1
|
Dubec MJ, Buckley DL, Berks M, Clough A, Gaffney J, Datta A, McHugh DJ, Porta N, Little RA, Cheung S, Hague C, Eccles CL, Hoskin PJ, Bristow RG, Matthews JC, van Herk M, Choudhury A, Parker GJM, McPartlin A, O'Connor JPB. First-in-human technique translation of oxygen-enhanced MRI to an MR Linac system in patients with head and neck cancer. Radiother Oncol 2023; 183:109592. [PMID: 36870608 DOI: 10.1016/j.radonc.2023.109592] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND AND PURPOSE Tumour hypoxia is prognostic in head and neck cancer (HNC), associated with poor loco-regional control, poor survival and treatment resistance. The advent of hybrid MRI - radiotherapy linear accelerator or 'MR Linac' systems - could permit imaging for treatment adaptation based on hypoxic status. We sought to develop oxygen-enhanced MRI (OE-MRI) in HNC and translate the technique onto an MR Linac system. MATERIALS AND METHODS MRI sequences were developed in phantoms and 15 healthy participants. Next, 14 HNC patients (with 21 primary or local nodal tumours) were evaluated. Baseline tissue longitudinal relaxation time (T1) was measured alongside the change in 1/T1 (termed ΔR1) between air and oxygen gas breathing phases. We compared results from 1.5 T diagnostic MR and MR Linac systems. RESULTS Baseline T1 had excellent repeatability in phantoms, healthy participants and patients on both systems. Cohort nasal concha oxygen-induced ΔR1 significantly increased (p < 0.0001) in healthy participants demonstrating OE-MRI feasibility. ΔR1 repeatability coefficients (RC) were 0.023-0.040 s-1 across both MR systems. The tumour ΔR1 RC was 0.013 s-1 and the within-subject coefficient of variation (wCV) was 25% on the diagnostic MR. Tumour ΔR1 RC was 0.020 s-1 and wCV was 33% on the MR Linac. ΔR1 magnitude and time-course trends were similar on both systems. CONCLUSION We demonstrate first-in-human translation of volumetric, dynamic OE-MRI onto an MR Linac system, yielding repeatable hypoxia biomarkers. Data were equivalent on the diagnostic MR and MR Linac systems. OE-MRI has potential to guide future clinical trials of biology guided adaptive radiotherapy.
Collapse
Affiliation(s)
- Michael J Dubec
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK.
| | - David L Buckley
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK; Biomedical Imaging, University of Leeds, Leeds, UK
| | - Michael Berks
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Abigael Clough
- Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK
| | - John Gaffney
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Anubhav Datta
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Radiology, The Christie NHS Foundation Trust, Manchester, UK
| | - Damien J McHugh
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Nuria Porta
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Ross A Little
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Susan Cheung
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Christina Hague
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Cynthia L Eccles
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK
| | - Peter J Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Department of Clinical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - Robert G Bristow
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Julian C Matthews
- Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Marcel van Herk
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Geoff J M Parker
- Bioxydyn Ltd, Manchester, UK; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Andrew McPartlin
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Radiation Oncology, Princess Margaret Cancer Center, Toronto, Canada
| | - James P B O'Connor
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Radiology, The Christie NHS Foundation Trust, Manchester, UK; Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| |
Collapse
|
2
|
Bluemke E, Bertrand A, Chu KY, Syed N, Murchison AG, Cooke R, Greenhalgh T, Burns B, Craig M, Taylor N, Shah K, Gleeson F, Bulte D. Oxygen-enhanced MRI and radiotherapy in patients with oropharyngeal squamous cell carcinoma. Clin Transl Radiat Oncol 2022; 39:100563. [PMID: 36655119 PMCID: PMC9841018 DOI: 10.1016/j.ctro.2022.100563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Background and purpose This study aimed to assess the role of T1 mapping and oxygen-enhanced MRI in patients undergoing radical dose radiotherapy for HPV positive oropharyngeal cancer, which has not yet been examined in an OE-MRI study. Materials and methods Variable Flip Angle T1 maps were acquired on a 3T MRI scanner while patients (n = 12) breathed air and/or 100 % oxygen, before and after fraction 10 of the planned 30 fractions of chemoradiotherapy ('visit 1' and 'visit 2', respectively). The analysis aimed to assess to what extent (1) native R1 relates to patient outcome; (2) OE-MRI response relates to patient outcome; (3) changes in mean R1 before and after radiotherapy related to clinical outcome in patients with oropharyngeal squamous cell carcinoma. Results Due to the radiotherapy being largely successful, the sample sizes of non-responder groups were small, and therefore it was not possible to properly assess the predictive nature of OE-MRI. The tumour R1 increased in some patients while decreasing in others, in a pattern that was overall consistent with the underlying OE-MRI theory and previously reported tumour OE-MRI responses. In addition, we discuss some practical challenges faced when integrating this technique into a clinical trial, with the aim that sharing this is helpful to researchers planning to use OE-MRI in future clinical studies. Conclusion Altogether, these results suggest that further clinical OE-MRI studies to assess hypoxia and radiotherapy response are worth pursuing, and that there is important work to be done to improve the robustness of the OE-MRI technique in human applications in order for it to be useful as a widespread clinical technique.
Collapse
Affiliation(s)
- Emma Bluemke
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK,Corresponding author at: Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Ambre Bertrand
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - Kwun-Ye Chu
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, UK
| | - Nigar Syed
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK
| | - Andrew G. Murchison
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, UK
| | - Rosie Cooke
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, UK
| | - Tessa Greenhalgh
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,University Hospital Southampton NHS Foundation Trust, UK
| | | | | | - Nia Taylor
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, UK
| | - Ketan Shah
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, UK
| | - Fergus Gleeson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, UK
| | - Daniel Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| |
Collapse
|
3
|
Lefèvre AC, Alsner J, Sørensen BS, Tramm T, Toustrup K, Overgaard J, Spindler KLG. Hypoxia and local tumour control in squamous cell carcinoma of the anus - a hypothesis-generating study. Acta Oncol 2022; 61:1132-1135. [PMID: 35730972 DOI: 10.1080/0284186x.2022.2089591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Anna Cecilie Lefèvre
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Tramm
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper Toustrup
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Karen-Lise Garm Spindler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Using Variable Flip Angle (VFA) and Modified Look-Locker Inversion Recovery (MOLLI) T1 mapping in clinical OE-MRI. Magn Reson Imaging 2022; 89:92-99. [PMID: 35341905 DOI: 10.1016/j.mri.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE The imaging technique known as Oxygen-Enhanced MRI is under development as a noninvasive technique for imaging hypoxia in tumours and pulmonary diseases. While promising results have been shown in preclinical experiments, clinical studies have mentioned experiencing difficulties with patient motion, image registration, and the limitations of single-slice images compared to 3D volumes. As clinical studies begin to assess feasibility of using OE-MRI in patients, it is important for researchers to communicate about the practical challenges experienced when using OE-MRI on patients to help the technique advance. MATERIALS AND METHODS We report on our experience with using two types of T1 mapping (MOLLI and VFA) for a recently completed OE-MRI clinical study on oropharyngeal squamous cell carcinoma. RESULTS We report: (1) the artefacts and practical difficulties encountered in this study; (2) the difference in estimated T1 from each method used - the VFA T1 estimation was higher than the MOLLI estimation by 27% on average; (3) the standard deviation within the tumour ROIs - there was no significant difference in the standard deviation seen within the tumour ROIs from the VFA versus MOLLI; and (4) the OE-MRI response collected from either method. Lastly, we collated the MRI acquisition details from over 45 relevant manuscripts as a convenient reference for researchers planning future studies. CONCLUSION We have reported our practical experience from an OE-MRI clinical study, with the aim that sharing this is helpful to researchers planning future studies. In this study, VFA was a more useful technique for using OE-MRI in tumours than MOLLI T1 mapping.
Collapse
|