1
|
Ma LQ, Wu HX, Kong XQ, Fei ZD, Fang WN, Du KX, Chen F, Zhao D, Wu ZP. Which evaluation criteria of the short-term efficacy can better reflect the long-term outcomes for patients with nasopharyngeal carcinoma? Transl Oncol 2022; 20:101412. [PMID: 35395603 PMCID: PMC8987992 DOI: 10.1016/j.tranon.2022.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/27/2022] [Indexed: 12/08/2022] Open
Abstract
1D, 2D, and 3D measurements were all significantly correlated with PTV measurement. The 1D measurement more closely agreed with the PTV measurement than the 2D and 3D measurements. 1D tumor response assessment of the short-term efficacy can reflect the PFS for patients with nasopharyngeal carcinoma.
Purpose To compare the consistency of one-dimensional Response Evaluation Criteria in Solid Tumors (1D-RECIST), two-dimensional WHO criteria (2D-WHO), and three-dimensional (3D) measurement for therapeutic response assessment of nasopharyngeal carcinoma (NPC). Materials and methods Retrospective data of 288 newly diagnosed NPC patients were reviewed. Tumor size was assessed on magnetic resonance imaging (MRI) according to the 1D-RECIST, 2D-WHO, and 3D measurement criteria. Agreement between tumor responses was assessed using unweighted k statistics. The receiver operating characteristic (ROC) curve was used to determine the optimal cut-off point of the PTV. The Kaplan–Meier method and Cox regression were used for the survival analysis. Results The optimal cut-off point of the PTV for progression-free survival (PFS) was 29.6%. Agreement with PTV measurement was better for 1D measurement than for 2D and 3D measurements (kappa values of 0.646, 0.537, and 0.577 for 1D, 2D, and 3D measurements, respectively; P < 0.05). The area under the curve of the 1D measurement (AUC=0.596) was similar to that of the PTV measurement (AUC=0.621). Compared with 2D and 3D measurements, 1D measurement is superior for predicting prognosis in NPC (C-index of 0.672, 0.663, and 0.646 were for 1D, 2D, and 3D measurements, respectively; P < 0.005). Survival analysis showed that patients with non-responders had worse prognosis (P < 0.05). Conclusions The 1D measurement more closely agreed with the PTV measurement than the 2D and 3D measurements for predicting therapeutic responses in NPC. Therefore, we recommend using the less time-consuming 1D-RECIST criteria in routine clinical practice.
Collapse
Affiliation(s)
- Li-Qin Ma
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou 350128, China.
| | - Hai-Xia Wu
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou 350128, China
| | - Xiang-Quan Kong
- Department of Radiation Oncology, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361016, China
| | - Zhao-Dong Fei
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Wei-Ning Fang
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Kai-Xin Du
- Department of Radiation Oncology, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361016, China
| | - Fei Chen
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou 350128, China
| | - Dan Zhao
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou 350128, China
| | - Zhu-Peng Wu
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou 350128, China
| |
Collapse
|
2
|
Jiang YT, Chen KH, Yang J, Liang ZG, Li L, Qu S, Zhu XD. Efficiency of high cumulative cisplatin dose in high- and low-risk patients with locoregionally advanced nasopharyngeal carcinoma. Cancer Med 2021; 11:715-727. [PMID: 34859600 PMCID: PMC8817101 DOI: 10.1002/cam4.4477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The optimal cumulative cisplatin dose (CCD) during radiation therapy for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients receiving induction chemotherapy (IC) plus CCRT remains controversial. This study aimed to explore the treatment efficiency of CCD for high-and low-risk patients with LA-NPC. METHODS Data from 472 LA-NPC patients diagnosed from 2014 to 2018 and treated with IC plus CCRT were reviewed. After propensity score matching, the therapeutic effects of a CCD > 200 and CCD ≤ 200 mg/m2 were evaluated comparatively. Five factors selected by multivariate analysis were incorporated to develop a nomogram. Subgroup analysis was conducted to explore the role of different CCDs in nomogram-defined high- and low-risk groups. Additionally, acute toxicities were evaluated comparatively between the high- and low-CCD groups. RESULTS After matching, there was no difference between different CCD groups for all patients in terms of 3-year overall survival (OS), distant metastasis-free survival (DMFS), locoregional recurrence-free survival (LRRFS), or progression-free survival (PFS). A nomogram was built by integrating pretreatment EBV DNA, clinical stage, and post-IC EBV DNA, post-IC primary gross tumor and lymph node volumes obtained a C-index of 0.674. The high-risk group determined by the nomogram had poorer 3-year PFS, OS, DMFS, and LRRFS than the low-risk group. A total of CCD > 200 mg/m2 increased the survival rates of 3-year PFS and DMFS (PFS: 72.5% vs. 54.4%, p = 0.012; DMFS: 81.9% vs. 61.5%, p = 0.014) in the high-risk group but not in the low-risk group. Moreover, the high CCD increased treatment-related acute toxicities. CONCLUSIONS A high CCD was associated with better 3-year PFS and DMFS rates than a low dose for high-risk patients but could not produce a survival benefit for low-risk patients.
Collapse
Affiliation(s)
- Yu-Ting Jiang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Kai-Hua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jie Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zhong-Guo Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Ling Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Department of Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
The comparison of prognostic value of tumour volumetric regression ratio and RECIST 1.1 criteria after induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma. Oral Oncol 2020; 111:104924. [PMID: 32736209 DOI: 10.1016/j.oraloncology.2020.104924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE To compare the prognostic value of the sum volumetric regression ratio (SVRR) of the primary tumour and metastatic lymph nodes with treatment response based on RECIST 1.1 criteria after induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma (NPC). METHODS AND MATERIALS A total of 117 stage III-IVA NPC patients treated with induction chemotherapy followed by concurrent chemoradiotherapy (CCRT) were retrospectively reviewed. The SVRR and the treatment response based on RECIST 1.1 were measured using contrast-enhanced computed tomography (CT) localisations before and after induction chemotherapy. The receiver operating characteristic (ROC) curve analysis was used to identify the optimal cutoff point of the SVRR and compare the prognostic value of the SVRR and RECIST 1.1criteria. RESULTS The optimal cutoff points of SVRR for progression-free survival (PFS), locoregional failure-free survival (LRFFS) and distant metastasis-free survival (DMFS) were all 25.15%, while for overall survival (OS) it was 16.63%. The area under the ROC curve (AUC) of optimal cutoff points of SVRR was superior than that of RECIST 1.1 for PFS (AUC: 0.716 vs. 0.578; P = 0.0022), LRFFS (AUC: 0.700 vs. 0.574; P = 0.0080) and DMFS (AUC: 0.736 vs. 0.606; P = 0.0053), respectively. The 3-year PFS, DMFS and OS rates for SVRR less than vs. greater than or equal to the cutoff points were 55.8% vs. 92.2% (P < 0.001, hazard ratio (HR): 0.209, 95% confidence interval (CI): 0.091-0.480), 59.7% vs. 96.7% (P < 0.001, HR: 0.120, 95% CI: 0.043-0.336) and 66.7% vs. 98.1% (P < 0.001, HR: 0.069, 95% CI: 0.014-0.342), while the responses [stable disease (SD), partial response (PR)] based on RECIST 1.1 were not significantly associated with 3-year survival rates. Multivariate analysis indicated that SVRR was an independent prognostic factor for PFS, DMFS and OS (all P < 0.05). CONCLUSIONS The sum volumetric regression ratio and response based on RECIST 1.1 were related to the prognosis in locoregionally advanced NPC after induction chemotherapy. Sum volumetric regression ratio is an independent outcome predictor for survival in locoregionally advanced NPC, playing a better prognostic role than RECIST 1.1.
Collapse
|
4
|
Sun XS, Liu SL, Liang YJ, Chen QY, Li XY, Tang LQ, Mai HQ. The role of capecitabine as maintenance therapy in de novo metastatic nasopharyngeal carcinoma: A propensity score matching study. Cancer Commun (Lond) 2020; 40:32-42. [PMID: 32112522 PMCID: PMC7163789 DOI: 10.1002/cac2.12004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background Capecitabine was previously used as a second‐line or salvage therapy for metastatic nasopharyngeal carcinoma (NPC) and has shown satisfactory curative effect as maintenance therapy in other metastatic cancers. This study aimed to explore the role of capecitabine as maintenance therapy in de novo metastatic NPC patients with different plasma Epstein‐Barr virus (EBV) DNA levels before treatment. Methods We selected de novo metastatic NPC patients treated with locoregional radiotherapy (LRRT) for this retrospective study. The propensity score matching (PSM) was applied to balance potential confounders between patients who underwent capecitabine maintenance therapy and those who did not with a ratio of 1:3. Overall survival (OS) was the primary endpoint. The association between capecitabine maintenance therapy and survival was assessed using the log‐rank test and a Cox proportional hazard model. Results Among all patients eligible for this study, 64 received capecitabine maintenance therapy after LRRT. After PSM, 192 patients were identified in the non‐maintenance group. In the matched cohort, patients treated with capecitabine achieved a higher 3‐year OS rate compared with patients in the non‐maintenance group (68.5% vs. 61.8%, P = 0.037). Multivariate analysis demonstrated that capecitabine maintenance therapy was an independent prognostic factor. In subgroup analysis, 3‐year OS rate was comparable between the maintenance and non‐maintenance groups in patients with high pretreatment EBV DNA levels (˃30,000 copies/mL) (54.8% vs. 45.8%, P = 0.835), whereas patients with low pretreatment EBV DNA levels (≤30,000 copies/mL) could benefit from capecitabine maintenance therapy in OS (90.0% vs. 68.1%, P = 0.003). Conclusion Capecitabine maintenance therapy may be superior to non‐maintenance therapy in prolonging OS for de novo metastatic NPC patients with pretreatment EBV DNA ≤ 30,000 copies/mL.
Collapse
Affiliation(s)
- Xue-Song Sun
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Sai-Lan Liu
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yu-Jing Liang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xiao-Yun Li
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Lin-Quan Tang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
5
|
Sun XS, Xiao BB, Lu ZJ, Liu SL, Chen QY, Yuan L, Tang LQ, Mai HQ. Stratification of Candidates for Induction Chemotherapy in Stage III-IV Nasopharyngeal Carcinoma: A Large Cohort Study Based on a Comprehensive Prognostic Model. Front Oncol 2020; 10:255. [PMID: 32185130 PMCID: PMC7059214 DOI: 10.3389/fonc.2020.00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: To establish a prognostic index (PI) for patients with stage III-IV nasopharyngeal carcinoma (NPC) patients to personalize recommendations for induction chemotherapy (IC) before intensity-modulated radiotherapy (IMRT). Patients and Methods: Patients received concurrent chemoradiotherapy (CCRT) with or without IC. Factors used to construct the PI were selected by a multivariate analysis of progression-free survival (PFS), which was the primary endpoint (P < 0.05). Five variables were selected based on a backward procedure in a Cox proportional hazards model: gender, T stage, N stage, lactate dehydrogenase (LDH), and Epstein–Barr virus (EBV) DNA. The cutoff value for the PI was determined by the receiver operating characteristic curve analysis. Results: The present study involved 3,586 patients diagnosed with stage III-IV NPC. The cutoff value for PI was 0.8. The high-risk subgroup showed worse outcomes than did the low-risk subgroup on all endpoints: PFS, overall survival (OS), locoregional relapse-free survival (LRFS), and distant metastasis-free survival (DMFS). In the low-risk subgroup (PI <0.8), patients showed comparable survival outcomes on all clinical endpoints regardless of IC application, whereas in the high-risk subgroup (PI > 0.8), the addition of IC significantly improved PFS, OS, and DMFS, but not LRFS. In multivariate analyses, IC was a protective factor for PFS, OS, and DMFS in the high-risk subgroup, while it had no significant benefit in the low-risk subgroup. Conclusion: The proposed prognostic model effectively stratifies patients with stage III-IV NPC. High-risk patients are candidates for IC before CCRT, while low-risk patients are unlikely to benefit from it.
Collapse
Affiliation(s)
- Xue-Song Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bei-Bei Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Jian Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sai-Lan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiu-Yan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Yuan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Lin-Quan Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Qiang Mai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Li M, Liu Y, Wei Y, Wu C, Meng H, Niu W, Zhou Y, Wang H, Wen Q, Fan S, Li Z, Li X, Zhou J, Cao K, Xiong W, Zeng Z, Li X, Qiu Y, Li G, Zhou M. Zinc-finger protein YY1 suppresses tumor growth of human nasopharyngeal carcinoma by inactivating c-Myc-mediated microRNA-141 transcription. J Biol Chem 2019; 294:6172-6187. [PMID: 30718276 DOI: 10.1074/jbc.ra118.006281] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1) is a zinc-finger protein that plays critical roles in various biological processes by interacting with DNA and numerous protein partners. YY1 has been reported to play dual biological functions as either an oncogene or tumor suppressor in the development and progression of multiple cancers, but its role in human nasopharyngeal carcinoma (NPC) has not yet been revealed. In this study, we found that YY1 overexpression significantly inhibits cell proliferation and cell-cycle progression from G1 to S and promotes apoptosis in NPC cells. Moreover, we identified YY1 as a component of the c-Myc complex and observed that ectopic expression of YY1 inhibits c-Myc transcriptional activity, as well as the promoter activity and expression of the c-Myc target gene microRNA-141 (miR-141). Furthermore, restoring miR-141 expression could at least partially reverse the inhibitory effect of YY1 on cell proliferation and tumor growth and on the expression of some critical c-Myc targets, such as PTEN/AKT pathway components both in vitro and in vivo We also found that YY1 expression is reduced in NPC tissues, negatively correlates with miR-141 expression and clinical stages in NPC patients, and positively correlates with survival prognosis. Our results reveal a previously unappreciated mechanism in which the YY1/c-Myc/miR-141 axis plays a critical role in NPC progression and may provide some potential and valuable targets for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Mengna Li
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yukun Liu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yanmei Wei
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Chunchun Wu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Hanbing Meng
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Weihong Niu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yao Zhou
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Heran Wang
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013
| | - Qiuyuan Wen
- the Second XiangYa Hospital, Central South University, Changsha, Hunan 410011
| | - Songqing Fan
- the Second XiangYa Hospital, Central South University, Changsha, Hunan 410011
| | - Zheng Li
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078; the High Resolution Mass Spectrometry Laboratory of Advanced Research Center, Central South University, Changsha, Hunan 410013
| | - Xiayu Li
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jianda Zhou
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ke Cao
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xiong
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Zhaoyang Zeng
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Xiaoling Li
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yuanzheng Qiu
- the Department of Otolaryngology Head and Neck Surgery, the Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Guiyuan Li
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Ming Zhou
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078.
| |
Collapse
|
7
|
Huang CL, Sun ZQ, Guo R, Liu X, Mao YP, Peng H, Tian L, Lin AH, Li L, Shao JY, Sun Y, Ma J, Tang LL. Plasma Epstein-Barr Virus DNA Load After Induction Chemotherapy Predicts Outcome in Locoregionally Advanced Nasopharyngeal Carcinoma. Int J Radiat Oncol Biol Phys 2019; 104:355-361. [PMID: 30682489 DOI: 10.1016/j.ijrobp.2019.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2019] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate whether plasma Epstein-Barr virus (EBV) DNA load at induction chemotherapy (ICT) completion (postICT-DNA) is a useful outcome predictor in locoregionally advanced nasopharyngeal carcinoma (NPC) and to compare the prognostic value of postICT- DNA and post-chemoradiation therapy (CCRT) DNA (postRT-DNA). METHODS AND MATERIALS We retrospectively reviewed 278 patients with stage III-IV NPC treated with ICT followed by concurrent CCRT. The EBV DNA load was measured by quantitative polymerase chain reaction pre-ICT (pre-DNA), at ICT completion (postICT-DNA), and 1 week after CCRT completion (postRT-DNA). RESULTS PostICT-DNA was associated with significantly worse 3-year overall survival (86.4% vs. 93.4%, P = .023), distant metastasis-free survival (69.2% vs. 93.9%, P < .001), and disease-free survival (64.6% vs. 88.7%, P < .001) than was undetectable postICT-DNA. In multivariate analysis, postICT-DNA was an independent predictor of overall survival (hazard ratio [HR], 2.567; 95% confidence interval [CI], 1.104-5.967; P = .029), distant metastasis-free survival (HR, 5.618; 95% CI, 2.781-11.348; P < .001), and disease-free survival (HR, 3.672; 95% CI, 2.064-6.533; P < .001). The postICT-DNA and postRT-DNA areas under the curve were 0.584 and 0.561 (P < .001), respectively, for predicting 3-year death; 0.717 and 0.649 (P < .001), respectively, for predicting 3-year metastasis; and 0.659 and 0.602 (P < .001), respectively, for predicting 3-year disease failure. CONCLUSIONS Plasma EBV DNA load at ICT completion is a powerful and earlier outcome predictor in locoregionally advanced NPC that would facilitate further risk stratification and early treatment modification.
Collapse
Affiliation(s)
- Cheng-Long Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zheng-Qiang Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China; Department of Radiation Oncology, Guangqian Hospital, Quanzhou, China
| | - Rui Guo
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xu Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan-Ping Mao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Hao Peng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Li Tian
- Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ai-Hua Lin
- Department of Medical Statistics and Epidemiology, School of Public Health, SunYat-sen University, Guangzhou, China
| | - Li Li
- Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jian-Yong Shao
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| |
Collapse
|
8
|
Sun XS, Liu LT, Liu SL, Guo SS, Wen YF, Xie HJ, Tang QN, Liang YJ, Li XY, Yan JJ, Ma J, Chen QY, Tang LQ, Mai HQ. Identifying optimal candidates for local treatment of the primary tumor among patients with de novo metastatic nasopharyngeal carcinoma: a retrospective cohort study based on Epstein-Barr virus DNA level and tumor response to palliative chemotherapy. BMC Cancer 2019; 19:92. [PMID: 30665378 PMCID: PMC6341516 DOI: 10.1186/s12885-019-5281-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/07/2019] [Indexed: 11/30/2022] Open
Abstract
Background To evaluate the clinical outcome in patients with de novo metastatic nasopharyngeal carcinoma (NPC) treated or not treated with locoregional radiotherapy (LRRT) based on plasma Epstein–Barr virus (EBV) DNA level and tumor response after palliative chemotherapy (PCT). Methods From 2007 to 2016, 502 patients with de novo metastatic NPC were included in this study. All patients were treated with PCT and 315 patients received LRRT. Our primary study endpoint was overall survival (OS). Results EBV DNA was detected in 461 patients (91.8%) before treatment but was undetectable in 249 patients (49.6%) after PCT. Three hundred and seventeen patients (63.1%) achieved satisfactory response (complete response or partial response) to PCT. Both the post-PCT EBV DNA level and tumor response were independent prognostic factors. Among low-risk patients (patients with undetectable EBV DNA and satisfactory tumor response after PCT), the 3-year OS rate was 80.4% in LRRT-treated patients and 45.3% in patients not treated with LRRT (P < 0.001). Multivariate analyses demonstrated that LRRT was an independent prognostic factor of OS in the low-risk patients (P < 0.001). However, among the high-risk patients (patients with detectable EBV DNA and/or unsatisfactory response after PCT), no statistically significant survival differences were observed between the LRRT and non-LRRT groups. Conclusions EBV DNA level and tumor response after PCT both correlate with the prognosis of de novo metastatic NPC. In such cases, LRRT may benefit the patients with undetectable EBV DNA levels and satisfactory tumor response after PCT. Electronic supplementary material The online version of this article (10.1186/s12885-019-5281-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue-Song Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Li-Ting Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Sai-Lan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Shan-Shan Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yue-Feng Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Hao-Jun Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qing-Nan Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yu-Jing Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xiao-Yun Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jin-Jie Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Qiu-Yan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Lin-Quan Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Hai-Qiang Mai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
9
|
Cellular-based immunotherapy in Epstein-Barr virus induced nasopharyngeal cancer. Oral Oncol 2018; 84:61-70. [DOI: 10.1016/j.oraloncology.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
|
10
|
Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, Xiang B, Zhou M, Li X, Wu X, Li Y, Li X, Li G, Xiong W, Zeng Z. The emerging role of Epstein-Barr virus encoded microRNAs in nasopharyngeal carcinoma. J Cancer 2018; 9:2852-2864. [PMID: 30123354 PMCID: PMC6096363 DOI: 10.7150/jca.25460] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/16/2018] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpes virus that is closely associated with the initiation and development of nasopharyngeal carcinoma (NPC), lymphoma and other malignant tumors. EBV encodes 44 mature miRNAs that regulate viral and host cell gene expression and plays a variety of roles in biological functions and the development of cancer. In this review, we summarized the biological functions and molecular mechanisms of Epstein-Barr virus-encoded microRNAs (EBV miRNAs) in tumor immune evasion, proliferation, anti-apoptosis, invasion, metastasis and as a potential biomarker for NPC diagnosis and prognosis. The knowledge generated by EBV miRNAs can be used for EBV miRNA-based precision cancer treatments in the near future.
Collapse
Affiliation(s)
- Chunmei Fan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yong Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiaoling Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Science,, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Zhou SJ, Wei J, Su S, Chen FJ, Qiu YD, Liu BR. Strategies for Bispecific Single Chain Antibody in Cancer Immunotherapy. J Cancer 2017; 8:3689-3696. [PMID: 29151956 PMCID: PMC5688922 DOI: 10.7150/jca.19501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/07/2017] [Indexed: 12/25/2022] Open
Abstract
Genetic engineering has resulted in more than 50 recombinant bispecific antibody formats over the past two decades. Bispecific scFv antibodies represent a successful and promising immunotherapy platform that retargets cytotoxic T cells to tumor cells, with one scFv directed to tumor-associated antigens and the other to T cells. Based on this antibody construct, strategies for both specific tumor targeting and T cell activation are reviewed here. Three distinct types of tumor antigens are considered to optimize specificity and safety in bispecific scFv based treatment: cancer-testis antigens, neo-antigens and virus-associated antigens. In terms of T cell activation, although CD3 has been widely applied in bispecific scFvs being developed, CD28 and CD137 among co-stimulatory signals are also ideal candidates to be evaluated. Besides, LIGHT and HIV-Tat101 have drawn much attention as their potential roles in modulating antitumor responses.
Collapse
Affiliation(s)
- Shu-Juan Zhou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Shu Su
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fang-Jun Chen
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yu-Dong Qiu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Bao-Rui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Jin YN, Yao JJ, Zhang F, Wang SY, Zhang WJ, Zhou GQ, Qi ZY, Sun Y. Is pretreatment Epstein-Barr virus DNA still associated with 6-year survival outcomes in locoregionally advanced nasopharyngeal carcinoma? J Cancer 2017; 8:976-982. [PMID: 28529609 PMCID: PMC5436249 DOI: 10.7150/jca.18124] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022] Open
Abstract
Purpose: The objective of this study was to confirm the association between pretreatment Epstein-Barr virus (EBV) DNA (pre-DNA) load and survival outcomes after long-term follow-up in patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC). Materials and Methods: Between November 2009 and February 2012, a total of 1036 patients with LA-NPC were enrolled. There were 762 patients in stage III and 274 in stage IVA-B. All patients were treated with radical radiotherapy with or without chemotherapy, and pre-DNA concentrations were quantified by a polymerase chain reaction assay. Patient outcomes were evaluated. Results: The 5-year overall survival (OS), distant metastasis-free surviva (DMFS), locoregional relapse-free survival (LRFS), and progression-free survival (PFS) rates were 84.7%, 87.0%, 90.2%, and 77.1%, respectively. By using previously defined pre-DNA cutoff value (1500 copies/ml pretreatment), pre-DNA was an independent prognostic predictor for OS, DMFS, and PFS using log-rank test. Multivariate Cox analysis also confirmed these results. Subgroup analysis indicated that the 5-year OS, DMFS, and PFS rates in patients staged IVA-B with pre-DNA < 1500 copies/ml were similar to those patients staged III with pre-DNA ≥ 1500 copies/ml, whereas patients staged IVA-B patients with pre-DNA ≥ 1500 copies/ml predicted worse outcome. Conclusions: In this expanded study, the prognostic significance of pre-DNA was confirmed using predefined cutoff value in an independent patient group, and pre-DNA was identified as an independent prognostic marker for the risk stratification in LA-NPC.
Collapse
Affiliation(s)
- Ya-Nan Jin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, People's Republic of China
| | - Ji-Jin Yao
- Department of Radiation Oncology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519001, Guangdong Province, China
| | - Fan Zhang
- Department of Radiation Oncology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519001, Guangdong Province, China
| | - Si-Yang Wang
- Department of Radiation Oncology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519001, Guangdong Province, China
| | - Wang-Jian Zhang
- Department of Medical Statistics and Epidemiology & Health Information Research Center & Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Guan-Qun Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, People's Republic of China
| | - Zhen-Yu Qi
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, People's Republic of China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, People's Republic of China
| |
Collapse
|
13
|
Epstein-Barr virus infection and nasopharyngeal carcinoma: the other side of the coin. Anticancer Drugs 2015; 26:1017-25. [PMID: 26241803 DOI: 10.1097/cad.0000000000000276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncogenic viruses may have a significant impact on the therapeutic management of several malignancies besides their well-known role in tumor pathogenesis. Epstein-Barr virus (EBV) induces neoplastic transformation of epithelial cells of the nasopharynx by various molecular mechanisms mostly involving activation of oncogenes and inactivation of tumor-suppressor genes. EBV infection can also induce the expression of several immunogenic peptides on the plasma membrane of the infected cells. Importantly, these virus-related antigens may be used as targets for antitumor immunotherapy-based treatment strategies. Two different immunotherapy strategies, namely adoptive and active immunotherapy, have been developed and strongly improved in the recent years. Furthermore, EBV infection may influence the use of targeted therapies for nasopharyngeal carcinoma (NPC) considering that the presence of EBV can induce important modifications in cell signaling. As an example, latent membrane protein type 1 is a viral transmembrane protein mainly involved in the cancerogenesis process, which can also mediate overexpression of the epidermal growth factor receptor (EGFR) in NPC cells, rendering them more sensitive to anti-EGFR therapy. Finally, EBV may induce epigenetic changes in the infected cells, such as DNA hypermethylation and histone deacetylation, that can sustain tumor growth and can thus be considered potential targets for novel therapies. In conclusion, EBV infection can modify important biological features of NPC cells, rendering them more vulnerable to both immunotherapy and targeted therapy.
Collapse
|
14
|
Chai SJ, Yap YY, Foo YC, Yap LF, Ponniah S, Teo SH, Cheong SC, Patel V, Lim KP. Identification of Four-Jointed Box 1 (FJX1)-Specific Peptides for Immunotherapy of Nasopharyngeal Carcinoma. PLoS One 2015; 10:e0130464. [PMID: 26536470 PMCID: PMC4633155 DOI: 10.1371/journal.pone.0130464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/20/2015] [Indexed: 01/02/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9-20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients.
Collapse
Affiliation(s)
- San Jiun Chai
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Yoke Yeow Yap
- Department of Surgery, Clinical Campus Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Yoke Ching Foo
- Department of Oncology, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Lee Fah Yap
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Sathibalan Ponniah
- Department of Surgery, Cancer Vaccine Development Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Soo Hwang Teo
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Sok Ching Cheong
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Vyomesh Patel
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Kue Peng Lim
- Cancer Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
15
|
Liu LT, Tang LQ, Chen QY, Zhang L, Guo SS, Guo L, Mo HY, Zhao C, Guo X, Cao KJ, Qian CN, Zeng MS, Bei JX, Hong MH, Shao JY, Sun Y, Ma J, Mai HQ. The Prognostic Value of Plasma Epstein-Barr Viral DNA and Tumor Response to Neoadjuvant Chemotherapy in Advanced-Stage Nasopharyngeal Carcinoma. Int J Radiat Oncol Biol Phys 2015; 93:862-9. [DOI: 10.1016/j.ijrobp.2015.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 01/18/2023]
|
16
|
Huang W, Liu M, Zhu L, Liu S, Luo H, Ma L, Wang H, Lu R, Sun X, Chen L, Wang L. Functional expression of chloride channels and their roles in the cell cycle and cell proliferation in highly differentiated nasopharyngeal carcinoma cells. Physiol Rep 2014; 2:2/9/e12137. [PMID: 25214521 PMCID: PMC4270222 DOI: 10.14814/phy2.12137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We previously demonstrated that the growth of the poorly differentiated nasopharyngeal carcinoma cells (CNE‐2Z) was more dependent on the activities of volume‐activated chloride channels than that of the normal nasopharyngeal epithelial cells (NP69‐SV40T). However, the activities and roles of such volume‐activated chloride channels in highly differentiated nasopharyngeal carcinoma cells (CNE‐1) are not clarified. In this study, it was found that a volume‐activated chloride current and a regulatory volume decrease (RVD) were induced by 47% hypotonic challenges. The current density and the capacity of RVD in the highly differentiated CNE‐1 cells were lower than those in the poorly differentiated CNE‐2Z cells, and higher than those in the normal cells (NP69‐SV40T). The chloride channel blockers, 5‐nitro‐2‐(3‐phenylpropylamino) benzoic acid (NPPB) and tamoxifen inhibited the current and RVD. Depletion of intracellular Cl− abolished the RVD. The chloride channel blockers reversibly inhibited cell proliferation in a concentration‐ and time‐dependent manner, and arrested cells at the G0/G1 phases, but did not change cell viability. The sensitivity of the three cell lines to the chloride channel blockers was different, with the highest in poorly differentiated cells (CNE‐2Z) and the lowest in the normal cells (NP69‐SV40T). ClC‐3 proteins were expressed in the three cells and distributed inside the cells as well as on the cell membrane. In conclusion, the highly differentiated nasopharyngeal carcinoma CNE‐1 cells functionally expressed the volume‐activated chloride channels, which may play important roles in controlling cell proliferation through modulating the cell cycle, and may be associated with cell differentiation. Chloride channels may be a potential target of anticancer therapy. In this paper, we demonstrated that the volume‐activated chloride channels were involved in regulating CNE‐1 cells proliferation and cell cycle progress. Thus, volume‐activated chloride channels may be a potential target of anticancer therapy.
Collapse
Affiliation(s)
- Weiyuan Huang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Mei Liu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Shanwen Liu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Hai Luo
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Lianshun Ma
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Haibo Wang
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Ruiling Lu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Xiaoxue Sun
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Tsang J, Lee VHF, Kwong DLW. Novel therapy for nasopharyngeal carcinoma--where are we. Oral Oncol 2014; 50:798-801. [PMID: 24462373 DOI: 10.1016/j.oraloncology.2014.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/04/2014] [Indexed: 01/24/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is endemic in Southern China, and the South-East Asia including Hong Kong. We still see patients recur after primary treatment with radiotherapy or chemo-irradiation. Management of nasopharyngeal carcinoma remains one of the biggest clinical challenges. There have been breakthroughs in early detection, diagnosis, multi-modality treatment and also disease monitoring for NPC. Systemic treatment has been crucial to the management of locally advanced or metastatic NPC. With the advent of molecular targeted therapy and personalized medicine, novel therapies based on molecular targets of NPC have become the focus of research and development over the last decade. Furthermore, as NPC is tightly associated with the Epstein-Barr virus (EBV) infection, the role of tumor-associated viral antigens in NPC renders it an appealing candidate for cellular immunotherapy. This is a review of recent evolving concerted efforts and the success from our translational research with focus of the recent systemic novel targeted therapies including the potential role of immunotherapy which may offer further clinical benefit to our patients living with NPC. The scientific basis and latest published results of the relevant clinical trials are highlighted, demonstrating the ongoing battle against NPC is indeed one of the most fascinating successes in head and neck oncology.
Collapse
Affiliation(s)
- Janice Tsang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Victor H F Lee
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Dora L W Kwong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
18
|
Smith C. EBV and nasopharyngeal carcinoma: a target for cellular therapies. Immunotherapy 2013; 5:821-4. [DOI: 10.2217/imt.13.68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Evaluation of: Li F, Song D, Lu Y, Zhu H, Chen Z, He X. Delayed-type hypersensitivity (DTH) immune response related with EBV-DNA in nasopharyngeal carcinoma treated with autologous dendritic cell vaccination after radiotherapy. J. Immunother. 36(3), 208–214 (2013). The association of EBV with a number of human malignancies has provided the basis for the development of a range of targeted immunotherapeutic approaches that focus upon eliciting cellular immune responses to viral antigens expressed in malignant cells. The approach outlined in the study of Li and colleagues continues this focus upon the use of tumor-associated viral antigens to treat EBV-associated nasopharyngeal carcinoma, which is endemic to regions of southern China. Employing monocyte-derived dendritic cells to deliver a limited number of CD8+ T-cell epitopes encoded by the LMP2A antigen of EBV, the authors indicate that the induction of a delayed-type hypersensitivity response, rather than immunity in the peripheral blood is associated with a decrease in viral load, an often used correlate of tumor load in EBV-associated malignancies.
Collapse
Affiliation(s)
- Corey Smith
- Tumor Immunology Laboratory, Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Generation and characterization of a novel recombinant antibody against LMP1-TES1 of Epstein-Barr virus isolated by phage display. Viruses 2013; 5:1131-42. [PMID: 23609879 PMCID: PMC3705269 DOI: 10.3390/v5041131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 01/19/2023] Open
Abstract
Latent Membrane Protein 1 (LMP1) is a primary target for controlling tumorigenesis in Epstein-Barr virus related malignancies; in this study, we aimed to develop a specific antibody against the TES1 domain of the oncogenic LMP1. We screened a full human naïve Fab phage library against TES1 peptide, which consisted of C terminal-activating regions proximal 44 amino acids. After three rounds of panning, enrichment and testing by phage ELISA and further analyzed by DNA sequencing, we selected a phage clone with the highest affinity to LMP1-TES1 and designated it as htesFab. The positive clone was expressed in Escherichia coli and the purified htesFab was characterized for its binding specificity and affinity to LMP1. ELISA, immunofluorescence and FACS analysis confirmed that htesFab could recognize LMP1 TES1 both in vitro and in LMP1 expressing HNE2-LMP1 cells. Furthermore, MTT assay showed that htesFab inhibited the proliferation of HNE2-LMP1 cells in a dose-dependent manner. In summary, this study reported the isolation and characterization of human Fab, which specifically targets the C terminal region/TES1 of LMP1, and has potential to be developed as novel tool for the diagnosis and therapy of Epstein-Barr virus related carcinoma.
Collapse
|
20
|
Zhang L, Chen QY, Liu H, Tang LQ, Mai HQ. Emerging treatment options for nasopharyngeal carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:37-52. [PMID: 23403548 PMCID: PMC3565571 DOI: 10.2147/dddt.s30753] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nasopharyngeal carcinoma is endemic in Asia and is etiologically associated with Epstein–Barr virus. Radiotherapy is the primary treatment modality. The role of systemic therapy has become more prominent. Based on multiple phase III studies and meta-analyses, concurrent cisplatin-based chemoradiotherapy is the current standard of care for locally advanced disease (American Joint Committee on Cancer manual [7th edition] stages II–IVb). The reported failure-free survival rates from phase II trials are encouraging for induction + concurrent chemoradiotherapy. Data from ongoing phase III trials comparing induction + concurrent chemoradiotherapy with concurrent chemoradiotherapy will validate the results of these phase II studies. Intensity-modulated radiotherapy techniques are recommended if the resources are available. Locoregional control exceeding 90% and reduced xerostomia-related toxicities can now be achieved using intensity-modulated radiotherapy, although distant control remains the most pressing research problem. The promising results of targeted therapy and Epstein–Barr virus-specific immunotherapy from early clinical trials should be validated in phase III clinical trials. New technology, more effective and less toxic chemotherapy regimens, and targeted therapy offer new opportunities for treating nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Liu F, Wang B, Wang Z, Yu S. Trichosanthin down-regulates Notch signaling and inhibits proliferation of the nasopharyngeal carcinoma cell line CNE2 in vitro. Fitoterapia 2012; 83:838-42. [DOI: 10.1016/j.fitote.2012.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Smith C, Tsang J, Beagley L, Chua D, Lee V, Li V, Moss DJ, Coman W, Chan KH, Nicholls J, Kwong D, Khanna R. Effective treatment of metastatic forms of Epstein-Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy. Cancer Res 2012; 72:1116-25. [PMID: 22282657 DOI: 10.1158/0008-5472.can-11-3399] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is endemic in China and Southeast Asia where it is tightly associated with infections by Epstein-Barr virus (EBV). The role of tumor-associated viral antigens in NPC renders it an appealing candidate for cellular immunotherapy. In earlier preclinical studies, a novel adenoviral vector-based vaccine termed AdE1-LMPpoly has been generated that encodes EBV nuclear antigen-1 (EBNA1) fused to multiple CD8(+) T-cell epitopes from the EBV latent membrane proteins, LMP1 and LMP2. Here, we report the findings of a formal clinical assessment of AdE1-LMPpoly as an immunotherapeutic tool for EBV-associated recurrent and metastatic NPC. From a total of 24 patients with NPC, EBV-specific T cells were successfully expanded from 16 patients with NPC (72.7%), whereas six patients with NPC (27.3%) showed minimal or no expansion of virus-specific T cells. Transient increase in the frequencies of LMP1&2- and EBNA1-specific T-cell responses was observed after adoptive transfer to be associated with grade I flu-like symptoms and malaise. The time to progression in these patients ranged from 38 to 420 days with a mean time to progression of 136 days. Compared with patients who did not receive T cells, the median overall survival increased from 220 to 523 days. Taken together, our findings show that adoptive immunotherapy with AdE1-LMPpoly vaccine is safe and well tolerated and may offer clinical benefit to patients with NPC.
Collapse
Affiliation(s)
- Corey Smith
- Australian Centre for Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
[Juvenile nasopharyngeal carcinoma: anatomoclinic, biologic, therapeutic and evolutive aspects]. Bull Cancer 2010; 97:427-33. [PMID: 20385520 DOI: 10.1684/bdc.2010.1087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nasopharyngeal carcinoma (NPC) represents one of the most frequent epithelial tumours of the child in intermediate risk regions. In the Maghreb, it represents the first cancer of teenagers of 15-20 years old. The Epstein Barr virus (EBV) is the most important etiologic factor. Its role in the pathogeneses of NPC has been confirmed by several studies. Young NPCs are characterized by a low rate of EBV antibodies and a high level of LMP1 cell expression than in adult's NPC. The undifferentiated carcinoma nasopharyngeal type (UCNT) represents the most frequent histological type. Immunohistochemical analyses of North Africa early onset NPC is characterized by a weak expression of bcl-2 and p53 and a strong expression of LMP1 and c-kit what makes them different from the adult's NPC. Clinically, cervical node involvement is constantly present. Juvenile NPC is characterized by a very important locoregional extension as well as a high rate of distant metastases. More than 15% of patients had metastases at diagnosis. Radiotherapy is still the standard therapy of NPC. Only some retrospectives studies have been published to determine the benefit, the type and the timing of the chemotherapy in the treatment of juvenile NPC. Metastatic relapses constitute the main cause of death at these young patients. An improvement of the prognosis can be waited with concomitant chemotherapy and intensity modulated radiotherapy. However, randomized multi institutional studies are necessary to standardize the treatment of the NPC in childhood.
Collapse
|
24
|
Abstract
Early-stage nasopharyngeal carcinoma (T1-2a;N0;M0) represents a small proportion of nasopharyngeal tumors. Radiotherapy alone is the current treatment approach for this tumor and the emerging role of new radiotherapy techniques will hopefully further improve the treatment outcome for these patients. The vast majority of patients with nasopharyngeal carcinoma is diagnosed with locally advanced disease. Concomitant chemoradiotherapy is now acknowledged as being a standard treatment option, even though it induces a considerable incidence of acute mucosal and hematologic toxicity. The issue of adding adjuvant chemotherapy is somewhat more controversial. Similarly, the role of neoadjuvant chemotherapy before concomitant chemoradiotherapy is a matter of interest. In patients with recurrent/metastatic nasopharyngeal carcinoma the prognosis is generally grim, as platinum-based chemotherapy results in a 50-70% response rate and in a median survival time of 11 months. Several trials have been performed on this subset of patients with both cytotoxic and biologic agents, but the results have not been particularly encouraging thus far. Epstein-Barr virus is associated with the vast majority of nasopharyngeal carcinoma. Concentrations of plasma Epstein-Barr virus DNA have been associated with treatment outcome in the clinic. Immunotherapy is generally well tolerated and can sometimes elicit significant immune response, which possibly induces clinical benefit in some patients.
Collapse
|
25
|
Yip WK, Abdullah MA, Yusoff SM, Seow HF. Increase in tumour-infiltrating lymphocytes with regulatory T cell immunophenotypes and reduced zeta-chain expression in nasopharyngeal carcinoma patients. Clin Exp Immunol 2009; 155:412-22. [PMID: 19220831 DOI: 10.1111/j.1365-2249.2008.03793.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pathological significance of the mechanisms of tumour immune-evasion and/or immunosuppression, such as loss of T cell signalling and increase in regulatory T cells (T(regs)), has not been well established in the nasopharyngeal carcinoma (NPC) microenvironment. To evaluate the T(reg) immunophenotypes in tumour-infiltrating lymphocytes (TILs), we performed a double-enzymatic immunostaining for detection of forkhead box P3 (FoxP3) and other markers including CD4, CD8, and CD25 on 64 NPC and 36 non-malignant nasopharyngeal (NP) paraffin-embedded tissues. Expression of CD3 zeta and CD3 epsilon was also determined. The prevalence of CD4(+)FoxP3(+) cells in CD4(+) T cells and the ratio of FoxP3(+)/CD8(+) were increased significantly in NPC compared with those in NP tissues (P < 0.001 and P = 0.025 respectively). Moreover, the ratio of FoxP3(+)/CD25(+)FoxP3(-) in NPC was significantly lower than that in NP tissues (P = 0.005), suggesting an imbalance favouring activated phenotype of T cells in NPC. A significant negative correlation between the abundance of FoxP3(+) and CD25(+)FoxP3(-) cells (P < 0.001) was also identified. When histological types of NPC were considered, a lower ratio of FoxP3(+)/CD25(+)FoxP3(-) was found in non-keratinizing and undifferentiated carcinomas. Increased CD4(+)FoxP3(+)/CD4(+) proportion and FoxP3(+)/CD8(+) ratio were associated with keratinizing squamous cell carcinoma. A reduced expression of CD3 zeta in TILs was found in 20.6% of the NPC tissues but none of the NP tissues. These data provide evidence for the imbalances of T(reg) and effector T cell phenotypes and down-regulation of signal-transducing molecules in TILs, supporting their role in suppression of immune response and immune evasion of NPC.
Collapse
Affiliation(s)
- W K Yip
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | | | | |
Collapse
|
26
|
Merlo A, Turrini R, Dolcetti R, Zanovello P, Amadori A, Rosato A. Adoptive cell therapy against EBV-related malignancies: a survey of clinical results. Expert Opin Biol Ther 2008; 8:1265-94. [PMID: 18694349 DOI: 10.1517/14712598.8.9.1265] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Epstein-Barr Virus (EBV) infection is associated with a heterogeneous group of tumors, including lymphoproliferative disorders, Hodgkin's disease, nasopharyngeal carcinoma and Burkitt's lymphoma. As such neoplastic disorders express viral antigens, they can be treated by adoptive immunotherapy strategies relying mostly on in vitro generation and expansion of virus-specific cytotoxic T lymphocytes (CTL), which can be administered to patients for both prophylaxis and treatment. OBJECTIVE We reviewed results obtained in all clinical trials reported thus far employing anti-EBV adoptive immunotherapy for different virus-related malignancies. METHODS 'PTLD after HSCT', 'PTLD after SOT', 'NPC', 'HD', 'SCAEBV' and 'extranodal NK/T cell lymphoma', in combination with 'Adoptive immunotherapy' and 'Adoptive transfer', were used as search keys for papers in PubMed. CONCLUSIONS Although the heterogeneity of different studies precludes their collection for a meta-analysis, it can be inferred that adoptive therapy with EBV-specific CTL is safe, well tolerated and particularly effective in the case of most immunogenic tumors, like post-transplant lymphoproliferative disease.
Collapse
Affiliation(s)
- Anna Merlo
- University of Padova, Department of Oncology and Surgical Sciences, Via Gattamelata 64, I-35128 Padova, Italy
| | | | | | | | | | | |
Collapse
|