poor-response groups (P < 0.05). The receiver operating characteristic curve showed that four NGTDM busyness features had the best performance in predicting the NACT of patients with OS, with an area under the curve of 0.788, sensitivity of 0.750, and specificity of 0.923. Correlation analysis showed that the HLA_I, CD274, GSTP1, and CCND3 were significantly correlated with one or more radiomics features (P < 0.05).ConclusionThe T2W MRI radiogenomic features can be used as biomarkers for the early response evaluation of NACT in OS. This is the first study to analyze the association of T2 radiogenomic features with NACT in patients with OS to assist in the assessment of NACT.
Collapse
Affiliation(s)
- Ping Yin
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, PR China
| | - Ying Liu
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| | - Sicong Wang
- MR Research China, GE Healthcare, Beijing, PR China
| | - Tao Liu
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, PR China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| |
Collapse
|
2
|
Iwata S, Noguchi R, Osaki J, Adachi Y, Shiota Y, Ogura K, Nishino S, Yoshida A, Ohtori S, Kawai A, Kondo T. Establishment and characterization of NCC-OS2-C1: a novel patient-derived cell line of osteosarcoma. Hum Cell 2025; 38:81. [PMID: 40169461 DOI: 10.1007/s13577-025-01198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025]
Abstract
Osteosarcoma is the most common primary bone sarcoma with a bimodal age distribution. Complete surgical resection with neoadjuvant chemotherapy is the standard curative treatment, and no effective therapeutic strategy has been established for metastatic cases, resulting in poor prognosis. Osteosarcoma presents complex and heterogeneous clinical and molecular features, and no molecular-targeted drugs are available. Therefore, effective multidisciplinary treatment strategies are urgently required. Patient-derived cell lines are essential tools in basic and translational oncology. Considering the heterogeneity of the disease, we established a novel cell line, NCC-OS2-C1, using surgically resected tumor tissues from a patient with osteosarcoma. NCC-OS2-C1 cells demonstrated constant proliferation, spheroid formation, and invasion. In addition, we demonstrated that NCC-OS2-C1 is applicable for the high-throughput screening of drugs. Thus, NCC-OS2-C1 is a valuable tool for basic and translational research on osteosarcoma.
Collapse
Affiliation(s)
- Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yomogi Shiota
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Koichi Ogura
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shogo Nishino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
3
|
Lu XG, Meng SL, Zhou QJ, Wu T, Gong XT, Wu Q. Cellulose nanofiber reinforced curcumin-infused calcium phosphate silicate cement for various bone-tissue engineering application. Front Oncol 2025; 14:1516638. [PMID: 39876894 PMCID: PMC11772290 DOI: 10.3389/fonc.2024.1516638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction This study utilized a injectable curcumin (Cur)-infused calcium phosphate silicate cement (CPSC) for addressing defects caused by bone cancer, and evaluated its promoting bone regeneration and exerting cytotoxic effects on osteosarcoma cells. Methods The material's physicochemical properties, biocompatibility with osteoblasts, and cytotoxicity toward osteosarcoma cells were rigorously analyzed. Results The findings demonstrate that CPSC-Cur signicantly prolongs the setting time, which can be optimized by adding silanized cellulose nanober (CNF-SH) to achieve a balance between workability and mechanical strength. Biological assessments reveal a pronounced cytotoxic effect on osteosarcoma cells while maintaining minimal toxicity toward pre-osteoblasts, highlighting CPSC-Cur's potential as a promising material for repairing bone defects following cancer removal. Conclusion This study lays the groundwork for future investigations into CPSC-Cur's in vivo efficacy and its role in the clinical treatment of bone cancer.
Collapse
Affiliation(s)
- Xiu Guo Lu
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Sha Li Meng
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
- Department of Biomedical Engineering, Shenyang University of Technology, Shenyang, China
| | - Qiu Jing Zhou
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
- Department of Biomedical Engineering, Shenyang University of Technology, Shenyang, China
| | - Tao Wu
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
- Department of Biomedical Engineering, Shenyang University of Technology, Shenyang, China
| | - Xing Tian Gong
- Department of Biomedical Engineering, Shenyang University of Technology, Shenyang, China
| | - Qiong Wu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Iravani S, Nazarzadeh Zare E, Makvandi P. Multifunctional MXene-Based Platforms for Soft and Bone Tissue Regeneration and Engineering. ACS Biomater Sci Eng 2024; 10:1892-1909. [PMID: 38466909 DOI: 10.1021/acsbiomaterials.3c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
MXenes and their composites hold great promise in the field of soft and bone tissue regeneration and engineering (TRE). However, there are challenges that need to be overcome, such as ensuring biocompatibility and controlling the morphologies of MXene-based scaffolds. The future prospects of MXenes in TRE include enhancing biocompatibility through surface modifications, developing multifunctional constructs, and conducting in vivo studies for clinical translation. The purpose of this perspective about MXenes and their composites in soft and bone TRE is to critically evaluate their potential applications and contributions in this field. This perspective aims to provide a comprehensive analysis of the challenges, advantages, limitations, and future prospects associated with the use of MXenes and their composites for soft and bone TRE. By examining the existing literature and research, the review seeks to consolidate the current knowledge and highlight the key findings and advancements in MXene-based TRE. It aims to contribute to the understanding of MXenes' role in promoting soft and bone TRE, addressing the challenges faced in terms of biocompatibility, morphology control, and tissue interactions.
Collapse
Affiliation(s)
- Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Avenue, Isfahan 81756-33551, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
- Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang, China
- Chitkara Centre for Research and Development, Chitkara University, Kalujhanda 174103, Himachal Pradesh, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| |
Collapse
|
5
|
Shanmugavadivu A, Lekhavadhani S, Miranda PJ, Selvamurugan N. Current approaches in tissue engineering-based nanotherapeutics for osteosarcoma treatment. Biomed Mater 2024; 19:022003. [PMID: 38324905 DOI: 10.1088/1748-605x/ad270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Osteosarcoma (OS) is a malignant bone neoplasm plagued by poor prognosis. Major treatment strategies include chemotherapy, radiotherapy, and surgery. Chemotherapy to treat OS has severe adverse effects due to systemic toxicity to healthy cells. A possible way to overcome the limitation is to utilize nanotechnology. Nanotherapeutics is an emerging approach in treating OS using nanoparticulate drug delivery systems. Surgical resection of OS leaves a critical bone defect requiring medical intervention. Recently, tissue engineered scaffolds have been reported to provide physical support to bone defects and aid multimodal treatment of OS. These scaffolds loaded with nanoparticulate delivery systems could also actively repress tumor growth and aid new bone formation. The rapid developments in nanotherapeutics and bone tissue engineering have paved the way for improved treatment efficacy for OS-related bone defects. This review focuses on current bifunctional nanomaterials-based tissue engineered (NTE) scaffolds that use novel approaches such as magnetic hyperthermia, photodynamic therapy, photothermal therapy, bioceramic and polymeric nanotherapeutics against OS. With further optimization and screening, NTE scaffolds could meet clinical applications for treating OS patients.
Collapse
Affiliation(s)
- Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | | | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
6
|
Xiong H, Huang G, Zhu Y, Chen R, Zuo L, Liu H. Circ-SHPRH in human cancers: a systematic review and meta-analysis. Front Cell Dev Biol 2023; 11:1182900. [PMID: 37305675 PMCID: PMC10248025 DOI: 10.3389/fcell.2023.1182900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Circular RNA (circRNA) molecules are noncoding RNAs with ring-like structures formed by covalent bonds and are characterized by no 5'caps or 3'polyadenylated tails. Increasing evidence shows that circRNAs may play an important role in tumorigenesis and cancer metastasis. Circ-SHPRH originates from exons 26-29 of the SHPRH gene, and it is closely associated with human cancers. We searched PubMed, Web of Science, and Embase databases for relevant literatures until 24 December 2022. Eighteen research papers were included in this review, and 11 papers were selected for meta-analysis after screening. Three eligible published studies about circ-SHPRH were enrolled based on their tumor diagnosis aspect, 7 eligible published studies were related to overall survival (OS), and 3 eligible published studies were related to tumor grade. Many studies have shown that circ-SHPRH acts as a miRNA sponge or encodes a protein to regulate downstream genes or signal pathways, and exerts specific biological functions that affect the proliferation, invasion, and apoptosis of cancer cells. Meta-analysis showed that patients with high expression of circ-SHPRH had better OS (HR = 0.53, 95% CI 0.38-0.74, p-value <0.05) and lower TNM stage (HR = 0.33, 95% CI 0.18-0.62, p-value = 0.001). In addition, circ-SHPRH has potential diagnostic value (AUC = 0.8357). This review will help enrich our understanding of the role and mechanism of circ-SHPRH in human cancers. Circ-SHPRH has the potential to be a novel diagnostic and prognostic biomarker for various solid cancers.
Collapse
Affiliation(s)
- Hong Xiong
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gaozhen Huang
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yi Zhu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ruiqi Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hongwei Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Pierrevelcin M, Flacher V, Mueller CG, Vauchelles R, Guerin E, Lhermitte B, Pencreach E, Reisch A, Muller Q, Doumard L, Boufenghour W, Klymchenko AS, Foppolo S, Nazon C, Weingertner N, Martin S, Briandet C, Laithier V, Di Marco A, Bund L, Obrecht A, Villa P, Dontenwill M, Entz-Werlé N. Engineering Novel 3D Models to Recreate High-Grade Osteosarcoma and its Immune and Extracellular Matrix Microenvironment. Adv Healthc Mater 2022; 11:e2200195. [PMID: 36057996 DOI: 10.1002/adhm.202200195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Indexed: 01/27/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone cancer, where the overall 5-year surviving rate is below 20% in resistant forms. Accelerating cures for those poor outcome patients remains a challenge. Nevertheless, several studies of agents targeting abnormal cancerous pathways have yielded disappointing results when translated into clinic because of the lack of accurate OS preclinical modeling. So, any effort to design preclinical drug testing may consider all inter-, intra-, and extra-tumoral heterogeneities throughout models mimicking extracellular and immune microenvironment. Therefore, the bioengineering of patient-derived models reproducing the OS heterogeneity, the interaction with tumor-associated macrophages (TAMs), and the modulation of oxygen concentrations additionally to recreation of bone scaffold is proposed here. Eight 2D preclinical models mimicking several OS clinical situations and their TAMs in hypoxic conditions are developed first and, subsequently, the paired 3D models faithfully preserving histological and biological characteristics are generated. It is possible to shape reproducibly M2-like macrophages cultured with all OS patient-derived cell lines in both dimensions. The final 3D models pooling all heterogeneity features are providing accurate proliferation and migration data to understand the mechanisms involved in OS and immune cells/biomatrix interactions and sustained such that engineered 3D preclinical systems will improve personalized medicine.
Collapse
Affiliation(s)
- Marina Pierrevelcin
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Vincent Flacher
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Christopher G Mueller
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Romain Vauchelles
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Eric Guerin
- Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Benoît Lhermitte
- Pathology department, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Erwan Pencreach
- Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Andreas Reisch
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Quentin Muller
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Layal Doumard
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Wacym Boufenghour
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Andrey S Klymchenko
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Sophie Foppolo
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Charlotte Nazon
- Pediatric Onco-hematology unit, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Noelle Weingertner
- Pathology department, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Sophie Martin
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Claire Briandet
- Pediatric Onco-hematology unit, Hospital of "Le Bocage"- University Hospital of Dijon, 1 bd Jeanne d'Arc, Dijon, 21079, France
| | - Véronique Laithier
- Pediatric Onco-hematology unit, University Hospital of Besançon, 3, boulevard A. Fleming, Besançon, 25030, France
| | - Antonio Di Marco
- Department of Orthopedic Surgery and Traumatology, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Laurent Bund
- Department of Pediatric Surgery, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Adeline Obrecht
- PCBIS Plate-forme de chimie biologique intégrative de Strasbourg, UMS 3286 CNRS, University of Strasbourg, Labex Medalis, 300 Bld Sébastien Brant, Illkirch, 67412, France
| | - Pascal Villa
- PCBIS Plate-forme de chimie biologique intégrative de Strasbourg, UMS 3286 CNRS, University of Strasbourg, Labex Medalis, 300 Bld Sébastien Brant, Illkirch, 67412, France
| | - Monique Dontenwill
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Natacha Entz-Werlé
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France.,Pediatric Onco-hematology unit, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| |
Collapse
|
8
|
Construction of Molecular Subtype and Prognosis Prediction Model of Osteosarcoma Based on Aging-Related Genes. JOURNAL OF ONCOLOGY 2022; 2022:8177948. [PMID: 36157228 PMCID: PMC9507679 DOI: 10.1155/2022/8177948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 01/10/2023]
Abstract
Background Osteosarcoma (OS) is a rare form of malignant bone cancer that is usually detected in young adults and adolescents. This disease shows a poor prognosis owing to its metastatic status and resistance to chemotherapy. Hence, it is necessary to design a risk model that can successfully forecast the OS prognosis in patients. Methods The researchers retrieved the RNA sequencing data and follow-up clinical data related to OS patients from the TARGET and GEO databases, respectively. The coxph function in R software was used for carrying out the Univariate Cox regression analysis for deriving the aging-based genes related sto the OS prognosis. The researchers conducted consistency clustering using the ConcensusClusterPlus R package. The R software package ESTIMATE, MCPcounter, and GSVA packages were used for assessing the immune scores of various subtypes using the ssGSEA technique, respectively. The Univariate Cox and Lasso regression analyses were used for screening and developing a risk model. The ROC curves were constructed, using the pROC package. The performance of their developed risk model and designed survival curve was conducted, with the help of the Survminer package. Results The OS patients were classified into 2 categories, as per the aging-related genes. The results revealed that the Cluster 1 patients showed a better prognosis than the Cluster 2 patients. Both clusters showed different immune microenvironments. Additional screening of the prognosis-associated genes revealed the presence of 5 genes, i.e., ERCC4, GPX4, EPS8, TERT, and STAT5A, and these data were used for developing the risk model. This risk model categorized the training set samples into the high- and low-risk groups. The patients classified into the high-risk group showed a poor OS prognosis compared to the low-risk patients. The researchers verified the reliability and robustness of the designed 5-gene signature using the internal and external datasets. This risk model was able to effectively predict the prognosis even in the samples having differing clinical features. Compared with other models, the 5- gene model performs better in predicting the risk of osteosarcoma. Conclusion The 5-gene signature developed by the researchers in this study could be effectively used for forecasting the OS prognosis in patients.
Collapse
|
9
|
Supercritical Fluid-Assisted Fabrication of PDA-Coated Poly (l-lactic Acid)/Curcumin Microparticles for Chemo-Photothermal Therapy of Osteosarcoma. COATINGS 2022. [DOI: 10.3390/coatings12040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After traditional osteosarcoma resection, recurrence of tumor is still a major clinical challenge. The combination of chemotherapy and photothermal therapy (PTT) has great potential in improving therapeutic effect. However, the studies using polydopamine (PDA) as photothermal transducing agent to improve the anti-cancer activity of curcumin (CM)-loaded poly (l-lactic acid) (PLLA) microparticles (PLLA/CM) have seldom been investigated. In this study, we reported the synthesis of PDA-coated PLLA/CM microparticles (PDA-PLLA/CM) prepared by PDA coating on the surface of the PLLA/CM microparticles fabricated by solution-enhanced dispersion by supercritical CO2 (SEDS) for chemo-photothermal therapy of osteosarcoma. The average particle sizes of PLLA/CM and PDA-PLLA/CM microparticles with a spherical shape were (802.6 ± 8.0) nm and (942.5 ± 39.5) nm, respectively. PDA-PLLA/CM microparticles exhibited pH- and near-infrared (NIR)-responsive release behavior to promote CM release in the drug delivery system. Moreover, PDA-PLLA/CM microparticles displayed good photothermal conversion ability and photothermal stability attributed to PDA coating. Additionally, the results of in vitro anti-cancer experiment showed that 500 μg/mL PDA-PLLA/CM microparticles had good anti-cancer effect on MG-63 cells and no obvious toxicity to MC3T3-E1 cells. After incubation with PDA-PLLA/CM microparticles for 2 days, NIR irradiation treatment improved the anti-cancer activity of PDA-PLLA/CM microparticles obviously and reduced the cell viability of osteosarcoma from 47.4% to 20.6%. These results indicated that PDA-PLLA/CM microparticles possessed a synergetic chemo-photothermal therapy for osteosarcoma. Therefore, this study demonstrated that PDA-PLLA/CM microparticles may be an excellent drug delivery platform for chemo-photothermal therapy of tumors.
Collapse
|
10
|
Dana PM, Sadoughi F, Asemi Z, Yousefi B. Molecular signaling pathways as potential therapeutic targets in osteosarcoma. Curr Med Chem 2022; 29:4436-4444. [PMID: 35139778 DOI: 10.2174/0929867329666220209110009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Among primary bone malignancies, osteosarcoma (OS) is the most common form causing morbidity and mortality in both adults and children. The interesting point about this malignancy is that nearly 10-20% of its newly diagnosed cases have developed metastasis. This adds up to the fact that the survival rate of both metastatic and non-metastatic patients of osteosarcoma hasn't changed in the past 30 years and suggests that we need to revise our therapeutic options for OS. In recent years, diverse signaling pathways have drawn the attention of the scientific community since they can be great candidates for treating complicated diseases such as cancer. In this review, we have tried to explain the pathophysiology of osteosarcoma by the help of different signaling pathways taking part in its initiation/progression and investigate how this pathway can be targeted for providing more efficient methods.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Chen K, Li C, Huang S, Chen Y, Zhu X. LncRNA KASRT Serves as a Potential Treatment Target by Regulating SRSF1-Related KLF6 Alternative Splicing and the P21/CCND1 Pathway in Osteosarcoma: An In Vitro and In Vivo Study. Front Oncol 2021; 11:700963. [PMID: 34568030 PMCID: PMC8458968 DOI: 10.3389/fonc.2021.700963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose Long non-coding RNA KLF6 alternative splicing regulating transcript (lnc-KASRT) locates within the intronic region of SRSF1, possessing the potential to regulate KLF6 alternative splicing to promote carcinogenicity. Then, the current in vitro and in vivo study aimed to investigate the effect of lnc-KASRT on regulating tumor malignant behaviors, and the implication of its interaction with KLF6 alternative splicing in osteosarcoma. Methods Lnc-KASRT overexpression or knockdown plasmid was transfected into U-2OS and Saos-2 cells. Then, KLF6-SV1 knockdown plasmid with or without lnc-KASRT overexpression plasmid was transfected into these cells for compensative experiments. In vivo, lnc-KASRT overexpression or knockdown Saos-2 cells were injected in mice for tumor xenograft construction. Results Lnc-KASRT expression was increased in most osteosarcoma cell lines compared to control cell line. Lnc-KASRT overexpression promoted cell viability, mobility, and anti-apoptotic marker expression, while reducing apoptosis rate and pro-apoptotic marker expression; meanwhile, it regulated SRSF1, KLF6 alternative splicing (increased KLF6-splice variant 1 (KLF6-SV1), decreased KLF6-wild type (KLF6-WT)), and followed P21/CCND1 pathway in U-2OS/Saos-2 cells. The lnc-KASRT knockdown exhibited opposite trends. Subsequent compensative experiments disclosed that KLF6-SV1 knockdown attenuated most of the tumor-promoting effects of lnc-KASRT overexpression in U-2OS/Saos-2 cells. In vivo experiments further validated that lnc-KASRT enhanced tumor growth and reduced tumor apoptosis; meanwhile, it also increased tumor KLF6-SV1, MMP-1, and MMP-9 expressions but decreased tumor SRSF1 and KLF6-WT expressions in xenograft mice. Conclusion Lnc-KASRT serves as a potential treatment target via regulating SRSF1-related KLF6 alternative splicing and following P21/CCND1 pathway in osteosarcoma.
Collapse
Affiliation(s)
- Kai Chen
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Cheng Li
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuai Huang
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yu Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaodong Zhu
- Department of Spine Surgery, Shanghai Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|