1
|
Yao H, Zhang M, Wang D. The next decade of SET: from an oncoprotein to beyond. J Mol Cell Biol 2024; 16:mjad082. [PMID: 38157418 PMCID: PMC11267991 DOI: 10.1093/jmcb/mjad082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024] Open
Abstract
This year marks the fourth decade of research into the protein SET, which was discovered in 1992. SET was initially identified as an oncoprotein but later shown to be a multifaceted protein involved in regulating numerous biological processes under both physiological and pathophysiological conditions. SET dysfunction is closely associated with diseases, such as cancer and Alzheimer's disease. With the increasing understanding of how SET works and how it is regulated in cells, targeting aberrant SET has emerged as a potential strategy for disease intervention. In this review, we present a comprehensive overview of the advancements in SET studies, encompassing its biological functions, regulatory networks, clinical implications, and pharmacological inhibitors. Furthermore, we provide insights into the future prospects of SET research, with a particular emphasis on its promising potential in the realm of immune modulation.
Collapse
Affiliation(s)
- Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
2
|
C T, Zaravinos A, Tsartsalis AN, Tagka A, Kotoulas A, Geronikolou SA, Braoudaki M, Lambrou GI. Systems Approaches in the Common Metabolomics in Acute Lymphoblastic Leukemia and Rhabdomyosarcoma Cells: A Computational Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1338:55-66. [PMID: 34973010 DOI: 10.1007/978-3-030-78775-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Acute lymphoblastic leukemia is the most common childhood malignancy. Rhabdomyosarcoma, on the other hand, is a rare type of malignancy which belongs to the primitive neuroectodermal family of tumors. The aim of the present study was to use computational methods in order to examine the similarities and differences of the two different tumors using two cell lines as a model, the T-cell acute lymphoblastic leukemia CCRF-CEM and rhabdomyosarcoma TE-671, and, in particular, similarities of the metabolic pathways utilized by two different cell types in vitro. Both cell lines were studied using microarray technology. Differential expression profile has revealed genes with similar expression, suggesting that there are common mechanisms between the two cell types, where some of these mechanisms are preserved from their ancestor embryonic cells. Expression of identified species was modeled using known functions, in order to find common patterns in metabolism-related mechanisms. Species expression manifested very interesting dynamics, and we were able to model the system with elliptical/helical functions. We discuss the results of our analysis in the context of the commonly occurring genes between the two cell lines and the respective participating pathways as far as extracellular signaling and cell cycle regulation/proliferation are concerned. In the present study, we have developed a methodology, which was able to unravel some of the underlying dynamics of the metabolism-related species of two different cell types. Such approaches could prove useful in understanding the mechanisms of tumor ontogenesis, progression, and proliferation.
Collapse
Affiliation(s)
- Tselios C
- National and Kapodistrian University of Athens, Laboratory for the Research of Musculoskeletal Disorders, Athens, Greece
| | | | - Athanasios N Tsartsalis
- Naval Hospital of Athens, Department of Endocrinology Diabetes and Metabolism, Athens, Greece
| | - Anna Tagka
- First Department of Dermatology and Venereology, "Andreas Syggros" Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Kotoulas
- National Technical University of Athens, School of Electrical and Computer Engineering, Biomedical Engineering Laboratory, Athens, Greece
| | - Styliani A Geronikolou
- Biomedical Research Foundation of Academy of Athens, Clinical, Translational, Experimental Surgery Research Centerment of Pediatrics, Choremeio Research Laboratory, Athens, Greece
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hatfield, England
| | - George I Lambrou
- National and Kapodistrian University of Athens, First Department of Pediatrics, Choremeio Research Laboratory, Athens, Greece.
| |
Collapse
|
3
|
BCL6 maintains survival and self-renewal of primary human acute myeloid leukemia cells. Blood 2021; 137:812-825. [PMID: 32911532 DOI: 10.1182/blood.2019001745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
B-cell lymphoma 6 (BCL6) is a transcription repressor and proto-oncogene that plays a crucial role in the innate and adaptive immune system and lymphoid neoplasms. However, its role in myeloid malignancies remains unclear. Here, we explored the role of BCL6 in acute myeloid leukemia (AML). BCL6 was expressed at variable and often high levels in AML cell lines and primary AML samples. AMLs with higher levels of BCL6 were generally sensitive to treatment with BCL6 inhibitors, with the exception of those with monocytic differentiation. Gene expression profiling of AML cells treated with a BCL6 inhibitor revealed induction of BCL6-repressed target genes and transcriptional programs linked to DNA damage checkpoints and downregulation of stem cell genes. Ex vivo treatment of primary AML cells with BCL6 inhibitors induced apoptosis and decreased colony-forming capacity, which correlated with the levels of BCL6 expression. Importantly, inhibition or knockdown of BCL6 in primary AML cells resulted in a significant reduction of leukemia-initiating capacity in mice, suggesting ablation of leukemia repopulating cell functionality. In contrast, BCL6 knockout or inhibition did not suppress the function of normal hematopoietic stem cells. Treatment with cytarabine further induced BCL6 expression, and the levels of BCL6 induction were correlated with resistance to cytarabine. Treatment of AML patient-derived xenografts with BCL6 inhibitor plus cytarabine suggested enhanced antileukemia activity with this combination. Hence, pharmacologic inhibition of BCL6 might provide a novel therapeutic strategy for ablation of leukemia-repopulating cells and increased responsiveness to chemotherapy.
Collapse
|
4
|
Chen YJ, Huang CH, Shi YJ, Lee YC, Wang LJ, Chang LS. The suppressive effect of arsenic trioxide on TET2-FOXP3-Lyn-Akt axis-modulated MCL1 expression induces apoptosis in human leukemia cells. Toxicol Appl Pharmacol 2018; 358:43-55. [PMID: 30213730 DOI: 10.1016/j.taap.2018.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/02/2018] [Accepted: 09/07/2018] [Indexed: 01/11/2023]
Abstract
Arsenic trioxide (ATO) has been reported to inhibit the activity of Ten-eleven translocation methylcytosine dioxygenase (TET). TET modulates FOXP3 expression, while dysregulation of FOXP3 expression promotes the malignant progression of leukemia cells. We examined the role of TET-FOXP3 axis in the cytotoxic effects of ATO on the human acute myeloid leukemia cell line, U937. ATO-induced apoptosis in U937 cells was characterized by activation of caspase-3/-9, mitochondrial depolarization, and MCL1 downregulation. In addition, ATO-treated U937 cells showed ROS-mediated inhibition of TET2 transcription, leading to downregulation of FOXP3 expression and in turn, suppression of FOXP3-mediated activation of Lyn and Akt. Overexpression of FOXP3 or Lyn minimized the suppressive effect of ATO on Akt activation and MCL1 expression. Promoter luciferase activity and chromatin immunoprecipitation assays revealed the crucial role of Akt-mediated CREB phosphorylation in MCL1 transcription. Further, ATO-induced Akt inactivation promoted GSK3β-mediated degradation of MCL1. Transfection of constitutively active Akt expression abrogated ATO-induced MCL1 downregulation. MCL1 overexpression lessened the ATO-induced depolarization of mitochondrial membrane and increased the viability of ATO-treated cells. Thus, our data suggest that ATO induces mitochondria-mediated apoptosis in U937 cells through its suppressive effect on TET2-FOXP3-Lyn-Akt axis-modulated MCL1 transcription and protein stabilization. Our findings also indicate that the same pathway underlies ATO-induced death in human leukemia HL-60 cells.
Collapse
Affiliation(s)
- Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
5
|
Tan SF, Liu X, Fox TE, Barth BM, Sharma A, Turner SD, Awwad A, Dewey A, Doi K, Spitzer B, Shah MV, Morad SAF, Desai D, Amin S, Zhu J, Liao J, Yun J, Kester M, Claxton DF, Wang HG, Cabot MC, Schuchman EH, Levine RL, Feith DJ, Loughran TP. Acid ceramidase is upregulated in AML and represents a novel therapeutic target. Oncotarget 2018; 7:83208-83222. [PMID: 27825124 PMCID: PMC5347763 DOI: 10.18632/oncotarget.13079] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022] Open
Abstract
There is an urgent unmet need for new therapeutics in acute myeloid leukemia (AML) as standard therapy has not changed in the past three decades and outcome remains poor for most patients. Sphingolipid dysregulation through decreased ceramide levels and elevated sphingosine 1-phosphate (S1P) promotes cancer cell growth and survival. Acid ceramidase (AC) catalyzes ceramide breakdown to sphingosine, the precursor for S1P. We report for the first time that AC is required for AML blast survival. Transcriptome analysis and enzymatic assay show that primary AML cells have high levels of AC expression and activity. Treatment of patient samples and cell lines with AC inhibitor LCL204 reduced viability and induced apoptosis. AC overexpression increased the expression of anti-apoptotic Mcl-1, significantly increased S1P and decreased ceramide. Conversely, LCL204 induced ceramide accumulation and decreased Mcl-1 through post-translational mechanisms. LCL204 treatment significantly increased overall survival of C57BL/6 mice engrafted with leukemic C1498 cells and significantly decreased leukemic burden in NSG mice engrafted with primary human AML cells. Collectively, these studies demonstrate that AC plays a critical role in AML survival through regulation of both sphingolipid levels and Mcl-1. We propose that AC warrants further exploration as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Su-Fern Tan
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xin Liu
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Brian M Barth
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Arati Sharma
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Stephen D Turner
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andy Awwad
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Alden Dewey
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Kenichiro Doi
- Department of Pathology, Osaka City University Medical School, Osaka, Japan
| | - Barbara Spitzer
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithun Vinod Shah
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samy A F Morad
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA.,Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Junjia Zhu
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Jason Liao
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Jong Yun
- Penn State Hershey Cancer Institute, Hershey, PA, USA.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - Hong-Gang Wang
- Penn State Hershey Cancer Institute, Hershey, PA, USA.,Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David J Feith
- Department of Medicine, University of Virginia, Charlottesville, VA, USA.,University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Thomas P Loughran
- Department of Medicine, University of Virginia, Charlottesville, VA, USA.,University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
6
|
Zhou J, Lu X, Tan TZ, Chng W. X-linked inhibitor of apoptosis inhibition sensitizes acute myeloid leukemia cell response to TRAIL and chemotherapy through potentiated induction of proapoptotic machinery. Mol Oncol 2018; 12:33-47. [PMID: 29063676 PMCID: PMC5748481 DOI: 10.1002/1878-0261.12146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 10/07/2017] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with an increasing incidence and relatively low 5-year survival rate. Unfortunately, the underlying mechanism of leukemogenesis is poorly known, and there has been little progress in the treatment for AML. Studies have shown that X-linked inhibitor of apoptosis (XIAP), one of the inhibitors of apoptosis proteins (IAPs), is highly expressed and contributes to chemoresistance in AML. Hence, a novel drug, RO6867520 (RO-BIR2), developed by Roche targeting the BIR2 domain in XIAP to reactivate blocked apoptosis, is a promising therapy for AML. The monotherapy of RO-BIR2 had minimal effect on most of the AML cell lines tested except U-937. In contrast to AML cell lines, in general, RO-BIR2 alone has been shown to inhibit the proliferation of primary AML patient samples effectively and induced apoptosis in a dose-dependent manner. A combination of RO-BIR2 with TNF-related apoptosis-inducing ligand (TRAIL) led to highly synergistic effect on AML cell lines and AML patient samples. This combination therapy is capable of inducing apoptosis, thereby leading to an increase in specific apoptotic cell population, along with the activation of caspase 3/7. A number of apoptotic-related proteins such as XIAP, cleavage of caspase 3, cleavage of caspase 7, and cleaved PARP were changed upon combination therapy. Combination of RO-BIR2 with Ara-C had similar effect as the TRAIL combination. Ara-C combination also led to synergistic effect on AML cell lines and AML patient samples with low combination indexes (CIs). We conclude that the combination of RO-BIR2 with either TRAIL or Ara-C represents a potent therapeutic strategy for AML and is warranted for further clinical trials to validate the synergistic benefits in patients with AML, especially for the elderly who are abstaining from intensive chemotherapy.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of SingaporeNational University of Singapore, Centre for Translational MedicineSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Xiao Lu
- Cancer Science Institute of SingaporeNational University of Singapore, Centre for Translational MedicineSingapore
| | - Tuan Zea Tan
- Cancer Science Institute of SingaporeNational University of Singapore, Centre for Translational MedicineSingapore
- Translational Centre for Development and ResearchNational University Health SystemSingaporeSingapore
| | - Wee‐Joo Chng
- Cancer Science Institute of SingaporeNational University of Singapore, Centre for Translational MedicineSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Hematology‐OncologyNational University Cancer Institute, NUHSSingaporeSingapore
| |
Collapse
|
7
|
Jafarlou M, Shanehbandi D, Dehghan P, Mansoori B, Othman F, Baradaran B. Enhancement of chemosensitivity by simultaneously silencing of Mcl-1 and Survivin genes using small interfering RNA in human myelomonocytic leukaemia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1792-1798. [PMID: 29113504 DOI: 10.1080/21691401.2017.1392969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute myeloid leukaemia (AML) is a genetically heterogeneous, severe and rapidly progressing disease triggered by blocking granulocyte or monocyte differentiation and maturation. Overexpression of myeloid cell leukaemia-1 (Mcl-1) and Survivin is associated with drug resistance, tumour progression and inhibition of apoptotic mechanisms in leukaemia and several cancers. In the present study, we examined the combined effect of etoposide and dual siRNA-mediated silencing of Mcl-1 and Survivin on U-937 AML cells. The AML cells were co-transfected with Mcl-1 and Survivin-specific siRNAs and genes silencing were confirmed by quantitative real-time PCR and Western blotting. Subsequently, MTT assay was used for the evaluation of cytotoxic effects by dual siRNA and etoposide on their own and in combination. For the studying of apoptosis, DNA-histone ELISA and annexin-V/FITC assays were performed. Co-transfection of Mcl-1 and Survivin siRNA significantly blocked their expression at the mRNA and protein levels, leading to the induction of apoptosis and strong inhibition of growth (p < .05). Besides, combined treatment of etoposide with Mcl-1 and Survivin siRNAs co-transfection leads to synergistically enhance etoposide-induced cytotoxic and apoptotic effects (p < .05). The results showed that Mcl-1 and Survivin play a major role in the U937 cells survival and their resistance relative to etoposide. Thus, Mcl-1 and Survivin can be considered as promising molecular targets for the treatment of AML. The combination treatment with etoposide, and siRNA-mediated silencing of corresponding genes may be a novel strategy in chemoresistance AML treatment.
Collapse
Affiliation(s)
- Mahdi Jafarlou
- a Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Human Anatomy, Faculty of Medicine and Health Sciences, UPM , Selangor , Malaysia
| | - Dariush Shanehbandi
- a Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Parvin Dehghan
- c Nutrition Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Behzad Mansoori
- a Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - F Othman
- b Department of Human Anatomy, Faculty of Medicine and Health Sciences, UPM , Selangor , Malaysia
| | - Behzad Baradaran
- a Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
8
|
Ricciardi MR, Mirabilii S, Licchetta R, Piedimonte M, Tafuri A. Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Adv Biol Regul 2017; 65:36-58. [PMID: 28549531 DOI: 10.1016/j.jbior.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Over the last few decades, there has been significant progress in the understanding of the pathogenetic mechanisms of the Acute Myeloid Leukemia (AML). However, despite important advances in elucidating molecular mechanisms, the treatment of AML has not improved significantly, remaining anchored at the standard chemotherapy regimen "3 + 7", with the prognosis of patients remaining severe, especially for the elderly and for those not eligible for transplant procedures. The biological and clinical heterogeneity of AML represents the major obstacle that hinders the improvement of prognosis and the identification of new effective therapeutic approaches. To date, abundant information has been collected on the genetic and molecular alterations of AML carrying prognostic significance. However, not enough is known on how AML progenitors regulate proliferation and survival by redundant and cross-talking signal transduction pathways (STP). Furthermore, it remains unclear how such complicated network affects prognosis and therapeutic treatment options, although many of these molecular determinants are potentially attractive for their druggable characteristics. In this review, some of the key STP frequently deregulated in AML, such as PI3k/Akt/mTOR pathway, GSK3 and components of Bcl-2 family of proteins, are summarized, highlighting in addition their interplay. Based on this information, we reviewed new targeted therapeutic approaches, focusing on the aberrant networks that sustain the AML blast proliferation, survival and drug resistance, aiming to improve disease treatment. Finally, we reported the approaches aimed at disrupting key signaling cross-talk overcoming resistances based on the combination of different targeting therapeutic strategies.
Collapse
Affiliation(s)
- Maria Rosaria Ricciardi
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Simone Mirabilii
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy.
| | - Roberto Licchetta
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Monica Piedimonte
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Agostino Tafuri
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| |
Collapse
|
9
|
Abraham M, Klein S, Bulvik B, Wald H, Weiss ID, Olam D, Weiss L, Beider K, Eizenberg O, Wald O, Galun E, Avigdor A, Benjamini O, Nagler A, Pereg Y, Tavor S, Peled A. The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia 2017; 31:2336-2346. [DOI: 10.1038/leu.2017.82] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 01/02/2023]
|
10
|
Amsacrine-induced apoptosis of human leukemia U937 cells is mediated by the inhibition of AKT- and ERK-induced stabilization of MCL1. Apoptosis 2016; 22:406-420. [DOI: 10.1007/s10495-016-1307-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Huang CH, Chen YJ, Chao TY, Liu WH, Changchien JJ, Hu WP, Chang LS. The Association Between p38 MAPK-Mediated TNF-α/TNFR2 up-Regulation and 2-(4-Aminophenyl)-7-Methoxybenzothiazole-Induced Apoptosis in Human Leukemia U937 Cells. J Cell Physiol 2015; 231:130-41. [DOI: 10.1002/jcp.25064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Chia-Hui Huang
- Institute of Biomedical Sciences; National Sun Yat-Sen University; Kaohsiung Taiwan
| | - Ying-Jung Chen
- Institute of Biomedical Sciences; National Sun Yat-Sen University; Kaohsiung Taiwan
| | - Tzu-Yu Chao
- Laboratory Medicine Division; Zuoying Branch of Kaohsiung Armed Forces General Hospital; Kaohsiung Taiwan
| | - Wen-Hsin Liu
- Institute of Biomedical Sciences; National Sun Yat-Sen University; Kaohsiung Taiwan
| | - Jung-Jung Changchien
- Institute of Biomedical Sciences; National Sun Yat-Sen University; Kaohsiung Taiwan
| | - Wan-Ping Hu
- Department of Biotechnology; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences; National Sun Yat-Sen University; Kaohsiung Taiwan
- Department of Biotechnology; Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|
12
|
Ruvolo PP, Qiu Y, Coombes KR, Zhang N, Neeley ES, Ruvolo VR, Hail N, Borthakur G, Konopleva M, Andreeff M, Kornblau SM. Phosphorylation of GSK3α/β correlates with activation of AKT and is prognostic for poor overall survival in acute myeloid leukemia patients. BBA CLINICAL 2015; 4:59-68. [PMID: 26674329 PMCID: PMC4661707 DOI: 10.1016/j.bbacli.2015.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 12/18/2022]
Abstract
Background Acute myeloid leukemia (AML) patients with highly active AKT tend to do poorly. Cell cycle arrest and apoptosis are tightly regulated by AKT via phosphorylation of GSK3α and β isoforms which inactivates these kinases. In the current study we examine the prognostic role of AKT mediated GSK3 phosphorylation in AML. Methods We analyzed GSK3α/β phosphorylation by reverse phase protein analysis (RPPA) in a cohort of 511 acute myeloid leukemia (AML) patients. Levels of phosphorylated GSK3 were correlated with patient characteristics including survival and with expression of other proteins important in AML cell survival. Results High levels of p-GSK3α/β correlated with adverse overall survival and a lower incidence of complete remission duration in patients with intermediate cytogenetics, but not in those with unfavorable cytogenetics. Intermediate cytogenetic patients with FLT3 mutation also fared better respectively when p-GSK3α/β levels were lower. Phosphorylated GSK3α/β expression was compared and contrasted with that of 229 related cell cycle arrest and/or apoptosis proteins. Consistent with p-GSK3α/β as an indicator of AKT activation, RPPA revealed that p-GSK3α/β positively correlated with phosphorylation of AKT, BAD, and P70S6K, and negatively correlated with β-catenin and FOXO3A. PKCδ also positively correlated with p-GSK3α/β expression, suggesting crosstalk between the AKT and PKC signaling pathways in AML cells. Conclusions These findings suggest that AKT-mediated phosphorylation of GSK3α/β may be beneficial to AML cell survival, and hence detrimental to the overall survival of AML patients. Intrinsically, p-GSK3α/β may serve as an important adverse prognostic factor for a subset of AML patients. Phospho-GSK3 is prognostic for poor survival in a subset of AML patients. Phospho-GSK3 is a biomarker for active AKT in AML. AKT is a PKCδ kinase in AML cells.
Collapse
Affiliation(s)
- Peter P. Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
- Corresponding authors at: Department of Leukemia, Unit 448, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States.
| | - YiHua Qiu
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Kevin R. Coombes
- Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States
- Department of Biomedical Informatics, Ohio State University Medical Center, Columbus, OH 43210, United States
| | - Nianxiang Zhang
- Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States
| | - E. Shannon Neeley
- Department of Statistics, Brigham Young University, Provo, UT, United States
| | - Vivian R. Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Numsen Hail
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Gautam Borthakur
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Michael Andreeff
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Steven M. Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
- Corresponding authors at: Department of Leukemia, Unit 448, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States.
| |
Collapse
|
13
|
Guo XE, Ngo B, Modrek AS, Lee WH. Targeting tumor suppressor networks for cancer therapeutics. Curr Drug Targets 2014; 15:2-16. [PMID: 24387338 DOI: 10.2174/1389450114666140106095151] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/17/2013] [Accepted: 11/03/2013] [Indexed: 01/07/2023]
Abstract
Cancer is a consequence of mutations in genes that control cell proliferation, differentiation and cellular homeostasis. These genes are classified into two categories: oncogenes and tumor suppressor genes. Together, overexpression of oncogenes and loss of tumor suppressors are the dominant driving forces for tumorigenesis. Hence, targeting oncogenes and tumor suppressors hold tremendous therapeutic potential for cancer treatment. In the last decade, the predominant cancer drug discovery strategy has relied on a traditional reductionist approach of dissecting molecular signaling pathways and designing inhibitors for the selected oncogenic targets. Remarkable therapies have been developed using this approach; however, targeting oncogenes is only part of the picture. Our understanding of the importance of tumor suppressors in preventing tumorigenesis has also advanced significantly and provides a new therapeutic window of opportunity. Given that tumor suppressors are frequently mutated, deleted, or silenced with loss-of-function, restoring their normal functions to treat cancer holds tremendous therapeutic potential. With the rapid expansion in our knowledge of cancer over the last several decades, developing effective anticancer regimens against tumor suppressor pathways has never been more promising. In this article, we will review the concept of tumor suppression, and outline the major therapeutic strategies and challenges of targeting tumor suppressor networks for cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - Wen-Hwa Lee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine. 240 Med Sci D, Irvine, CA 92697, USA.
| |
Collapse
|
14
|
Martner A, Thorén FB, Aurelius J, Söderholm J, Brune M, Hellstrand K. Immunotherapy with histamine dihydrochloride for the prevention of relapse in acute myeloid leukemia. Expert Rev Hematol 2014; 3:381-91. [DOI: 10.1586/ehm.10.30] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Herrmann H, Blatt K, Shi J, Gleixner KV, Cerny-Reiterer S, Müllauer L, Vakoc CR, Sperr WR, Horny HP, Bradner JE, Zuber J, Valent P. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML. Oncotarget 2013; 3:1588-99. [PMID: 23249862 PMCID: PMC3681497 DOI: 10.18632/oncotarget.733] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a life-threatening stem cell disease characterized by uncontrolled proliferation and accumulation of myeloblasts. Using an advanced RNAi screen-approach in an AML mouse model we have recently identified the epigenetic ‘reader’ BRD4 as a promising target in AML. In the current study, we asked whether inhibition of BRD4 by a small-molecule inhibitor, JQ1, leads to growth-inhibition and apoptosis in primary human AML stem- and progenitor cells. Primary cell samples were obtained from 37 patients with freshly diagnosed AML (n=23) or refractory AML (n=14). BRD4 was found to be expressed at the mRNA and protein level in unfractionated AML cells as well as in highly enriched CD34+/CD38− and CD34+/CD38+ stem- and progenitor cells in all patients examined. In unfractionated leukemic cells, submicromolar concentrations of JQ1 induced major growth-inhibitory effects (IC50 0.05-0.5 μM) in most samples, including cells derived from relapsed or refractory patients. In addition, JQ1 was found to induce apoptosis in CD34+/CD38− and CD34+/CD38+ stem- and progenitor cells in all donors examined as evidenced by combined surface/Annexin-V staining. Moreover, we were able to show that JQ1 synergizes with ARA-C in inducing growth inhibition in AML cells. Together, the BRD4-targeting drug JQ1 exerts major anti-leukemic effects in a broad range of human AML subtypes, including relapsed and refractory patients and all relevant stem- and progenitor cell compartments, including CD34+/CD38− and CD34+/CD38+ AML cells. These results characterize BRD4-inhibition as a promising new therapeutic approach in AML which should be further investigated in clinical trials.
Collapse
|
16
|
Kremer KN, Peterson KL, Schneider PA, Meng XW, Dai H, Hess AD, Smith BD, Rodriguez-Ramirez C, Karp JE, Kaufmann SH, Hedin KE. CXCR4 chemokine receptor signaling induces apoptosis in acute myeloid leukemia cells via regulation of the Bcl-2 family members Bcl-XL, Noxa, and Bak. J Biol Chem 2013; 288:22899-914. [PMID: 23798675 DOI: 10.1074/jbc.m113.449926] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The CXCR4 chemokine receptor promotes survival of many different cell types. Here, we describe a previously unsuspected role for CXCR4 as a potent inducer of apoptosis in acute myeloid leukemia (AML) cell lines and a subset of clinical AML samples. We show that SDF-1, the sole ligand for CXCR4, induces the expected migration and ERK activation in the KG1a AML cell line transiently overexpressing CXCR4, but ERK activation did not lead to survival. Instead, SDF-1 treatment led via a CXCR4-dependent mechanism to apoptosis, as evidenced by increased annexin V staining, condensation of chromatin, and cleavage of both procaspase-3 and PARP. This SDF-1-induced death pathway was partially inhibited by hypoxia, which is often found in the bone marrow of AML patients. SDF-1-induced apoptosis was inhibited by dominant negative procaspase-9 but not by inhibition of caspase-8 activation, implicating the intrinsic apoptotic pathway. Further analysis showed that this pathway was activated by multiple mechanisms, including up-regulation of Bak at the level of mRNA and protein, stabilization of the Bak activator Noxa, and down-regulation of antiapoptotic Bcl-XL. Furthermore, adjusting expression levels of Bak, Bcl-XL, or Noxa individually altered the level of apoptosis in AML cells, suggesting that the combined modulation of these family members by SDF-1 coordinates their interplay to produce apoptosis. Thus, rather than mediating survival, SDF-1 may be a means to induce apoptosis of CXCR4-expressing AML cells directly in the SDF-1-rich bone marrow microenvironment if the survival cues of the bone marrow are disrupted.
Collapse
Affiliation(s)
- Kimberly N Kremer
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Inhibition of the receptor tyrosine kinase Axl impedes activation of the FLT3 internal tandem duplication in human acute myeloid leukemia: implications for Axl as a potential therapeutic target. Blood 2013; 121:2064-73. [PMID: 23321254 DOI: 10.1182/blood-2012-07-444018] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Approximately 20% to 25% of patients with acute myeloid leukemia (AML) have a constitutively activated FLT3-internal tandem duplication (FLT3-ITD), and these patients exhibit a poor prognosis. Here, we report that Axl, a receptor tyrosine kinase (RTK) overexpressed and constitutively active in human AML, targets the RTK FLT3 in FLT3-ITD(+) AML. Abrogation of Axl activation by soluble Axl chimeric protein (Axl-Fc) or small interfering RNA (siRNA) diminishes constitutive FLT3 phosphorylation in FLT3-ITD(+) AML. In addition, inhibition of Axl activation by Axl-Fc interferes with the physical interaction between Axl and FLT3. We found that Axl-Fc, a pharmacologic Axl inhibitor, or siRNA targeting Axl inhibits cell growth, induces cell-cycle arrest and apoptosis, and relieves a block in myeloid differentiation of FLT3-ITD(+) AML in vitro. Axl-Fc also suppresses the growth of human FLT3-ITD(+) AML in vivo. Collectively, our data suggest that Axl contributes to the pathogenesis of FLT3-ITD(+) AML through, at least in part, positive regulation of constitutive FLT3 activation. This also suggests that Axl should be pursued as a potential target for the treatment of FLT3-ITD(+) AML.
Collapse
|
18
|
Bourrié B, Brassard DL, Cosnier-Pucheu S, Zilberstein A, Yu K, Levit M, Morrison JG, Perreaut P, Jegham S, Hilairet S, Bouaboula M, Penarier G, Guiot C, Larroze-Chicot P, Laurent G, Demur C, Casellas P. SAR103168: a tyrosine kinase inhibitor with therapeutic potential in myeloid leukemias. Leuk Lymphoma 2012; 54:1488-99. [DOI: 10.3109/10428194.2012.745071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | | | | | - Kin Yu
- Sanofi Oncology,
Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | - Guy Laurent
- Service d’Hématologie Clinique, CHU Purpan, Toulouse, France, Laboratoire d’Hématologie et de Génétique, Centre Regional de Transfusion Sanguine, University Medical Center, France
| | - Cécile Demur
- Laboratoire d’Hématologie, CHU Purpan, University Medical Center of Toulouse, France
| | | |
Collapse
|
19
|
Cell-Type-Specific Effects of Silibinin on Vitamin D-Induced Differentiation of Acute Myeloid Leukemia Cells Are Associated with Differential Modulation of RXRα Levels. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:401784. [PMID: 23259067 PMCID: PMC3505927 DOI: 10.1155/2012/401784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 03/15/2012] [Indexed: 01/22/2023]
Abstract
Plant polyphenols have been shown to enhance the differentiation of acute myeloid leukemia (AML) cells induced by the hormonal form of vitamin D(3) (1α,25-dihydroxyvitamin D(3); 1,25D). However, how these agents modulate 1,25D effects in different subtypes of AML cells remains poorly understood. Here, we show that both carnosic acid (CA) and silibinin (SIL) synergistically enhancd 1,25D-induced differentiation of myeloblastic HL60 cells. However, in promonocytic U937 cells, only CA caused potentiation while SIL attenuated 1,25D effect. The enhanced effect of 1,25D+CA was accompanied by increases in both the vitamin D receptor (VDR) and retinoid X receptor alpha (RXRα) protein levels and vitamin D response element (VDRE) transactivation in both cell lines. Similar increases were observed in HL60 cells treated with 1,25D + SIL. In U937 cells, however, SIL inhibited 1,25D-induced VDRE transactivation concomitant with downregulation of RXRα at both transcriptional and posttranscriptional levels. These inhibitory effects correlated with the inability of SIL, with or without 1,25D, to activate the Nrf2/antioxidant response element signaling pathway in U937 cells. These results suggest that opposite effects of SIL on 1,25D-induced differentiation of HL60 and U937 cells may be determined by cell-type-specific signaling and transcriptional responses to this polyphenol resulting in differential modulation of RXRα expression.
Collapse
|
20
|
Ferrara F. New agents for acute myeloid leukemia: is it time for targeted therapies? Expert Opin Investig Drugs 2012; 21:179-89. [PMID: 22217298 DOI: 10.1517/13543784.2012.646082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The prognosis of acute myeloid leukemia (AML) is improved in the last two decades, even though induction and consolidation chemotherapy has not involved new drugs. The more effective use of well-known agents as well as refinement of supportive care during the inevitable phase of severe pancytopenia following intensive chemotherapy accounts for the reduction of treatment-related death rate. In addition, mortality due to allogeneic and autologous stem cell transplantation has also been reduced, due to adoption of more effective therapies for graft versus host disease and other transplant-related complications. AREAS COVERED The multitude of chromosomal and molecular abnormalities makes the treatment of AML a challenging prospect. In addition, genetic aberrations are not mutually exclusive and coexist in the leukemic cells. As a consequence, the clinical development of new biologic agents proceeds slowly. Data for this review were identified from PubMed and references from relevant articles published in English from 2000 to 2011. EXPERT OPINION In Phase II studies, different new agents have been found to be active in AML and are currently under investigation in Phase III trials also in combination with conventional chemotherapy. In the near future, we would have more information about the possibility of introducing new drugs into daily practice.
Collapse
Affiliation(s)
- Felicetto Ferrara
- Cardarelli Hospital, Division of Hematology and Stem Cell Transplantation Unit, Via Nicolò Piccinni 6, 80128 Napoli, Italy.
| |
Collapse
|
21
|
Cumaraswamy AA, Todic A, Resetca D, Minden MD, Gunning PT. Inhibitors of Stat5 protein signalling. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00175b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Cristóbal I, Garcia-Orti L, Cirauqui C, Cortes-Lavaud X, García-Sánchez MA, Calasanz MJ, Odero MD. Overexpression of SET is a recurrent event associated with poor outcome and contributes to protein phosphatase 2A inhibition in acute myeloid leukemia. Haematologica 2011; 97:543-50. [PMID: 22133779 DOI: 10.3324/haematol.2011.050542] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Protein phosphatase 2A is a novel potential therapeutic target in several types of chronic and acute leukemia, and its inhibition is a common event in acute myeloid leukemia. Upregulation of SET is essential to inhibit protein phosphatase 2A in chronic myeloid leukemia, but its importance in acute myeloid leukemia has not yet been explored. DESIGN AND METHODS We quantified SET expression by real time reverse transcriptase polymerase chain reaction in 214 acute myeloid leukemia patients at diagnosis. Western blot was performed in acute myeloid leukemia cell lines and in 16 patients' samples. We studied the effect of SET using cell viability assays. Bioinformatics analysis of the SET promoter, chromatin immunoprecipitation, and luciferase assays were performed to evaluate the transcriptional regulation of SET. RESULTS SET overexpression was found in 60/214 patients, for a prevalence of 28%. Patients with SET overexpression had worse overall survival (P<0.01) and event-free survival (P<0.01). Deregulation of SET was confirmed by western blot in both cell lines and patients' samples. Functional analysis showed that SET promotes proliferation, and restores cell viability after protein phosphatase 2A overexpression. We identified EVI1 overexpression as a mechanism involved in SET deregulation in acute myeloid leukemia cells. CONCLUSIONS These findings suggest that SET overexpression is a key mechanism in the inhibition of PP2A in acute myeloid leukemia, and that EVI1 overexpression contributes to the deregulation of SET. Furthermore, SET overexpression is associated with a poor outcome in acute myeloid leukemia, and it can be used to identify a subgroup of patients who could benefit from future treatments based on PP2A activators.
Collapse
Affiliation(s)
- Ion Cristóbal
- Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII-55 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Che Y, Zhang DY, Ye F, Wu B, Jiang B. Combination of flavopiridol and embelin effectively inhibit cell growth in hepatocellular carcinoma depending on regulatory relationship between CDK6 and XIAP. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9867-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Altman JK, Sassano A, Platanias LC. Targeting mTOR for the treatment of AML. New agents and new directions. Oncotarget 2011; 2:510-7. [PMID: 21680954 PMCID: PMC3248202 DOI: 10.18632/oncotarget.290] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite recent advances in the field, the treatment of patients with acute myeloid leukemia (AML) remains challenging and difficult. Although chemotherapeutic agents induce remissions in a large number of patients, many of them eventually relapse and die. A major goal for the development of new approaches for the treatment of AML is to enhance the antileukemic effects of standard chemotherapeutics and to design effective combinations targeting non-overlapping cellular pathways. The PI3K/Akt/mTOR signaling pathway plays a critical role in survival and growth of malignant cells and its targeting has been the focus of extensive work and research efforts over the last two decades. It now appears possible that a major limitation of the first generation of mTOR inhibitors can be overcome by a new class of catalytic inhibitors of mTOR. There is emerging evidence that such compounds target both TORC1 and TORC2 and elicit much more potent responses against early leukemic precursors in vitro. In addition, recent studies have shown that combinations of such agents with cytarabine result in enhanced antileukemic responses in vitro, raising the prospect and potential of use of these agents in combination regimens for the treatment of AML.
Collapse
Affiliation(s)
- Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL, USA
| | | | | |
Collapse
|
25
|
Fathi AT, Chen YB. Treatment of FLT3-ITD acute myeloid leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2011; 1:175-189. [PMID: 22432079 PMCID: PMC3301423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/27/2011] [Indexed: 05/31/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy which is cured in a minority of patients. A FLT3-internal tandem duplication (ITD) mutation, found in approximately a quarter of patients with de novo AML, imparts a particularly poor prognosis. Patients with FLT3-ITD AML often present with more aggressive disease and have a significantly higher propensity for relapse after remission. The therapeutic approach for these patients has traditionally included intensive induction chemotherapy, followed by consolidative chemotherapy or hematopoietic cell transplantation (HCT). In recent years, multiple small molecule inhibitors of the FLT3 tyrosine kinase have been studied preclinically and in clinical trials. The earlier generation of these agents, often non-specific and impacting a variety of tyrosine kinases, produced at best transient peripheral blood responses in early clinical trials. Additionally, the combination of FLT3 inhibitors with cytotoxic regimens has not, as of yet, demonstrated an improvement in overall survival. Nevertheless, multiple current trials, including those with sorafenib, lestaurtinib, and midostaurin, continue to study the combination of FLT3 inhibitors with standard chemotherapy. Factors such as sustained FLT3 inhibition, protein binding, pharmacokinetics, and the presence of elevated FLT3-ligand levels appear to significantly impact the potency of these agents in vivo. In recent years, the development of more specific and potent agents has generated hope that FLT3 inhibitors may play a more prominent role in the treatment of FLT3-ITD AML in the near future. Nevertheless, questions remain regarding the optimal timing and schedule for incorporation of FLT3 inhibitors. The suitability, type, and timing of allogeneic HCT in the therapeutic approach for these patients are also issues which require further study and definition. Recent retrospective data appears to support the efficacy of allogeneic HCT in first complete remission, possibly due to a graft versus leukemia effect. However, larger prospective studies are necessary to further elucidate the role of HCT and its potential combination with FLT3 inhibitor therapy. We are hopeful that current clinical investigation will lead to an optimization and improvement of outcomes for these patients.
Collapse
Affiliation(s)
- Amir T Fathi
- Center for Leukemia and the Bone Marrow Transplant Unit, Division of Hematology/Oncology, Massachusetts General Hospital, Harvard Medical School Boston, MA 02114, USA
| | | |
Collapse
|
26
|
Fathi AT, Chabner BA. FLT3 inhibition as therapy in acute myeloid leukemia: a record of trials and tribulations. Oncologist 2011; 16:1162-74. [PMID: 21765192 DOI: 10.1634/theoncologist.2011-0084] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy with a poor prognosis. Approximately one quarter of the patients with AML also carry an internal tandem duplication (ITD) mutation in the gene encoding FMS-like tyrosine kinase 3 (FLT3), which has a significantly deleterious impact on prognosis. The ITD mutation renders FLT3 constitutively active and leads to uncontrolled proliferation of the leukemic blast. Over the course of the last decade, a variety of compounds have been developed in preclinical and clinical studies as potent inhibitors of FLT3. Many of the earlier agents under investigation, such as lestaurtinib, midostaurin, and sunitinib, were initially developed as inhibitors of other tyrosine kinases and as targeted therapies in a variety of malignancies. These compounds have been demonstrated to have some efficacy in clinical trials of AML, mainly manifesting as transient decreases in circulating blasts correlating with effective in vivo suppression of the FLT3 target. Nevertheless, the cumbersome pharmacokinetics of some compounds and the suboptimal specificity and potency of others have limited their therapeutic efficacy. In the last few years, newer, more potent and specific agents have been under investigation, with the leading example being AC220. This agent has shown significant promise in early phases of clinical investigation, and is currently in more advanced clinical trials. Hope remains that FLT3 inhibition will be become an effective therapeutic adjunct to our current treatment approach to AML.
Collapse
Affiliation(s)
- Amir T Fathi
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
27
|
Mehta DR, Foon KA, Redner RL, Raptis A, Agha M, Hou JZ, Duggal S, Luong TM, Schlesselman JJ, Boyiadzis M. Fludarabine and cytarabine in patients with acute myeloid leukemia refractory to two different courses of front-line chemotherapy. Leuk Res 2011; 35:885-8. [DOI: 10.1016/j.leukres.2010.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/29/2010] [Accepted: 12/30/2010] [Indexed: 01/19/2023]
|
28
|
Low expression of PP2A regulatory subunit B55α is associated with T308 phosphorylation of AKT and shorter complete remission duration in acute myeloid leukemia patients. Leukemia 2011; 25:1711-7. [PMID: 21660042 PMCID: PMC3191228 DOI: 10.1038/leu.2011.146] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The regulation of Protein Kinase B (AKT) is a dynamic process that depends on the balance between phosphorylation by upstream kinases for activation and inactivation by dephosphorylation by protein phosphatases. Phosphorylated AKT is commonly found in acute myeloid leukemia (AML) and confers an unfavorable prognosis. Understanding the relative importance of upstream kinases and AKT phosphatase in the activation of AKT is relevant for the therapeutic targeting of this signaling axis in AML. The B55α subunit of Protein Phosphatase 2A (PP2A) has been implicated in AKT dephosphorylation but its role in regulating AKT in AML is unknown. We examined B55α protein expression in blast cells derived from 511 AML patients using Reverse Phase Protein Analysis (RPPA). B55α protein expression was lower in AML cells compared to normal CD34+ cells. B55α protein levels negatively correlated with T308 phosphorylation levels. Low levels of B55α were associated with shorter complete remission duration demonstrating that decreased expression is an adverse prognostic factor in AML. These findings suggest that decreased B55α expression in AML is at least partially responsible for increased AKT signaling in AML and suggests that therapeutic targeting of PP2A could counteract this.
Collapse
|
29
|
Altman JK, Sassano A, Kaur S, Glaser H, Kroczynska B, Redig AJ, Russo S, Barr S, Platanias LC. Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin Cancer Res 2011; 17:4378-88. [PMID: 21415215 DOI: 10.1158/1078-0432.ccr-10-2285] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To determine whether mTORC2 and rapamycin-insensitive (RI)-mTORC1 complexes are present in acute myeloid leukemia (AML) cells and to examine the effects of dual mTORC2/mTORC1 inhibition on primitive AML leukemic progenitors. EXPERIMENTAL DESIGN Combinations of different experimental approaches were used, including immunoblotting to detect phosphorylated/activated forms of elements of the mTOR pathway in leukemic cell lines and primary AML blasts; cell-proliferation assays; direct assessment of mRNA translation in polysomal fractions of leukemic cells; and clonogenic assays in methylcellulose to evaluate leukemic progenitor-colony formation. RESULTS mTORC2 complexes are active in AML cells and play critical roles in leukemogenesis. RI-mTORC1 complexes are also formed and regulate the activity of the translational repressor 4E-BP1 in AML cells. OSI-027 blocks mTORC1 and mTORC2 activities and suppresses mRNA translation of cyclin D1 and other genes that mediate proliferative responses in AML cells. Moreover, OSI-027 acts as a potent suppressor of primitive leukemic precursors from AML patients and is much more effective than rapamycin in eliciting antileukemic effects in vitro. CONCLUSIONS Dual targeting of mTORC2 and mTORC1 results in potent suppressive effects on primitive leukemic progenitors from AML patients. Inhibition of the mTOR catalytic site with OSI-027 results in suppression of both mTORC2 and RI-mTORC1 complexes and elicits much more potent antileukemic responses than selective mTORC1 targeting with rapamycin.
Collapse
Affiliation(s)
- Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology/Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bobilev I, Novik V, Levi I, Shpilberg O, Levy J, Sharoni Y, Studzinski GP, Danilenko M. The Nrf2 transcription factor is a positive regulator of myeloid differentiation of acute myeloid leukemia cells. Cancer Biol Ther 2011; 11:317-29. [PMID: 21099366 DOI: 10.4161/cbt.11.3.14098] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1α,25-dihydroxyvitamin D3 (1,25D) is a powerful differentiation agent, which has potential for treatment of acute myeloid leukemia (AML), but induces severe hypercalcemia at pharmacologically active doses. We have previously shown that carnosic acid (CA), the polyphenolic antioxidant from rosemary plant, markedly potentiates differentiation induced by low concentrations of 1,25D in human AML cell lines. Here, we demonstrated similar enhanced differentiation responses to the 1,25D/CA combination in primary leukemic cells derived from patients with AML, and determined the role of the Nrf2/antioxidant response element (Nrf2/ARE) pathway in these effects using U937 human monoblastic leukemia cells as the model. CA strongly transactivated the ARE-luciferase reporter gene, induced the ARE-responsive genes, NADP(H)-quinone oxidoreductase and the γ-glutamylcysteine synthetase heavy subunit, and elevated cellular glutathione levels. Interestingly, 1,25D potentiated the effects of CA on these activities. Stable transfection of wild-type (wt) Nrf2 resulted in the enhancement, while transfection of dominant-negative (dn) Nrf2 produced suppression of differentiation induced by the 1,25D/CA combination and, surprisingly, by 1,25D alone. These opposite effects were associated with a corresponding increase or decrease in vitamin D receptor and retinoid X receptor-α protein levels, and in vitamin D responsive element transactivation. Cells transfected with wtNrf2 and dnNrf2 also displayed opposing changes in the levels of the AP-1 family proteins (c-Jun and ATF2) and AP-1 transcriptional activity. Pretreatment with AP-1 decoy oligodeoxynucleotide markedly attenuated the differentiation in wtNrf2-transfected cells, suggesting that the pro-differentiation action of Nrf2 is mediated by functional AP-1. Our findings suggest that the Nrf2/ARE pathway plays an important part in the cooperative induction of myeloid leukemia cell differentiation by 1,25D and a plant polyphenol.
Collapse
Affiliation(s)
- Irene Bobilev
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Petakh Tikva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chetverina EV, Chetverin AB. Nanocolonies and diagnostics of oncological diseases associated with chromosomal translocations. BIOCHEMISTRY (MOSCOW) 2011; 75:1667-91. [DOI: 10.1134/s0006297910130109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Rosen DB, Putta S, Covey T, Huang YW, Nolan GP, Cesano A, Minden MD, Fantl WJ. Distinct patterns of DNA damage response and apoptosis correlate with Jak/Stat and PI3kinase response profiles in human acute myelogenous leukemia. PLoS One 2010; 5:e12405. [PMID: 20811632 PMCID: PMC2928279 DOI: 10.1371/journal.pone.0012405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/26/2010] [Indexed: 12/27/2022] Open
Abstract
Background Single cell network profiling (SCNP) utilizing flow cytometry measures alterations in intracellular signaling responses. Here SCNP was used to characterize Acute Myeloid Leukemia (AML) disease subtypes based on survival, DNA damage response and apoptosis pathways. Methodology and Principal Findings Thirty four diagnostic non-M3 AML samples from patients with known clinical outcome were treated with a panel of myeloid growth factors and cytokines, as well as with apoptosis-inducing agents. Analysis of induced Jak/Stat and PI3K pathway responses in blasts from individual patient samples identified subgroups with distinct signaling profiles that were not seen in the absence of a modulator. In vitro exposure of patient samples to etoposide, a DNA damaging agent, revealed three distinct “DNA damage response (DDR)/apoptosis” profiles: 1) AML blasts with a defective DDR and failure to undergo apoptosis; 2) AML blasts with proficient DDR and failure to undergo apoptosis; 3) AML blasts with proficiency in both DDR and apoptosis pathways. Notably, AML samples from clinical responders fell within the “DDR/apoptosis” proficient profile and, as well, had low PI3K and Jak/Stat signaling responses. In contrast, samples from clinical non responders had variable signaling profiles often with in vitro apoptotic failure and elevated PI3K pathway activity. Individual patient samples often harbored multiple, distinct, leukemia-associated cell populations identifiable by their surface marker expression, functional performance of signaling pathway in the face of cytokine or growth factor stimulation, as well as their response to apoptosis-inducing agents. Conclusions and Significance Characterizing and tracking changes in intracellular pathway profiles in cell subpopulations both at baseline and under therapeutic pressure will likely have important clinical applications, potentially informing the selection of beneficial targeted agents, used either alone or in combination with chemotherapy.
Collapse
Affiliation(s)
- David B. Rosen
- Nodality, Inc., South San Francisco, California, United States of America
| | - Santosh Putta
- Nodality, Inc., South San Francisco, California, United States of America
| | - Todd Covey
- Nodality, Inc., South San Francisco, California, United States of America
| | - Ying-Wen Huang
- Nodality, Inc., South San Francisco, California, United States of America
| | - Garry P. Nolan
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Alessandra Cesano
- Nodality, Inc., South San Francisco, California, United States of America
| | | | - Wendy J. Fantl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- Nodality, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Sprigg L, Li A, Choy FYM, Ausió J. Interaction of Daunomycin with Acetylated Chromatin. J Med Chem 2010; 53:6457-65. [DOI: 10.1021/jm1007853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lyndsay Sprigg
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | - Andra Li
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | - Francis Y. M. Choy
- Department of Biology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
- Center for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
- Center for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada
| |
Collapse
|
34
|
Abstract
The nonreceptor tyrosine kinase SYK has recently received a good deal of attention as a critical oncogene in various hematologic malignancies. A newly developed model of peripheral T cell lymphoma (PTCL) using the ITK-SYK fusion gene should serve as a powerful tool to dissect the signaling cascades important for SYK-associated malignancy in the context of t(5;9) PTCL.
Collapse
Affiliation(s)
- James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|