1
|
Steinestel K, Arndt A. Current Biomarkers in Non-Small Cell Lung Cancer-The Molecular Pathologist's Perspective. Diagnostics (Basel) 2025; 15:631. [PMID: 40075878 PMCID: PMC11899415 DOI: 10.3390/diagnostics15050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Advances in tissue-based biomarkers have significantly enhanced diagnostic and therapeutic approaches in NSCLC, enabling precision medicine strategies. This review provides a comprehensive analysis of the molecular pathologist's practical approach to assessing NSCLC biomarkers across various specimen types (liquid biopsy, broncho-alveolar lavage, transbronchial biopsy/endobronchial ultrasound-guided biopsy, and surgical specimen), including challenges such as biological heterogeneity and preanalytical variability. We discuss the role of programmed death ligand 1 (PD-L1) immunohistochemistry in predicting immunotherapy response, the practice of histopathological tumor regression grading after neoadjuvant chemoimmunotherapy, and the application of DNA- and RNA-based techniques for detecting actionable molecular alterations. Finally, we emphasize the critical need for quality management to ensure the reliability and reproducibility of biomarker testing in NSCLC.
Collapse
Affiliation(s)
- Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, 89081 Ulm, Germany;
| | | |
Collapse
|
2
|
Swalduz A, Beau-Faller M, Planchard D, Mazieres J, Bayle-Bleuez S, Debieuvre D, Fallet V, Geier M, Cortot A, Couraud S, Daniel C, Domblides C, Pichon E, Fabre E, Larivé S, Lerolle U, Tomasini P, Wislez M, Missy P, Morin F, Westeel V, Auliac JB. Real-world efficacy of the dabrafenib-trametinib (D-T) combination in BRAF V600E-mutated metastatic non-small cell lung cancer (NSCLC): Results from the IFCT-2004 BLaDE cohort. Lung Cancer 2025; 199:108038. [PMID: 39616778 DOI: 10.1016/j.lungcan.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 02/02/2025]
Abstract
BACKGROUND BRAF V600E mutations occur in 2-5 % of advanced non-small cell lung cancer (NSCLC) patients. The dabrafenib-trametinib (D-T) combination was associated with improved and durable OS in patients in phase II. This study (IFCT-2004 BLaDE study) reported the efficacy of D-T combination in a large retrospective French real-world multicenter cohort of patients with advanced BRAF V600E-mutated NSCLC. METHOD Patients with advanced BRAF V600E-mutated NSCLC diagnosed between 01.01.2016 and 31.12.2019 and treated with D-T in combination, regardless of the treatment line, were included. The primary endpoint was the 12-month OS rate (%) in patients receiving D-T as a second-line therapy or beyond. RESULTS A total of 163 patients were included: 50.3 % were female, 30.2 % were never smokers, 95.1 % had adenocarcinoma, and 78.2 % had a PDL1 ≥ 1 %. The median age was 68.3 years. At D-T initiation, 80.8 % of patients had a PS of 0/1, 78.6 % had stage IV disease, and 20.9 % had brain metastasis. At the cutoff, the median follow-up was 27.4 months. The 12-month OS rate in patients receiving D + T as a second-line therapy or beyond (n = 119) was 67.4 %, with a median progression-free survival (mPFS) of 10.4 months. Among the 44 patients who received D + T as a first-line therapy, the 12-month OS rate was 67.4 %, with an mPFS of 18.2 months. D-T discontinuation for toxicity was reported in 10.3 % of patients. CONCLUSIONS To our knowledge, this is the largest retrospective cohort of BRAF-mutated patients reported. The findings confirmed the significant efficacy of D-T in combination with BRAF V600E-mutated metastatic NSCLC in pretreated and untreated patients. These results under real-world conditions are consistent with those of other registered studies.
Collapse
Affiliation(s)
- Aurélie Swalduz
- Centre Léon Bérard, Department of Medical Oncology, Lyon, France.
| | - Michèle Beau-Faller
- Centre Hospitalier Universitaire Strasbourg, Laboratoire d'Onco-Biologie & Oncologie Thoracique Hôpital de Hautepierre & Nouvel Hôpital Civil, INSERM UMR 1260 - Nanomédecine Régénérative, Université de Strasbourg - CRBS, Strasbourg, France
| | - David Planchard
- Gustave Roussy, Cancer Medicine Department, Villejuif, France
| | | | | | - Didier Debieuvre
- Groupe Hospitalier de la Région Mulhouse Sud-Alsace, Hôpital Emile Muller, GHRMSA - Mulhouse, Mulhouse, France
| | - Vincent Fallet
- Tenon Hospital, Assistance Publique Hôpitaux de Paris, Department of Pneumology and Thoracic Oncology and GRC4, Theranoscan, Sorbonne Université, Paris, France
| | - Margaux Geier
- University Hospital of Brest, Department of Medical Oncology France
| | - Alexis Cortot
- Department of Thoracic Oncology, CHU de Lille, CNRS, Inserm, Institut Pasteur de Lille, UMR9020-U1277-CANTHER, Lille, France
| | - Sébastien Couraud
- Acute Respiratory Medicine and Thoracic Oncology Department, & CIRCAN Program Coordinator, Cancer Institute of Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Bénite, France
| | | | - Charlotte Domblides
- Department of Medical Oncology, University Hospital of Bordeaux, 33000 Bordeaux, France
| | - Eric Pichon
- Centre Hospitalier Universitaire, Tours, France
| | - Elizabeth Fabre
- Department of Thoracic Oncology, Hôpital européen Georges Pompidou, APHP-Centre, Carpem Cancer Institute, Paris, France
| | | | - Ulrike Lerolle
- Clinique Saint-Joseph, Service de Pneumologie, Trélazé, France
| | - Pascale Tomasini
- APHM, Hôpital Nord, Service d'Oncologie Multidisciplinaire & Innovations Thérapeutiques, Marseille, France
| | - Marie Wislez
- APHP, Hôpital Cochin, Service de Pneumologie, Unité d'Oncologie Thoracique, Paris, France
| | - Pascale Missy
- Intergroupe Francophone de Cancérologie Thoracique, Paris, France
| | - Franck Morin
- Intergroupe Francophone de Cancérologie Thoracique, Paris, France
| | | | | |
Collapse
|
3
|
Gupta DS, Gupta DS, Abjani NK, Dave Y, Apte K, Kaur G, Kaur D, Saini AK, Sharma U, Haque S, Tuli HS. Vaccine-based therapeutic interventions in lung cancer management: A recent perspective. Med Oncol 2024; 41:249. [PMID: 39316239 DOI: 10.1007/s12032-024-02489-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/24/2024] [Indexed: 09/25/2024]
Abstract
The incidence of lung cancer continues to grow globally, contributing to an ever-increasing load on healthcare systems. Emerging evidence has indicated lowered efficacy of conventional treatment strategies, such as chemotherapy, surgical interventions and radiotherapy, prompting the need for exploring alternative interventions. A growing focus on immunotherapy and the development of personalized medicine has paved the way for vaccine-based delivery in lung cancer. With various prominent targets such as CD8+T cells and PD-L1, immune-targeted, anti-cancer vaccines have been evaluated in both, pre-clinical and clinical settings, to improve therapeutic outcomes. However, there are a number of challenges that must be addressed, including the scalability of such delivery systems, heterogeneity of lung cancers, and long-term safety as well as efficacy. In addition to this, natural compounds, in combination with immunotherapy, have gained considerable research interest in recent times. This makes it necessary to explore their role in synergism with immune-targeted agents. The authors of this review aim to offer an overview of recent advances in our understanding of lung cancer pathogenesis, detection and management strategies, and the emergence of immunotherapy with a special focus on vaccine delivery. This finding is supported with evidence from testing in non-human and human models, showcasing promising results. Prospects for phytotherapy have also been discussed, in order to combat some pitfalls and limitations. Finally, the future perspectives of vaccine usage in lung cancer management have also been discussed, to offer a holistic perspective to readers, and to prompt further research in the domain.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Daksh Sanjay Gupta
- Vivekanand Education Society's College of Pharmacy, Chembur, Mumbai, Maharashtra, 400074, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Yash Dave
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ketaki Apte
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India.
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Adesh Kumar Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
4
|
Meyers DE, Rittberg R, Dawe DE, Banerji S. Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer Under-Represented by Clinical Trials. Curr Oncol 2024; 31:5498-5515. [PMID: 39330035 PMCID: PMC11431477 DOI: 10.3390/curroncol31090407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Since the initial US FDA approval of an immune checkpoint inhibitor (ICI) for the treatment of non-oncogene-driven non-small-cell lung cancer (NSCLC) nine years ago, this therapeutic strategy has been cemented as a crucial component of treatment for most of these patients. However, there is a clear efficacy-effectiveness gap whereby patients in the 'real world' seem to have more modest clinical outcomes compared to those enrolled in landmark clinical trials. This gap may be driven by the under-representation of important patient populations, including populations defined by clinical or molecular characteristics. In this review, we summarize the data outlining the evidence of ICIs in patients with poor Eastern Cooperative Oncology Group performance status (ECOG PS), underlying autoimmune disease (AID), older age, active brain metastases (BMs), and molecular aberrations such as EGFR mutations, ALK fusions, BRAF mutations and ROS1 fusions.
Collapse
|
5
|
Nokin MJ, Darbo E, Richard E, San José S, de Hita S, Prouzet-Mauleon V, Turcq B, Gerardelli L, Crake R, Velasco V, Koopmansch B, Lambert F, Xue JY, Sang B, Horne J, Ziemons E, Villanueva A, Blomme A, Herfs M, Cataldo D, Calvayrac O, Porporato P, Nadal E, Lito P, Jänne PA, Ricciuti B, Awad MM, Ambrogio C, Santamaría D. In vivo vulnerabilities to GPX4 and HDAC inhibitors in drug-persistent versus drug-resistant BRAF V600E lung adenocarcinoma. Cell Rep Med 2024; 5:101663. [PMID: 39094577 PMCID: PMC11384943 DOI: 10.1016/j.xcrm.2024.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
The current targeted therapy for BRAFV600E-mutant lung cancer consists of a dual blockade of RAF/MEK kinases often combining dabrafenib/trametinib (D/T). This regimen extends survival when compared to single-agent treatments, but disease progression is unavoidable. By using whole-genome CRISPR screening and RNA sequencing, we characterize the vulnerabilities of both persister and D/T-resistant cellular models. Oxidative stress together with concomitant induction of antioxidant responses is boosted by D/T treatment. However, the nature of the oxidative damage, the choice of redox detoxification systems, and the resulting therapeutic vulnerabilities display stage-specific differences. Persister cells suffer from lipid peroxidation and are sensitive to ferroptosis upon GPX4 inhibition in vivo. Biomarkers of lipid peroxidation are detected in clinical samples following D/T treatment. Acquired alterations leading to mitogen-activated protein kinase (MAPK) reactivation enhance cystine transport to boost GPX4-independent antioxidant responses. Similarly to BRAFV600E-mutant melanoma, histone deacetylase (HDAC) inhibitors decrease D/T-resistant cell viability and extend therapeutic response in vivo.
Collapse
Affiliation(s)
- Marie-Julie Nokin
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Elodie Darbo
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France
| | - Elodie Richard
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France
| | - Sonia San José
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Sergio de Hita
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Valérie Prouzet-Mauleon
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France; CRISP'edit, TBMCore, University of Bordeaux, CNRS UAR 3427, INSERM US05, 33000 Bordeaux, France
| | - Béatrice Turcq
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France; CRISP'edit, TBMCore, University of Bordeaux, CNRS UAR 3427, INSERM US05, 33000 Bordeaux, France
| | - Laura Gerardelli
- Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Rebekah Crake
- Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Valérie Velasco
- Department of Biopathology, Institut Bergonié, 33076 Bordeaux, France
| | - Benjamin Koopmansch
- Department of Human Genetics, University Hospital Center of Liege, 4000 Liege, Belgium
| | - Frederic Lambert
- Department of Human Genetics, University Hospital Center of Liege, 4000 Liege, Belgium
| | - Jenny Y Xue
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ben Sang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julie Horne
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liege, 4000 Liege, Belgium
| | - Eric Ziemons
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liege, 4000 Liege, Belgium
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO); Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-Stem Cells, University of Liege, 4000 Liege, Belgium
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Didier Cataldo
- Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Olivier Calvayrac
- Cancer Research Centre of Toulouse, INSERM UMR1037, CNRS UMR5071, 31100 Toulouse, France
| | - Paolo Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Ernest Nadal
- Molecular Mechanisms of Cancer Program, Department of Medical Oncology, Catalan Institute of Oncology (ICO), Preclinical and Experimental Research in Thoracic Tumors (PReTT) Group, Oncobell Program, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Piro Lito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Biagio Ricciuti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mark M Awad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy.
| | - David Santamaría
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
6
|
Zhu L, Yang X, Wu S, Dong R, Yan Y, Lin N, Zhang B, Tan B. Hepatotoxicity of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs). Drug Metab Rev 2024; 56:302-317. [PMID: 39120430 DOI: 10.1080/03602532.2024.2388203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most frequently adverse reactions in clinical drug use, usually caused by drugs or herbal compounds. Compared with other populations, cancer patients are more prone to abnormal liver function due to primary or secondary liver malignant tumor, radiation-induced liver injury and other reasons, making potential adverse reactions from liver damage caused by anticancer drugs of particular concernduring clinical treatment process. In recent years, the application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has changed the treatment status of a series of solid malignant tumors. Unfortunately, the increasing incidence of hepatotoxicitylimits the clinical application of EGFR-TKIs. The mechanisms of liver injury caused by EGFR-TKIs were complex. Despite more than a decade of research, other than direct damage to hepatocytes caused by inhibition of cellular DNA synthesis and resulting in hepatocyte necrosis, the rest of the specific mechanisms remain unclear, and few effective solutions are available. This review focuses on the clinical feature, incidence rates and the recent advances on the discovery of mechanism of hepatotoxicity in EGFR-TKIs, as well as rechallenge and therapeutic strategies underlying hepatotoxicity of EGFR-TKIs.
Collapse
Affiliation(s)
- Lulin Zhu
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xinxin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanshan Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Dong
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Youyou Yan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Lai M, Mu T, Liu M, Hu Q, Li J, Huang T, Li Y, Chen S, Cai L. Personalized therapy guided by longitudinal liquid biopsies for treatment of leptomeningeal disease from lung adenocarcinoma: A case report. Oncol Lett 2024; 28:299. [PMID: 38751754 PMCID: PMC11094582 DOI: 10.3892/ol.2024.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024] Open
Abstract
Molecular-based targeted therapies have significantly benefited certain patients with cancer; however, those with leptomeningeal disease (LMD) persistently exhibit a poor prognosis and are often excluded from clinical trials. Tumor-derived cell-free (cf)DNA, found in the cerebrospinal fluid (CSF) of patients with LMD, can assist in diagnosis and tracking of disease progression. However, the utilization of CSF to direct targeted cancer therapy has yet to be extensively explored. The present study reported the case of a patient with lung adenocarcinoma and LMD who was monitored by performing a series of liquid biopsies of CSF and blood. Targeted sequencing was performed on cfDNA from the CSF and plasma, and the variant allele frequencies (VAFs) of BRAF and NRAS mutations were assessed and analyzed in conjunction with the clinical presentation of the patient. The patient then underwent serial chemotherapy, radiation therapy, immunotherapy and targeted treatment based on the results of the liquid biopsies. Upon the LMD diagnosis, a BRAF p.V600E mutation was detected in plasma cfDNA. Consequently, the patient was treated with vemurafenib and responded favorably to this consolidation treatment for 13 months. After a relapse in July 2018, both BRAF p.V600E and NRAS p.Q61K mutations were detected in CSF supernatant and sediment cell samples, suggesting drug resistance. Therefore, the treatment strategy for the patient changed to cobimetnib plus vemurafenib. Notably, the changes of VAF in the CSF supernatant samples were associated with the clinical status of the patient. The patient survived for 33 months post-LMD diagnosis. The present case report highlights the potential use of liquid biopsy in personalized therapy, as it was instrumental in informing the combinational treatment plan of the patient, which ultimately proved beneficial.
Collapse
Affiliation(s)
- Mingyao Lai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong 510510, P.R. China
| | - Tianhao Mu
- HaploX Biotechnology, Shenzhen, Guangdong 518057, P.R. China
- Department of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 440300, P.R. China
| | - Ming Liu
- HaploX Biotechnology, Shenzhen, Guangdong 518057, P.R. China
| | - Qingjun Hu
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong 510510, P.R. China
| | - Juan Li
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong 510510, P.R. China
| | - Tanxiao Huang
- HaploX Biotechnology, Shenzhen, Guangdong 518057, P.R. China
| | - Yingmei Li
- HaploX Biotechnology, Shenzhen, Guangdong 518057, P.R. China
| | - Shifu Chen
- HaploX Biotechnology, Shenzhen, Guangdong 518057, P.R. China
- Department of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 440300, P.R. China
| | - Linbo Cai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong 510510, P.R. China
| |
Collapse
|
8
|
Mezquita L, Oulhen M, Aberlenc A, Deloger M, Aldea M, Honore A, Lecluse Y, Howarth K, Friboulet L, Besse B, Planchard D, Farace F. Resistance to BRAF inhibition explored through single circulating tumour cell molecular profiling in BRAF-mutant non-small-cell lung cancer. Br J Cancer 2024; 130:682-693. [PMID: 38177660 PMCID: PMC10876548 DOI: 10.1038/s41416-023-02535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Resistance mechanisms to combination therapy with dabrafenib plus trametinib remain poorly understood in patients with BRAFV600E-mutant advanced non-small-cell lung cancer (NSCLC). We examined resistance to BRAF inhibition by single CTC sequencing in BRAFV600E-mutant NSCLC. METHODS CTCs and cfDNA were examined in seven BRAFV600E-mutant NSCLC patients at failure to treatment. Matched tumour tissue was available for four patients. Single CTCs were isolated by fluorescence-activated cell sorting following enrichment and immunofluorescence (Hoechst 33342/CD45/pan-cytokeratins) and sequenced for mutation and copy number-alteration (CNA) analyses. RESULTS BRAFV600E was found in 4/4 tumour biopsies and 5/7 cfDNA samples. CTC mutations were mostly found in MAPK-independent pathways and only 1/26 CTCs were BRAFV600E mutated. CTC profiles encompassed the majority of matched tumour biopsy CNAs but 72.5% to 84.5% of CTC CNAs were exclusive to CTCs. Extensive diversity, involving MAPK, MAPK-related, cell cycle, DNA repair and immune response pathways, was observed in CTCs and missed by analyses on tumour biopsies and cfDNA. Driver alterations in clinically relevant genes were recurrent in CTCs. CONCLUSIONS Resistance was not driven by BRAFV600E-mutant CTCs. Extensive tumour genomic heterogeneity was found in CTCs compared to tumour biopsies and cfDNA at failure to BRAF inhibition, in BRAFV600E-mutant NSCLC, including relevant alterations that may represent potential treatment opportunities.
Collapse
Affiliation(s)
- Laura Mezquita
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, F-94805, Villejuif, France
- Medical Oncology Department, Hospital Clinic of Barcelona, Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Marianne Oulhen
- Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655-INSERM US23 AMMICA, F-94805, Villejuif, France
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France
| | - Agathe Aberlenc
- Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655-INSERM US23 AMMICA, F-94805, Villejuif, France
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France
| | - Marc Deloger
- Gustave Roussy, Université Paris-Saclay, Bioinformatics Platform, CNRS UMS3655-INSERM US23 AMMICA, F-94805, Villejuif, France
| | - Mihaela Aldea
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, F-94805, Villejuif, France
| | - Aurélie Honore
- Gustave Roussy, Université Paris-Saclay, Genomic Platform, CNRS UMS3655-INSERM US23 AMMICA, F-94805, Villejuif, France
| | - Yann Lecluse
- Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655-INSERM US23AMMICA, F-94805, Villejuif, France
| | | | - Luc Friboulet
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France
| | - Benjamin Besse
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, F-94805, Villejuif, France
| | - David Planchard
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, F-94805, Villejuif, France
| | - Françoise Farace
- Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655-INSERM US23 AMMICA, F-94805, Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France.
| |
Collapse
|
9
|
Ma S, Wang R, Peng Q, Liu Y, Qian J, Li M, Li K, Huang Z, Wu L, Xie D. Is there a prognostic difference among stage I lung adenocarcinoma patients with different BRAF-mutation status? Thorac Cancer 2024; 15:715-721. [PMID: 38362771 PMCID: PMC10961218 DOI: 10.1111/1759-7714.15248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND The data of the prognostic role of V-Raf murine sarcoma viral oncogene homolog B1 (BRAF) mutations in early-stage lung adenocarcinoma (LUAD) patients is scarce. This study aimed to investigate the proportion, clinicopathological features, and prognostic significance of patients with stage I LUAD carrying BRAF mutations. METHODS We collected 431 patients with pathological stage I LUAD from cBioPortal for Cancer Genomics and 1604 LUAD patients tested for BRAF V600E and epidermal growth factor receptor (EGFR) mutations from Shanghai Pulmonary Hospital. Survival curves were drawn by the Kaplan-Meier method and compared by log-rank test. Cox proportional hazard models, propensity-score matching (PSM), and overlap weighting (OW) were performed in this study. The primary endpoint was recurrence-free survival (RFS). RESULTS The proportion of BRAF mutations was estimated at 5.6% in a Caucasian cohort. BRAF V600E mutations were detected in six (1.4%) patients in Caucasian populations and 16 (1.0%) patients in Chinese populations. Two BRAF V600E-mutant patients were detected to have concurrent EGFR mutations, one for 19-del and one for L858R. For pathological stage I LUAD patients, BRAF mutations were not significantly associated with worse RFS than wild-type BRAF patients (HR = 1.111; p = 0.885). After PSM and OW, similar results were presented (HR = 1.352; p = 0.742 and HR = 1.246; p = 0.764, respectively). BRAF V600E mutation status also lacked predictive significance for RFS (HR, 1.844; p = 0.226; HR = 1.144; p = 0.831 and HR = 1.466; p = 0.450, respectively). CONCLUSIONS In this study, we demonstrated that BRAF status may not be capable of predicting prognosis in stage I LUAD patients. There is a need for more data to validate our findings.
Collapse
Affiliation(s)
- Shang‐Shang Ma
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Rang‐Rang Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Qiao Peng
- School of MedicineTongji UniversityShanghaiP. R. China
| | - Yu'e Liu
- School of MedicineTongji UniversityShanghaiP. R. China
| | - Jia‐Yi Qian
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Ming‐Jun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Zhi‐Ye Huang
- School of MedicineTongji UniversityShanghaiP. R. China
| | - Lei‐Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| |
Collapse
|
10
|
Ali A. Advances in Non-Small Cell Lung Cancer (NSCLC) Treatment-A Paradigm Shift in Oncology. Pharmaceuticals (Basel) 2024; 17:246. [PMID: 38399461 PMCID: PMC10892240 DOI: 10.3390/ph17020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) management remains a formidable challenge in the field of oncology, representing a significant global health burden [...].
Collapse
Affiliation(s)
- Azhar Ali
- Cancer Science Institute of Singapore, MD6, Center for Translational Medicine, #12-01, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| |
Collapse
|
11
|
Liu J, Miao X, Yao J, Wan Z, Yang X, Tian W. Investigating the clinical role and prognostic value of genes related to insulin-like growth factor signaling pathway in thyroid cancer. Aging (Albany NY) 2024; 16:2934-2952. [PMID: 38329437 PMCID: PMC10911384 DOI: 10.18632/aging.205524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Thyroid cancer (THCA) is the most common endocrine malignancy having a female predominance. The insulin-like growth factor (IGF) pathway contributed to the unregulated cell proliferation in multiple malignancies. We aimed to explore the IGF-related signature for THCA prognosis. METHOD The TCGA-THCA dataset was collected from the Cancer Genome Atlas (TCGA) for screening of key prognostic genes. The limma R package was applied for differentially expressed genes (DEGs) and the clusterProfiler R package was used for the Gene Ontology (GO) and KEGG analysis of DEGs. Then, the un/multivariate and least absolute shrinkage and selection operator (Lasso) Cox regression analysis was used for the establishment of RiskScore model. Receiver Operating Characteristic (ROC) analysis was used to verify the model's predictive performance. CIBERSORT and MCP-counter algorithms were applied for immune infiltration analysis. Finally, we analyzed the mutation features and the correlation between the RiskScore and cancer hallmark pathway by using the GSEA. RESULT We obtained 5 key RiskScore model genes for patient's risk stratification from the 721 DEGs. ROC analysis indicated that our model is an ideal classifier, the high-risk patients are associated with the poor prognosis, immune infiltration, high tumor mutation burden (TMB), stronger cancer stemness and stronger correlation with the typical cancer-activation pathways. A nomogram combined with multiple clinical features was developed and exhibited excellent performance upon long-term survival quantitative prediction. CONCLUSIONS We constructed an excellent prognostic model RiskScore based on IGF-related signature and concluded that the IGF signal pathway may become a reliable prognostic phenotype in THCA intervention.
Collapse
Affiliation(s)
- Junyan Liu
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Xin Miao
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Jing Yao
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Zheng Wan
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Xiaodong Yang
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Wen Tian
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
13
|
Puri M, Gawri K, Dawar R. Therapeutic strategies for BRAF mutation in non-small cell lung cancer: a review. Front Oncol 2023; 13:1141876. [PMID: 37645429 PMCID: PMC10461310 DOI: 10.3389/fonc.2023.1141876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer is the leading cause of cancer related deaths. Among the two broad types of lung cancer, non-small cell lung cancer accounts for 85% of the cases. The study of the genetic alteration has facilitated the development of targeted therapeutic interventions. Some of the molecular alterations which are important targets for drug therapy include Kirsten rat sarcoma (KRAS), Epidermal Growth Factor Receptor (EGFR), V-RAF murine sarcoma viral oncogene homolog B (BRAF), anaplastic lymphoma kinase gene (ALK). In the setting of extensive on-going clinical trials, it is imperative to periodically review the advancements and the newer drug therapies being available. Among all mutations, BRAF mutation is common with incidence being 8% overall and 1.5 - 4% in NSCLC. Here, we have summarized the BRAF mutation types and reviewed the various drug therapy available - for both V600 and nonV600 group; the mechanism of resistance to BRAF inhibitors and strategies to overcome it; the significance of comprehensive profiling of concurrent mutations, and the role of immune checkpoint inhibitor in BRAF mutated NSCLC. We have also included the currently ongoing clinical trials and recent advancements including combination therapy that would play a role in improving the overall survival and outcome of NSCLC.
Collapse
Affiliation(s)
- Megha Puri
- Department of Internal Medicine, Saint Peter’s University Hospital, New Brunswick, NJ, United States
| | - Kunal Gawri
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Buffalo, Buffalo, NY, United States
| | - Richa Dawar
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
| |
Collapse
|
14
|
Ahn HY, Lee CH, Lee MK, Eom JS, Jeong YJ, Kim YD, Cho JS, Lee J, Lee SJ, Shin DH, Kim A. BRAF V600E Mutation of Non-Small Cell Lung Cancer in Korean Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1085. [PMID: 37374289 DOI: 10.3390/medicina59061085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: BRAF mutational status in resected non-small cell lung cancer (NSCLC) in the Korean population is poorly understood. We explored BRAF (particularly BRAF V600E) mutational status among Korean patients with NSCLC. Materials and Methods: This study included 378 patients with resected primary NSCLC who were enrolled from January 2015 to December 2017. The authors obtained formalin-fixed paraffin-embedded (FFPE) tissue blocks and performed peptide nucleic acid (PNA)-clamping polymerase chain reaction (PCR) for detecting BRAF V600, real-time PCR for detecting BRAF V600E, and immunohistochemical analyses using the mutation-specific Ventana VE1 monoclonal antibody. For positive cases in any methods mentioned above, direct Sanger sequencing was additionally performed. Results: The PNA-clamping method revealed the BRAF V600 mutation in 5 (1.3%) of the 378 patients. Among these five patients, real-time PCR, direct Sanger sequencing detected BRAF V600E mutations in three (0.8%) patients. Thus, two cases showed differences in their PNA-clamping and the others. Direct Sanger sequencing of PNA-clamping PCR product was performed for two cases showing negative results on direct Sanger sequencing; both contained BRAF mutations other than V600E. All patients harboring BRAF mutations had adenocarcinomas, and all patients with V600E mutation exhibited minor micropapillary components. Conclusions: Despite the low incidence of the BRAF mutation among Korean patients with NSCLC, lung adenocarcinoma patients with micropapillary components should be prioritized in terms of BRAF mutation testing. Immunohistochemical staining using Ventana VE1 antibody may serve as a screening examination for BRAF V600E.
Collapse
Affiliation(s)
- Hyo Yeong Ahn
- School of Medicine, Pusan National University, Beomeori, Mulgeum-eop, Yangsan 50612, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Chang Hun Lee
- School of Medicine, Pusan National University, Beomeori, Mulgeum-eop, Yangsan 50612, Republic of Korea
- Department of Pathology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Min Ki Lee
- School of Medicine, Pusan National University, Beomeori, Mulgeum-eop, Yangsan 50612, Republic of Korea
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Jung Seop Eom
- School of Medicine, Pusan National University, Beomeori, Mulgeum-eop, Yangsan 50612, Republic of Korea
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Yeon Joo Jeong
- School of Medicine, Pusan National University, Beomeori, Mulgeum-eop, Yangsan 50612, Republic of Korea
- Department of Radiology, Biomedical Research Institute, Yangsan Pusan National University Hospital, Busan 50612, Republic of Korea
| | - Yeong Dae Kim
- School of Medicine, Pusan National University, Beomeori, Mulgeum-eop, Yangsan 50612, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Jeong Su Cho
- School of Medicine, Pusan National University, Beomeori, Mulgeum-eop, Yangsan 50612, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Jonggeun Lee
- Department of Thoracic and Cardiovascular Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - So Jeong Lee
- Department of Pathology, Seegene Medical Center, Busan 48792, Republic of Korea
| | - Dong Hoon Shin
- School of Medicine, Pusan National University, Beomeori, Mulgeum-eop, Yangsan 50612, Republic of Korea
- Department of Pathology, Biomedical Research Institute, Yangsan Pusan National University Hospital, Busan 50612, Republic of Korea
| | - Ahrong Kim
- School of Medicine, Pusan National University, Beomeori, Mulgeum-eop, Yangsan 50612, Republic of Korea
- Department of Pathology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| |
Collapse
|
15
|
He P, Feng J, Xia X, Sun Y, He J, Guan T, Peng Y, Zhang X, Liu M, Pang X, Chen Y. Discovery of a Potent and Oral Available Complex I OXPHOS Inhibitor That Abrogates Tumor Growth and Circumvents MEKi Resistance. J Med Chem 2023; 66:6047-6069. [PMID: 37130350 DOI: 10.1021/acs.jmedchem.2c01844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Targeting oxidative phosphorylation (OXPHOS) has emerged as a promising therapeutic strategy for cancer therapy. Here, we discovered a 1H-1,2,3-triazole derivative HP661 as a highly potent and orally available OXPHOS inhibitor that effectively blocked the activity of mitochondrial complex I. HP661 specifically compromised the mitochondrial oxygen consumption of high-OXPHOS lung cancer cells but not that of low-OXPHOS lung cancer cells or normal cells in the low nanomolar range. Notably, mitogen-activated protein kinase kinase (MEK) inhibitor (trametinib)-resistant lung cancer cells with high levels of OXPHOS also showed marked sensitivity to HP661, as indicated by decreased clonogenic growth and increased cell apoptosis upon treatment. In a mouse model of high-OXPHOS lung cancer, HP661 treatment not only significantly suppressed tumor growth but also augmented the therapeutic efficacy of trametinib by impairing tumor mitochondrial respiration. In summary, we identified HP661 as a highly effective OXPHOS inhibitor to abrogate the growth of high OXPHOS-dependent tumors and conquer high OXPHOS-mediated drug resistance.
Collapse
Affiliation(s)
- Peng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Juanjuan Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Xinting Xia
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jia He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tian Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueli Zhang
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
16
|
Gibson AJW, Pabani A, Dean ML, Martos G, Cheung WY, Navani V. Real-World Treatment Patterns and Effectiveness of Targeted and Immune Checkpoint Inhibitor-Based Systemic Therapy in BRAF Mutation-Positive NSCLC. JTO Clin Res Rep 2023; 4:100460. [PMID: 36915629 PMCID: PMC10006852 DOI: 10.1016/j.jtocrr.2022.100460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction BRAF mutations (present in 2%-3% of NSCLC) are a known oncogenic driver and emerging therapeutic target. There is a scarcity of real-world data describing the clinical characteristics, treatment patterns, and effectiveness of targeted BRAF-inhibiting and immune checkpoint inhibitor (ICI)-based systemic therapies, yet this is required for appropriate treatment decisions that optimize patient outcome. Methods Demographic, clinical, treatment, and outcome data of patients with BRAF mutation-positive NSCLC diagnosed between 2018 and 2022 were identified from the Glans-Look Lung Cancer Research database and included in this analysis. Results A total of 53 BRAF mutation-positive patients were identified (V600E, n = 35; non-V600E, n = 18). Furthermore, 46 patients (87%) were diagnosed with metastatic disease, of whom 61% were treated with systemic anticancer therapy, which significantly improved overall survival (34.1 versus 2.2 mo, p = 0.01). ICI-based regimens were found to have effectiveness in the first-line setting for both V600E and non-V600E cohorts (objective response rate: 38%-43%; real-world calculations of median progression-free survival: 10.5-10.8 mo, respectively). Dual-targeted BRAF/MEK inhibition was also found to have effectiveness in the first-line setting for V600E patients (objective response rate: 33%, real-world calculations of median progression-free survival: 15.2 mo). Conclusions This study of real-world patients with BRAF mutations confirms the importance of effective systemic therapies. Both dual-targeted BRAF/MEK inhibition and ICI-based regimens have evidence of benefit in this population revealing that real-world populations can experience similar clinical response and outcome to clinical trial cohorts on these treatment regimens. Future studies to clarify the role of co-mutations on response to both dual-targeted BRAF/MEK inhibition and ICI-based regimens may be important to treatment selection and optimization of patient outcome.
Collapse
Affiliation(s)
- Amanda J W Gibson
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aliyah Pabani
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Oncology, Tom Baker Cancer Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - Michelle L Dean
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Guillermo Martos
- Department of Medical Oncology, Tom Baker Cancer Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - Winson Y Cheung
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Oncology, Tom Baker Cancer Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - Vishal Navani
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Oncology, Tom Baker Cancer Centre, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
17
|
At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol 2023; 20:143-159. [PMID: 36639452 DOI: 10.1038/s41571-022-00718-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/15/2023]
Abstract
Non-small-cell lung cancer (NSCLC) has become a paradigm of precision medicine, with the discovery of numerous disease subtypes defined by specific oncogenic driver mutations leading to the development of a range of molecularly targeted therapies. Over the past decade, rapid progress has also been made in the development of immune-checkpoint inhibitors (ICIs), especially antagonistic antibodies targeting the PD-L1-PD-1 axis, for the treatment of NSCLC. Although many of the major oncogenic drivers of NSCLC are associated with intrinsic resistance to ICIs, patients with certain oncogene-driven subtypes of the disease that are highly responsive to specific targeted therapies might also derive benefit from immunotherapy. However, the development of effective immunotherapy approaches for oncogene-addicted NSCLC has been challenged by a lack of predictive biomarkers for patient selection and limited knowledge of how ICIs and oncogene-directed targeted therapies should be combined. Therefore, whether ICIs alone or with chemotherapy or even in combination with molecularly targeted agents would offer comparable benefit in the context of selected oncogenic driver alterations to that observed in the general unselected NSCLC population remains an open question. In this Review, we discuss the effects of oncogenic driver mutations on the efficacy of ICIs and the immune tumour microenvironment as well as the potential vulnerabilities that could be exploited to overcome the challenges of immunotherapy for oncogene-addicted NSCLC.
Collapse
|
18
|
Xiao Y, Liu P, Wei J, Zhang X, Guo J, Lin Y. Recent progress in targeted therapy for non-small cell lung cancer. Front Pharmacol 2023; 14:1125547. [PMID: 36909198 PMCID: PMC9994183 DOI: 10.3389/fphar.2023.1125547] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The high morbidity and mortality of non-small cell lung cancer (NSCLC) have always been major threats to people's health. With the identification of carcinogenic drivers in non-small cell lung cancer and the clinical application of targeted drugs, the prognosis of non-small cell lung cancer patients has greatly improved. However, in a large number of non-small cell lung cancer cases, the carcinogenic driver is unknown. Identifying genetic alterations is critical for effective individualized therapy in NSCLC. Moreover, targeted drugs are difficult to apply in the clinic. Cancer drug resistance is an unavoidable obstacle limiting the efficacy and application of targeted drugs. This review describes the mechanisms of targeted-drug resistance and newly identified non-small cell lung cancer targets (e.g., KRAS G12C, NGRs, DDRs, CLIP1-LTK, PELP1, STK11/LKB1, NFE2L2/KEAP1, RICTOR, PTEN, RASGRF1, LINE-1, and SphK1). Research into these mechanisms and targets will drive individualized treatment of non-small cell lung cancer to generate better outcomes.
Collapse
Affiliation(s)
- Yanxia Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Pu Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Xin Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China.,Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
19
|
Liu C, Lu M, Yang Y, Wang X, Ma F, Liu X. Case report: Major pathologic response induced by neoadjuvant treatment using BRAF and MEK inhibitors in a patient with stage IIIA lung adenocarcinoma harboring BRAF V600E-mutation. Front Oncol 2022; 12:961539. [PMID: 36003777 PMCID: PMC9393753 DOI: 10.3389/fonc.2022.961539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Targeted therapy has achieved great success in advanced non-small lung cancer (NSCLC) with driver genes, and neoadjuvant-targeted therapy is increasingly being investigated. Although neoadjuvant-targeted therapy with EGFR-TKI and ALK-TKI showed good efficacy, there is no report of neoadjuvant-targeted therapy to BRAF V600E mutation on NSCLC so far. Here, we report the first case of a successful neoadjuvant-targeted therapy with BRAF and MEK inhibitors followed by radical surgical excision with major pathologic response (MPR) in a patient with stage IIIA lung adenocarcinoma (LUAD) harboring BRAF V600E mutation. The case informs us that targeted therapy with BRAF and MEK inhibitors could be administrated as a neoadjuvant strategy for selected cases of NSCLC harboring BRAF V600E mutation.
Collapse
Affiliation(s)
- Chaoyuan Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Lu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Thoracic surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Ma
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fang Ma, ; Xianling Liu,
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fang Ma, ; Xianling Liu,
| |
Collapse
|
20
|
Perrone F, Mazzaschi G, Minari R, Verzè M, Azzoni C, Bottarelli L, Nizzoli R, Pluchino M, Altimari A, Gruppioni E, Sperandi F, Andrini E, Guaitoli G, Bertolini F, Barbieri F, Bettelli S, Longo L, Pagano M, Bonelli C, Tagliavini E, Nicoli D, Ubiali A, Zangrandi A, Trubini S, Proietto M, Gnetti L, Tiseo M. Multicenter Observational Study on Metastatic Non-Small Cell Lung Cancer Harboring BRAF Mutations: Focus on Clinical Characteristics and Treatment Outcome of V600E and Non-V600E Subgroups. Cancers (Basel) 2022; 14:2019. [PMID: 35454926 PMCID: PMC9031288 DOI: 10.3390/cancers14082019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION BRAF mutation involved 2-4% of lung adenocarcinoma. Differences in clinicopathologic features and patient outcome exist between V600E and non-V600E BRAF mutated NSCLC. Thus, we sought to assess the frequency and clinical relevance of BRAF mutations in a real-life population of advanced-NSCLC, investigating the potential prognostic significance of distinct genetic alterations. MATERIALS AND METHODS The present multicenter Italian retrospective study involved advanced BRAF mutant NSCLC. Complete clinicopathologic data were evaluated for BRAF V600E and non-V600E patients. RESULTS A total of 44 BRAFmut NSCLC patients were included (V600E, n = 23; non-V600E, n = 21). No significant differences in survival outcome and treatment response were documented, according to V600E vs. non-V600E mutations, although a trend towards prolonged PFS was observed in the V600E subgroup (median PFS = 11.3 vs. 6.0 months in non-V600E). In the overall population, ECOG PS and age significantly impacted on OS, while bone lesions were associated with shorter PFS. Compared to immunotherapy, first-line chemotherapy was associated with longer OS in the overall population, and especially in the BRAF V600E subtype. CONCLUSIONS Here, we report on real-life data from a retrospective cohort of advanced-NSCLC harboring BRAF alterations. Our study offers relevant clues on survival outcome, therapeutic response, and clinicopathologic correlations of BRAF-mutant NSCLC.
Collapse
Affiliation(s)
- Fabiana Perrone
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy; (F.P.); (G.M.); (M.V.); (R.N.); (M.P.); (M.T.)
| | - Giulia Mazzaschi
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy; (F.P.); (G.M.); (M.V.); (R.N.); (M.P.); (M.T.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy; (F.P.); (G.M.); (M.V.); (R.N.); (M.P.); (M.T.)
| | - Michela Verzè
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy; (F.P.); (G.M.); (M.V.); (R.N.); (M.P.); (M.T.)
| | - Cinzia Azzoni
- Unit of Pathological Anatomy, University Hospital of Parma, 43126 Parma, Italy; (C.A.); (L.B.); (L.G.)
| | - Lorena Bottarelli
- Unit of Pathological Anatomy, University Hospital of Parma, 43126 Parma, Italy; (C.A.); (L.B.); (L.G.)
| | - Rita Nizzoli
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy; (F.P.); (G.M.); (M.V.); (R.N.); (M.P.); (M.T.)
| | - Monica Pluchino
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy; (F.P.); (G.M.); (M.V.); (R.N.); (M.P.); (M.T.)
| | - Annalisa Altimari
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.A.); (E.G.)
| | - Elisa Gruppioni
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.A.); (E.G.)
| | - Francesca Sperandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Elisa Andrini
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Giorgia Guaitoli
- Division of Medical Oncology, University Hospital of Modena, 41125 Modena, Italy; (G.G.); (F.B.); (F.B.)
- Ph.D. Program Clinical and Experimental Medicine (CEM), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Federica Bertolini
- Division of Medical Oncology, University Hospital of Modena, 41125 Modena, Italy; (G.G.); (F.B.); (F.B.)
| | - Fausto Barbieri
- Division of Medical Oncology, University Hospital of Modena, 41125 Modena, Italy; (G.G.); (F.B.); (F.B.)
| | | | - Lucia Longo
- Medical Oncology Unit, Sassuolo Hospital, AUSL Modena, 41121 Modena, Italy;
| | - Maria Pagano
- Medical Oncology Unit, Clinical Cancer Centre, Azienda USL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy; (M.P.); (C.B.)
| | - Candida Bonelli
- Medical Oncology Unit, Clinical Cancer Centre, Azienda USL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy; (M.P.); (C.B.)
| | - Elena Tagliavini
- Pathology Unit, Clinical Cancer Centre, Azienda USL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Davide Nicoli
- Molecular Biology, Oncology and Advanced Technology Unit, Azienda USL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Alessandro Ubiali
- Pathology Unit, AUSL Piacenza, 29121 Piacenza, Italy; (A.U.); (A.Z.); (S.T.)
| | - Adriano Zangrandi
- Pathology Unit, AUSL Piacenza, 29121 Piacenza, Italy; (A.U.); (A.Z.); (S.T.)
| | - Serena Trubini
- Pathology Unit, AUSL Piacenza, 29121 Piacenza, Italy; (A.U.); (A.Z.); (S.T.)
| | | | - Letizia Gnetti
- Unit of Pathological Anatomy, University Hospital of Parma, 43126 Parma, Italy; (C.A.); (L.B.); (L.G.)
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy; (F.P.); (G.M.); (M.V.); (R.N.); (M.P.); (M.T.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|