1
|
Tegtmeier RC, Clouser EL, Chen Q, Buckey CR, Chungbin SJ, Kutyreff CJ, Aguilar JS, Labbe AL, Horning BL, Rule WG, Vora SA, Rong Y. Development of an automated CBCT-based simulation-free platform for expedited palliative radiotherapy on a conventional linear accelerator. J Appl Clin Med Phys 2025; 26:e14612. [PMID: 39715307 PMCID: PMC11969108 DOI: 10.1002/acm2.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Conventional approaches for emergent or expedited palliative radiotherapy (RT) involve the application of cumbersome vendor-provided solutions and/or multiple patient appointments to complete the RT workflow within a compressed timeframe. PURPOSE This report delineates the clinical development of an in-house, semi-automated Cone-beam computed tomography (CBCT)-based simulation-free platform for expedited palliative RT on conventional linacs, intended to supplant existing techniques employed at this institution. METHODS The internal software, termed SimFree Wizard (SFW), was engineered utilizing a C#-based application programming interface integrated within the treatment planning system (TPS). Generated scripts were compiled as stand-alone executables, with a graphical user interface (GUI) customized via an integrated development environment. The platform was conceived as a framework for accelerated CBCT-based RT, bypassing the requirement for standard simulation imaging. SFW employs full automation where feasible to minimize user intervention, supplemented by graphical instructions for tasks requiring manual execution. During development, relevant temporal metrics from 10 end-to-end tests for palliative spine RT were quantified. User feedback was solicited via a simple questionnaire assessing the overall platform usability. Automated in-house secondary verification software was developed for validation of the TPS-calculated monitor units (MUs). RESULTS The mean duration for workflow execution was 41:42 ± 3:18 [mm:ss] (range ∼37-46 min). SFW satisfactorily generated simple, multi-field CBCT-based 3D treatment plans within seconds following delineation of the desired treatment area. User feedback indicated enhanced usability compared to previously employed solutions. Validation of the secondary verification software demonstrated accurate results for palliative spine RT and other simple cases wherein the dose calculation point resides in a predominantly homogenous medium. CONCLUSION A novel in-house solution for expedited CBCT-based RT was successfully developed, facilitating completion of the entire workflow within approximately 1-hour or less for simple palliative/emergent scenarios. Overall, this application is expected to improve the quality and safety of palliative RT while greatly reducing workflow duration, thereby improving access to palliative care.
Collapse
Affiliation(s)
- Riley C. Tegtmeier
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
- Department of Radiation OncologyUniversity of South Florida Health Morsani College of MedicineTampaFloridaUSA
| | - Edward L. Clouser
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | - Quan Chen
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | | | | | - Christopher J. Kutyreff
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Jose S. Aguilar
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | - Amber L. Labbe
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | - Brooke L. Horning
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | - William G. Rule
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | - Sujay A. Vora
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | - Yi Rong
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| |
Collapse
|
2
|
MacDonald RL, Fallone C, Chytyk‐Praznik K, Robar J, Cherpak A. The feasibility of CT simulation-free adaptive radiation therapy. J Appl Clin Med Phys 2024; 25:e14438. [PMID: 38889325 PMCID: PMC11492295 DOI: 10.1002/acm2.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Novel on-board CBCT allows for improved image quality and Hounsfield unit accuracy. When coupled with online adaptive tools, this may have potential to allow for simulation and treatment to be completed in a single on-table session. PURPOSE To study the feasibility of a high-efficiency radiotherapy treatment workflow without the use of a separate session for simulation imaging. The dosimetric accuracy, overall efficiency, and technical feasibility were used to evaluate the clinical potential of CT simulation-free adaptive radiotherapy. METHODS Varian's Ethos adaptive radiotherapy treatment platform was upgraded with a novel CBCT system, HyperSight which reports image quality and Hounsfield unit accuracy specifications comparable to standard fan-beam CT. Using in-house developed MATLAB software, CBCT images were imported into the system and used for planning. Two test cases were completed on anthropomorphic phantoms equipped with small volume ion chambers (cross-calibrated to an ADCL traceable dose standard) to evaluate the feasibility and accuracy of the workflows. A simulated palliative spine treatment was planned with 8 Gy in one fraction, and an intact prostate treatment was planned with 60 Gy in 20 fractions. The CBCTs were acquired using HyperSight with default thorax and pelvis imaging protocols and reconstructed using an iterative algorithm with scatter removal, iCBCT Acuros. CBCTs were used for contouring and planning, and treatment was delivered via an online adaptive workflow. In addition, an external dosimetry audit was completed using only on-board CBCT imaging in an end-to-end head and neck phantom irradiation. RESULTS An extended-field CBCT acquisition can be acquired in 12 s, in addition to the time for longitudinal table shifts, and reconstructed in approximately 1 min. The superior-inferior extent for the CBCT planning images was 38.2 cm, which captured the full extent of relevant anatomy. The contouring and treatment planning for the spine and prostate were completed in 30 and 18 min, respectively. The dosimetric agreement between ion chamber measurements and the treatment plan was within a range of -1.4 to 1.6%, and a mean and standard deviation of 0.41 ± 1.16%. All metrics used in the external audit met the passing criteria, and the dosimetric comparison between fan-beam and CBCT techniques had a gamma passing rate of 99.0% with a criteria of 2%/2 mm. CONCLUSION Using an in-house workflow, CT simulation-free radiation therapy was shown to be feasible with acceptable workflow efficiency and dosimetric accuracy. This approach may be particularly applicable for urgent palliative treatments. With the availability of software to enable this workflow, and the continued advancement of on-treatment adaptation, single-visit radiation therapy may replace current practice for some clinical indications.
Collapse
Affiliation(s)
- R. Lee MacDonald
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsNova Scotia HealthQueen Elizabeth II Health Sciences CentreHalifaxNova ScotiaCanada
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Clara Fallone
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsNova Scotia HealthQueen Elizabeth II Health Sciences CentreHalifaxNova ScotiaCanada
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Krista Chytyk‐Praznik
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsNova Scotia HealthQueen Elizabeth II Health Sciences CentreHalifaxNova ScotiaCanada
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - James Robar
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsNova Scotia HealthQueen Elizabeth II Health Sciences CentreHalifaxNova ScotiaCanada
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Amanda Cherpak
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsNova Scotia HealthQueen Elizabeth II Health Sciences CentreHalifaxNova ScotiaCanada
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
3
|
Burgess L, Nguyen E, Tseng CL, Guckenberger M, Lo SS, Zhang B, Nielsen M, Maralani P, Nguyen QN, Sahgal A. Practice and principles of stereotactic body radiation therapy for spine and non-spine bone metastases. Clin Transl Radiat Oncol 2024; 45:100716. [PMID: 38226025 PMCID: PMC10788412 DOI: 10.1016/j.ctro.2023.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/23/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Radiotherapy is the dominant treatment modality for painful spine and non-spine bone metastases (NSBM). Historically, this was achieved with conventional low dose external beam radiotherapy, however, stereotactic body radiotherapy (SBRT) is increasingly applied for these indications. Meta-analyses and randomized clinical trials have demonstrated improved pain response and more durable tumor control with SBRT for spine metastases. However, in the setting of NSBM, there is limited evidence supporting global adoption and large scale randomized clinical trials are in need. SBRT is technically demanding requiring careful consideration of organ at risk tolerance, and strict adherence to technical requirements including immobilization, simulation, contouring and image-guidance procedures. Additional considerations include follow up practices after SBRT, with appropriate imaging playing a critical role in response assessment. Finally, there is renewed research into promising new technologies that may further refine the use of SBRT in both spinal and NSBM in the years to come.
Collapse
Affiliation(s)
- Laura Burgess
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eric Nguyen
- Department of Radiation Oncology, Walker Family Cancer Centre, St. Catharines, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington, Seattle, WA, United States
| | - Beibei Zhang
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Nielsen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Pejman Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, MD Anderson Cancer Centre, University of Texas, Houston, TX, United States
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Massachi J, Singer L, Glastonbury C, Scholey J, Singhrao K, Calvin C, Yom SS, Chan JW. Incidental findings and safety events from magnetic resonance imaging simulation for head and neck radiation treatment planning: A single institution experience. Tech Innov Patient Support Radiat Oncol 2024; 29:100228. [PMID: 38179087 PMCID: PMC10765101 DOI: 10.1016/j.tipsro.2023.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Purpose Having dedicated MRI scanners within radiation oncology departments may present unexpected challenges since radiation oncologists and radiation therapists are generally not trained in this modality and there are potential patient safety concerns. This study retrospectively reviews the incidental findings and safety events that were observed at a single institution during introduction of MRI sim for head and neck radiotherapy planning. Methods Consecutive patients from March 1, 2020, to May 31, 2022, who were scheduled for MRI sim after having completed CT simulation for head and neck radiotherapy were included for analysis. Patients first underwent a CT simulation with a thermoplastic mask and in most cases with an intraoral stent. The same setup was then reproduced in the MRI simulator. Safety events were instances where scheduled MRI sims were not completed due to the MRI technologist identifying MRI-incompatible devices or objects at the time of sim. Incidental findings were identified during weekly quality assurance rounds as a joint enterprise of head and neck radiation oncology and neuroradiology. Categorical variables between completed and not completed MRI sims were compared using the Chi-Square test and continuous variables were compared using the Mann-Whitney U test with a p-value of < 0.05 considered to be statistically significant. Results 148 of 169 MRI sims (88 %) were completed as scheduled and 21 (12 %) were not completed (Table 1). Among the 21 aborted MRI sims, the most common reason was due to safety events flagged by the MRI technologist (n = 8, 38 %) because of the presence of metal or a medical device that was not noted at the time of initial screening by the administrative coordinator. Patients who did not complete MRI sim were more likely to be treated for non-squamous head and neck primary tumor (p = 0.016) and were being treated post-operatively (p < 0.001). CT and MRI sim scans each had 17 incidental findings. CT simulation detected 3 cases of new metastases in lungs, which were outside the scan parameters of MRI sim. MRI sim detected one case of dural venous thrombosis and one case of cervical spine epidural abscess, which were not detected by CT simulation. Conclusions Radiation oncology departments with dedicated MRI simulation scanners would benefit from diagnostic radiology review for incidental findings and having therapists with MRI safety credentialing to catch near-miss events.
Collapse
Affiliation(s)
- Jonathan Massachi
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa Singer
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Christine Glastonbury
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Scholey
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Kamal Singhrao
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Christina Calvin
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Sue S. Yom
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Jason W. Chan
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Price AT, Kang KH, Reynoso FJ, Laugeman E, Abraham CD, Huang J, Hilliard J, Knutson NC, Henke LE. In silico trial of simulation-free hippocampal-avoidance whole brain adaptive radiotherapy. Phys Imaging Radiat Oncol 2023; 28:100491. [PMID: 37772278 PMCID: PMC10523006 DOI: 10.1016/j.phro.2023.100491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Background and Purpose Hippocampal-avoidance whole brain radiotherapy (HA-WBRT) can be a time-consuming process compared to conventional whole brain techniques, thus potentially limiting widespread utilization. Therefore, we evaluated the in silico clinical feasibility, via dose-volume metrics and timing, by leveraging a computed tomography (CT)-based commercial adaptive radiotherapy (ART) platform and workflow in order to create and deliver patient-specific, simulation-free HA-WBRT. Materials and methods Ten patients previously treated for central nervous system cancers with cone-beam computed tomography (CBCT) imaging were included in this study. The CBCT was the adaptive image-of-the-day to simulate first fraction on-board imaging. Initial contours defined on the MRI were rigidly matched to the CBCT. Online ART was used to create treatment plans at first fraction. Dose-volume metrics of these simulation-free plans were compared to standard-workflow HA-WBRT plans on each patient CT simulation dataset. Timing data for the adaptive planning sessions were recorded. Results For all ten patients, simulation-free HA-WBRT plans were successfully created utilizing the online ART workflow and met all constraints. The median hippocampi D100% was 7.8 Gy (6.6-8.8 Gy) in the adaptive plan vs 8.1 Gy (7.7-8.4 Gy) in the standard workflow plan. All plans required adaptation at first fraction due to both a failing hippocampal constraint (6/10 adaptive fractions) and sub-optimal target coverage (6/10 adaptive fractions). Median time for the adaptive session was 45.2 min (34.0-53.8 min). Conclusions Simulation-free HA-WBRT, with commercially available systems, was clinically feasible via plan-quality metrics and timing, in silico.
Collapse
Affiliation(s)
- Alex T. Price
- Corresponding author at: Department of Radiation Oncology, University Hospitals Seidman Cancer Center, 11100 Euclid Ave, Cleveland OH 44106, USA
| | - Kylie H. Kang
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Francisco J. Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Christopher D. Abraham
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Jessica Hilliard
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Nels C. Knutson
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | | |
Collapse
|
6
|
Hoppen L, Sarria GR, Kwok CS, Boda-Heggemann J, Buergy D, Ehmann M, Giordano FA, Fleckenstein J. Dosimetric benefits of adaptive radiation therapy for patients with stage III non-small cell lung cancer. Radiat Oncol 2023; 18:34. [PMID: 36814271 PMCID: PMC9945670 DOI: 10.1186/s13014-023-02222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Daily adaptive radiation therapy (ART) of patients with non-small cell lung cancer (NSCLC) lowers organs at risk exposure while maintaining the planning target volume (PTV) coverage. Thus, ART allows an isotoxic approach with increased doses to the PTV that could improve local tumor control. Herein we evaluate daily online ART strategies regarding their impact on relevant dose-volume metrics. METHODS Daily cone-beam CTs (1 × n = 28, 1 × n = 29, 11 × n = 30) of 13 stage III NSCLC patients were converted into synthetic CTs (sCTs). Treatment plans (TPs) were created retrospectively on the first-fraction sCTs (sCT1) and subsequently transferred unaltered to the sCTs of the remaining fractions of each patient (sCT2-n) (IGRT scenario). Two additional TPs were generated on sCT2-n: one minimizing the lung-dose while preserving the D95%(PTV) (isoeffective scenario), the other escalating the D95%(PTV) with a constant V20Gy(lungipsilateral) (isotoxic scenario). RESULTS Compared to the original TPs predicted dose, the median D95%(PTV) in the IGRT scenario decreased by 1.6 Gy ± 4.2 Gy while the V20Gy(lungipsilateral) increased in median by 1.1% ± 4.4%. The isoeffective scenario preserved the PTV coverage and reduced the median V20Gy(lungipsilateral) by 3.1% ± 3.6%. Furthermore, the median V5%(heart) decreased by 2.9% ± 6.4%. With an isotoxic prescription, a median dose-escalation to the gross target volume of 10.0 Gy ± 8.1 Gy without increasing the V20Gy(lungipsilateral) and V5%(heart) was feasible. CONCLUSIONS We demonstrated that even without reducing safety margins, ART can reduce lung-doses, while still reaching adequate target coverage or escalate target doses without increasing ipsilateral lung exposure. Clinical benefits by means of toxicity and local control of both strategies should be evaluated in prospective clinical trials.
Collapse
Affiliation(s)
- Lea Hoppen
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Gustavo R. Sarria
- grid.10388.320000 0001 2240 3300Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Chung S. Kwok
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Judit Boda-Heggemann
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Daniel Buergy
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Michael Ehmann
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Frank A. Giordano
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Jens Fleckenstein
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|