1
|
Han Y, Wang Y, Guan M. Preventive effect of probiotics on infections following colorectal cancer surgery: An umbrella meta-analysis. World J Gastrointest Surg 2024; 16:3546-3558. [PMID: 39649207 PMCID: PMC11622088 DOI: 10.4240/wjgs.v16.i11.3546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/07/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Postoperative infections remain a significant source of morbidity among patients undergoing colorectal cancer (CRC) surgery. While probiotics have been proposed as a potential strategy to mitigate the risk of these infections, contemporary meta-analyses have produced conflicting findings. AIM To synthesize the available evidence regarding the prophylactic efficacy of probiotics in preventing infections following CRC surgery. METHODS A comprehensive search of PubMed and Scopus was conducted to identify relevant meta-analyses published up to February 2024. To assess the efficacy of probiotics on outcomes, relative risks (RR) and their corresponding 95%CI were pooled using a random effects model. RESULTS This comprehensive umbrella meta-analysis integrated eleven meta-analyses encompassing 11518 participants who fulfilled the inclusion criteria. Probiotics administration resulted in a statistically significant reduction in the incidence of total infections (RR: 0.40, 95%CI: 0.31-0.51; moderate certainty), surgical site infections (RR: 0.56, 95%CI: 0.49-0.63; high certainty), pneumonia (RR: 0.38, 95%CI: 0.30-0.48; high certainty), urinary tract infections (RR: 0.44, 95%CI: 0.31-0.61; moderate certainty), bacteremia (RR: 0.41, 95%CI: 0.30-0.56; high certainty), and sepsis (RR: 0.35, 95%CI: 0.25-0.44; high certainty). However, probiotics did not significantly affect intra-abdominal, central line, or peritoneal infections. CONCLUSION Probiotics have demonstrated potential in mitigating postoperative infectious complications among patients undergoing CRC surgery.
Collapse
Affiliation(s)
- Yue Han
- Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan 250031, Shandong Province, China
| | - Yong Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan 250031, Shandong Province, China
| | - Min Guan
- Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan 250031, Shandong Province, China
| |
Collapse
|
2
|
Hu Y, Zhou P, Deng K, Zhou Y, Hu K. Targeting the gut microbiota: a new strategy for colorectal cancer treatment. J Transl Med 2024; 22:915. [PMID: 39379983 PMCID: PMC11460241 DOI: 10.1186/s12967-024-05671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND How to reduce the high incidence rate and mortality of colorectal cancer (CRC) effectively is the focus of current research. Endoscopic treatment of early-stage CRC and colorectal adenomas (CAC) has a high success rate, but although several treatments are available for advanced CRC, such as surgery, radiotherapy, chemotherapy, and immunotherapy, the 5-year survival rate remains low. In view of the high incidence rate and mortality of CRC, early rational drug prevention for high-risk groups and exploration of alternative treatment modalities are particularly warranted. Gut microbiota is the target of and interacts with probiotics, prebiotics, aspirin, metformin, and various Chinese herbal medicines (CHMs) for the prevention of CRC. In addition, the anti-cancer mechanisms of probiotics differ widely among bacterial strains, and both bacterial strains and their derivatives and metabolites have been found to have anti-cancer effects. Gut microbiota plays a significant role in early drug prevention of CRC and treatment of CRC in its middle and late stages, targeting gut microbiota may be a new strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Yue Hu
- Health Science Center, Ningbo University, Ningbo, China
| | - Peng Zhou
- Health Science Center, Ningbo University, Ningbo, China
| | - Kaili Deng
- Health Science Center, Ningbo University, Ningbo, China
| | - Yuping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- Institute of Digestive Disease of Ningbo University, Ningbo, China.
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo, China.
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Yang Z, Zhang S, Ying L, Zhang W, Chen X, Liang Y, Chen R, Yao K, Li C, Yu C, Jamilian P, Zarezadeh M, Kord-Varkaneh H, Wang J, Li H. The effect of probiotics supplementation on cancer-treatment complications: a critical umbrella review of interventional meta-analyses. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39002141 DOI: 10.1080/10408398.2024.2372880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Cancer-related complications pose significant challenges in the management and treatment of patients with malignancies. Several meta-analyses have indicated improving effects of probiotics on cancer complications, while some studies have reported contentious findings. The purpose of the present study was to evaluate the efficacy of probiotics in addressing cancer complications, including diarrhea, mucositis, and infections, following chemotherapy, radiotherapy, and surgery. Relevant studies were searched in the PubMed, Scopus, Embase and Web of Science databases and Google Scholar up to September 2023. All meta-analyses addressing the effects of probiotics on all cancer treatments-induced complications including infection, diarrhea and oral mucositis were included. The pooled results were calculated using a random-effects model. Analyses of subgroups, sensitivity and publication bias were also conducted. The results revealed that the probiotics supplementation was effective on reduction of total cancer complications (OR:0.53; 95% CI: 0.44, 0.62, p < 0.001; I2=79.0%, p < 0.001), total infection rate (OR:0.47; 95%CI: 0.41, 0.52, p < 0.001; I2= 48.8%, p < 0.001); diarrhea (OR:0.50; 95%CI: 0.44, 0.57, p < 0.001; I2=44.4%, p = 0.023) and severe diarrhea (OR: 0.4; 95%CI: 0.27, 0.56, p < 0.001; I2=31.3%, p = 0.178), oral mucositis (OR: 0.76; 95%CI: 0.58, 0.94, p < 0.001; I2=95.5%, p < 0.001) and severe oral mucositis (OR:0.65, 95%CI: 0.58, 0.72 p < 0.001; I2=22.1%, p = 0.274). Multi strain probiotic (OR:0.49; 95%CI: 0.32, 0.65, p < 0.001; I2=90.7%, p < 0.001) were more efficacious than single strain (OR:0.73; 95%CI: 0.66, 0.81, p < 0.001; I2=0.00%, p = 0.786). The findings of the current umbrella meta-analysis provide strong evidence that probiotic supplementation can reduce cancer complications.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, China
| | - Shijie Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Xinchang Pharmaceutical Factory, Zhejiang Medicine Co., Ltd, Shaoxing, China
| | - Lu Ying
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, China
| | - Wenjing Zhang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoyang Chen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Youfeng Liang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Ruolan Chen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Keying Yao
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Chunhui Li
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Parmida Jamilian
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Kord-Varkaneh
- Department of Nutrition and Food Hygiene, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Hanmin Li
- Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine (Hubei University of Traditional Chinese Medicine Affiliated Hospital), Wuhan, Hubei Province, China
- Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Key Laboratory, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Moreira MM, Carriço M, Capelas ML, Pimenta N, Santos T, Ganhão-Arranhado S, Mäkitie A, Ravasco P. The impact of pre-, pro- and synbiotics supplementation in colorectal cancer treatment: a systematic review. Front Oncol 2024; 14:1395966. [PMID: 38807764 PMCID: PMC11130488 DOI: 10.3389/fonc.2024.1395966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction The effectiveness of the supplementation of prebiotics, probiotics and synbiotics as a therapeutic approach in colorectal cancer (CRC) remains unclear. The aim of this systematic review is to critically examine the current scientific evidence on the impact of modulating the microbiota, through the use of prebiotics, probiotics and synbiotics, in patients diagnosed with CRC undergoing treatment, to determine the potential therapeutic use of this approach. Methods This systematic review was made according to the PRISMA 2020 guidelines. Inclusion criteria were randomized controlled trials (RCT) comparing the impact of pre-, pro-, or synbiotic supplementation with placebo or standard care in patients with CRC undergoing treatment. Exclusion criteria were non-human studies, non-RCTs, and studies in languages other than English or Portuguese. Six databases were consulted, namely, Cochrane Library, Pubmed, Scopus, Cinahl, MedicLatina and Web of Science until May of 2023. RAYYAN software was used to manage the search results and risk of bias was assessed according to the guidelines of the Cochrane Collaboration using the Rob 2.0 tool. Results Twenty-four RCTs met the inclusion criteria and were included in this review. Administration of pre-, pro-, or synbiotics improved surgical outcomes such as the incidence of infectious and non-infectious postoperative complications, return to normal gut function, hospital length of stay, and antibiotic usage. The supplementation of these microorganisms also alleviated some symptoms from chemotherapy and radiotherapy, mainly diarrhea. Evidence on the best approach in terms of types of strains, dosage and duration of intervention is still scarce. Conclusions Pre-, pro-, and synbiotics supplementation appears to be a beneficial therapeutic approach in CRC treatment to improve surgical outcomes and to alleviate side-effects such as treatment toxicity. More RCTs with larger sample sizes and less heterogeneity are needed to confirm these potential benefits and to determine the best strains, dosage, and duration of administration in each situation. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42023413958.
Collapse
Affiliation(s)
- Mariana Melo Moreira
- Universidade Católica Portuguesa, Faculty of Health Sciences and Nursing (FCSE), Lisboa, Portugal
| | - Marta Carriço
- Champalimaud Foundation, Nutrition Service of Champalimaud Clinical Center, Lisbon, Portugal
| | - Manuel Luís Capelas
- Universidade Católica Portuguesa, Faculty of Health Sciences and Nursing (FCSE), Lisboa, Portugal
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
| | - Nuno Pimenta
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
- Polytechnic Institute of Santarém, Sport Sciences School of Rio Maior, Rio Maior, Portugal
- Sport Physical Activity and Health Research and Innovation Center (SPRINT), Santarém Polytechnic University, Rio Maior, Portugal
| | - Teresa Santos
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
- Faculdade de Ciências Sociais e Tecnologia, Universidade Europeia de Lisboa, Lisbon, Portugal
| | - Susana Ganhão-Arranhado
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
- Atlântica, Instituto Universitário, Barcarena, Portugal
- CINTESIS, Centre for Health Technology and Services Research, Porto, Portugal
| | - Antti Mäkitie
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Paula Ravasco
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Rio de Mouro, Portugal
- Center for Interdisciplinary Research Egas Moniz, Egas Moniz School of Health & Science, Almada, Portugal
| |
Collapse
|
5
|
The Role of Probiotics in Inflammation Associated with Major Surgery: A Narrative Review. Nutrients 2023; 15:nu15061331. [PMID: 36986061 PMCID: PMC10059922 DOI: 10.3390/nu15061331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Gut microbiota is well-known for its ability to maintain intestinal homeostasis. However, the disruption of this homeostasis, known as dysbiosis, leads to multiple consequences, including local and systemic inflammation. Surgery-induced inflammation is a major concern for patients, as it leads to many infectious and non-infectious complications. Objective: The purpose of this review was to explore the role of probiotics and symbiotics in surgery-induced inflammation and to determine if their use is effective in combatting inflammation and its complications Methods and Materials: A literature search was conducted, and articles published only in English, until December 2022 were included. The results are reported in the form of a narrative review. Results: The perioperative use of probiotics and/or symbiotics results in lower risk of infectious complications, including reduced rates of surgical site infections, respiratory and urinary tract infections, shorter hospital stays, and fewer days of antibiotic administration. It also contributes to reducing non-infectious complications, as it mitigates systemic and local inflammation via maintenance of the intestinal barrier, improves intestinal mobility, and is associated with lower rates of postoperative pain and anastomotic leak. Conclusions: Restoring gut microbiota after disruptions caused by surgery may accelerate local healing processes, attenuate systemic inflammation, and may thus prove beneficial to certain populations.
Collapse
|
6
|
Veziant J, Bonnet M, Occean BV, Dziri C, Pereira B, Slim K. Probiotics/Synbiotics to Reduce Infectious Complications after Colorectal Surgery: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2022; 14:3066. [PMID: 35893922 PMCID: PMC9332115 DOI: 10.3390/nu14153066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
AIM The aims of this systematic review and meta-analysis were to assess to what extent probiotics/synbiotics reduce infectious complications after colorectal surgery and whether probiotics or synbiotics should be considered as perioperative measures preventing or reducing infectious complications after CRS and should be included in enhanced recovery programmes (ERP). Secondary aims were to answer practical questions precisely on the best formulation and the type and timing of probiotics or synbiotics in CRS. METHOD This systematic review and quantitative meta-analysis were conducted in accordance with PRISMA 2020 guidelines. Inclusion criteria were randomised trials comparing perioperative probiotics/synbiotics with a placebo or standard care in elective colorectal surgery. Exclusion criteria were non-randomised trials. Overall infectious complications and surgical site infections (SSIs including both deep abdominal infections and wound (skin or under the skin) infections) were the primary outcomes. Secondary outcomes were pulmonary and urinary infections, wound infections, and anastomotic leaks. The databases consulted were Medline, Cochrane Database of Systematic Reviews, Scopus, and Clinical Trials Register. Risk of bias was assessed according to the GRADE approach. The analysis calculated the random effects estimates risk ratio (RR) for each outcome. RESULTS 21 trials were included; 15 evaluated probiotics, and 6 evaluated synbiotics. There were significantly fewer infectious complications (risk ratio (RR) 0.59 [0.47-0.75], I2 = 15%) and fewer SSI (RR 0.70 [0.52-0.95], I2 = 0%) in the probiotic or synbiotic group. There were also significantly fewer pulmonary infections (RR 0.35 [0.20-0.63]) and urinary infections RR 0.41 [0.19-0.87]) as opposed to anastomotic leaks (RR 0.83 [0.47-1.48]) and wound infections (RR 0.74 [0.53-1.03]). Sensitivity analyses showed no significant difference between probiotics and synbiotics in reducing postoperative infections (RR 0.55 [0.42-0.73] versus RR 0.69 [0.42-1.13], p = 0.46). CONCLUSIONS Based on the finding of this study, probiotics/synbiotics reduce infectious complications after colorectal surgery. The effect size was more pronounced for pulmonary and urinary infections. From a practical aspect, some of the questions related to formulations and duration of probiotics or synbiotics need to be answered before including them definitively in enhanced recovery after colorectal surgery programmes.
Collapse
Affiliation(s)
- Julie Veziant
- Department of Digestive and Oncological Surgery, University Hospital Lille, 59000 Lille, France;
- The Francophone Group for Enhanced Recovery after Surgery, GRACE, 63110 Beaumont, France
- M2iSH UMR 1071 Inserm/Clermont Auvergne University, USC-INRAE 2018, CRNH, 63000 Clermont-Ferrand, France;
| | - Mathilde Bonnet
- M2iSH UMR 1071 Inserm/Clermont Auvergne University, USC-INRAE 2018, CRNH, 63000 Clermont-Ferrand, France;
| | - Bob V. Occean
- Department of Statistics, University Hospital, 30000 Nîmes, France;
| | - Chadly Dziri
- Honoris Medical Simulation Center, Tunis 1000, Tunisia;
| | - Bruno Pereira
- Department of Statistics, University Hospital CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France;
| | - Karem Slim
- The Francophone Group for Enhanced Recovery after Surgery, GRACE, 63110 Beaumont, France
- Department of Digestive Surgery, University Hospital CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Tzikos G, Tsalkatidou D, Stavrou G, Thoma G, Chorti A, Tsilika M, Michalopoulos A, Papavramidis T, Giamarellos-Bourboulis EJ, Kotzampassi K. A Four-Probiotic Regime to Reduce Surgical Site Infections in Multi-Trauma Patients. Nutrients 2022; 14:2620. [PMID: 35807801 PMCID: PMC9268677 DOI: 10.3390/nu14132620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Investigations that focused on the protective role of probiotics against Surgical Site Infections (SSI) in multiple-trauma (MT) patients are generally few, probably due to the complexity of the concept of trauma. We aimed to assess the efficacy of a four-probiotic regime to reduce the incidence of SSI in MT patients, with a brain injury included. MT patients, being intubated and expected to require mechanical ventilation for >10 days, were randomly allocated into placebo (n = 50) or probiotic treatment (n = 53) comprising Lactobacillus acidophilus LA-5 (1.75 × 109 cfu), Lactiplantibacillus plantarum UBLP-40 (0.5 × 109 cfu), Bifidobacterium animalis subsp. lactis BB-12 (1.75 × 109 cfu), and Saccharomycesboulardii Unique-28 (1.5 × 109 cfu) in sachets. All patients received two sachets of placebo or probiotics twice/day for 15 days and were followed-up for 30 days. The operations were classified as neurosurgical, thoracostomies, laparotomies, orthopedics, and others; then, the SSI and the isolated pathogen were registered. A total of 23 (46.0%) and 13 (24.5%) infectious insults in 89 (50 placebo patients) and 88 (53 probiotics-treated) operations (p = 0.022) were recorded, the majority of them relating to osteosynthesis—17 and 8, respectively. The most commonly identified pathogens were Staphylococcus aureus and Acinetobacter baumannii. Our results support published evidence that the prophylactic administration of probiotics in MT patients exerts a positive effect on the incidence of SSI.
Collapse
Affiliation(s)
- Georgios Tzikos
- 1st Propedeutic Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece; (G.T.); (D.T.); (A.C.); (A.M.); (T.P.)
| | - Despoina Tsalkatidou
- 1st Propedeutic Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece; (G.T.); (D.T.); (A.C.); (A.M.); (T.P.)
| | - George Stavrou
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Leeds Institute of Emergency General Surgery, Leeds Teaching Hospitals NHS Trust, Leeds LS97LS, UK
| | - Giannoula Thoma
- Intensive Care Unit, Aghios Pavlos General Hospital, 55134 Thessaloniki, Greece;
| | - Angeliki Chorti
- 1st Propedeutic Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece; (G.T.); (D.T.); (A.C.); (A.M.); (T.P.)
| | - Maria Tsilika
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 12462 Athens, Greece; (M.T.); (E.J.G.-B.)
| | - Antonios Michalopoulos
- 1st Propedeutic Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece; (G.T.); (D.T.); (A.C.); (A.M.); (T.P.)
| | - Theodosios Papavramidis
- 1st Propedeutic Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece; (G.T.); (D.T.); (A.C.); (A.M.); (T.P.)
| | - Evangelos J. Giamarellos-Bourboulis
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 12462 Athens, Greece; (M.T.); (E.J.G.-B.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| |
Collapse
|
8
|
Slim K, Veziant J, Joris J. Bowel preparation for colorectal surgery: Questions to answer. Surgery 2022; 171:1700-1701. [PMID: 35216821 DOI: 10.1016/j.surg.2022.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Karem Slim
- Francophone Group for Enhanced Recovery after Surgery (GRACE), Beaumont, France.
| | - Julie Veziant
- Department of Digestive and Oncologic Surgery, University Hospital Lille, France
| | - Jean Joris
- Department of Anesthesia, University Hospital Liege, Belgium
| |
Collapse
|
9
|
Cogo E, Elsayed M, Liang V, Cooley K, Guerin C, Psihogios A, Papadogianis P. Probiotics Evaluation in Oncological Surgery: A Systematic Review of 36 Randomized Controlled Trials Assessing 21 Diverse Formulations. Curr Oncol 2021; 28:5192-5214. [PMID: 34940074 PMCID: PMC8700227 DOI: 10.3390/curroncol28060435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Objectives were to evaluate probiotics safety and efficacy in oncological surgery. METHODS Systematic review methodology guided by Cochrane, PRISMA, SWiM, and CIOMS. Protocol registered on PROSPERO (CRD42018086168). RESULTS 36 RCTs (on 3305 participants) and 6 nonrandomized/observational studies were included, mainly on digestive system cancers. There was evidence of a beneficial effect on preventing infections, with 70% of RCTs' (21/30) direction of effect favoring probiotics. However, five RCTs (17%) favored controls for infections, including one trial with RR 1.57 (95% CI: 0.79, 3.12). One RCT that changed (balanced) its antibiotics protocol after enrolling some participants had mortality risk RR 3.55 (95% CI: 0.77, 16.47; 7/64 vs. 2/65 deaths). The RCT identified with the most promising results overall administered an oral formulation of Lactobacillus acidophilus LA-5 + Lactobacillus plantarum + Bifidobacterium lactis BB-12 + Saccharomyces boulardii. Methodological quality appraisals revealed an overall substantial risk-of-bias, with only five RCTs judged as low risk-of-bias. CONCLUSIONS This large evidence synthesis found encouraging results from most formulations, though this was contrasted by potential harms from a few others, thus validating the literature that "probiotics" are not homogeneous microorganisms. Given microbiome developments and infections morbidity, further high-quality research is warranted using those promising probiotics identified herein.
Collapse
Affiliation(s)
- Elise Cogo
- Patterson Institute for Integrative Oncology Research, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave. E., Toronto, ON M2K 1E2, Canada; (E.C.); (M.E.); (V.L.); (C.G.); (A.P.); (P.P.)
| | - Mohamed Elsayed
- Patterson Institute for Integrative Oncology Research, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave. E., Toronto, ON M2K 1E2, Canada; (E.C.); (M.E.); (V.L.); (C.G.); (A.P.); (P.P.)
| | - Vivian Liang
- Patterson Institute for Integrative Oncology Research, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave. E., Toronto, ON M2K 1E2, Canada; (E.C.); (M.E.); (V.L.); (C.G.); (A.P.); (P.P.)
| | - Kieran Cooley
- Patterson Institute for Integrative Oncology Research, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave. E., Toronto, ON M2K 1E2, Canada; (E.C.); (M.E.); (V.L.); (C.G.); (A.P.); (P.P.)
- School of Public Health, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Ultimo 2007, Australia
- Pacific College of Health Sciences, San Diego, CA 92108, USA
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore 2480, Australia
- Correspondence:
| | - Christilynn Guerin
- Patterson Institute for Integrative Oncology Research, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave. E., Toronto, ON M2K 1E2, Canada; (E.C.); (M.E.); (V.L.); (C.G.); (A.P.); (P.P.)
| | - Athanasios Psihogios
- Patterson Institute for Integrative Oncology Research, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave. E., Toronto, ON M2K 1E2, Canada; (E.C.); (M.E.); (V.L.); (C.G.); (A.P.); (P.P.)
- The Centre for Health Innovation, 429 MacLaren St., Ottawa, ON K2P 0M7, Canada
| | - Peter Papadogianis
- Patterson Institute for Integrative Oncology Research, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave. E., Toronto, ON M2K 1E2, Canada; (E.C.); (M.E.); (V.L.); (C.G.); (A.P.); (P.P.)
| |
Collapse
|