1
|
Sampaio ASB, Real CC, Gutierrez RMS, Singulani MP, Alouche SR, Britto LR, Pires RS. Neuroplasticity induced by the retention period of a complex motor skill learning in rats. Behav Brain Res 2021; 414:113480. [PMID: 34302881 DOI: 10.1016/j.bbr.2021.113480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Learning complex motor skills is an essential process in our daily lives. Moreover, it is an important aspect for the development of therapeutic strategies that refer to rehabilitation processes since motor skills previously acquired can be transferred to similar tasks (motor skill transfer) or recovered without further practice after longer delays (motor skill retention). Different acrobatic exercise training (AE) protocols induce plastic changes in areas involved in motor control and improvement in motor performance. However, the plastic mechanisms involved in the retention of a complex motor skill, essential for motor learning, are not well described. Thus, our objective was to analyze the brain plasticity mechanisms involved in motor skill retention in AE . Motor behavior tests, and the expression of synaptophysin (SYP), synapsin-I (SYS), and early growth response protein 1 (Egr-1) in brain areas involved in motor learning were evaluated. Young male Wistar rats were randomly divided into 3 groups: sedentary (SED), AE, and AE with retention period (AER). AE was performed three times a week for 8 weeks, with 5 rounds in the circuit. After a fifteen-day retention interval, the AER animals was again exposed to the acrobatic circuit. Our results revealed motor performance improvement in the AE and AER groups. In the elevated beam test, the AER group presented a lower time and greater distance, suggesting retention period is important for optimizing motor learning consolidation. Moreover, AE promoted significant plastic changes in the expression of proteins in important areas involved in control and motor learning, some of which were maintained in the AER group. In summary, these data contribute to the understanding of neural mechanisms involved in motor learning in an animal model, and can be useful to the construction of therapeutics strategies that optimize motor learning in a rehabilitative context.
Collapse
Affiliation(s)
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine (LIM 43), Institute of Radiology, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Rita Mara Soares Gutierrez
- Master's and Doctoral Programs in Physical Therapy, University of the City of São Paulo, São Paulo, SP, Brazil
| | - Monique Patricio Singulani
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil; Laboratory of Neurosciences (LIM 27), Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Sandra Regina Alouche
- Master's and Doctoral Programs in Physical Therapy, University of the City of São Paulo, São Paulo, SP, Brazil
| | - Luiz Roberto Britto
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Raquel Simoni Pires
- Master's and Doctoral Programs in Physical Therapy, University of the City of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Bonassi G, Lagravinese G, Bisio A, Ruggeri P, Pelosin E, Bove M, Avanzino L. Consolidation and retention of motor skill after motor imagery training. Neuropsychologia 2020; 143:107472. [PMID: 32325154 DOI: 10.1016/j.neuropsychologia.2020.107472] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022]
Abstract
Complex motor tasks are learned through training which results in lasting improvement in sensorimotor performance and accuracy. Learning a motor skill is commonly attained via physical execution. However, research has shown that cognitive training, such as motor imagery (MI), effectively facilitates skill learning. Neurophysiological findings suggest that learning-induced plasticity in the human motor cortex, subserving consolidation and retention of motor skills, is stronger after movement execution (ME) than after MI training. Here, we designed an experimental task able to test for the fast and slow learning phases and for retention of motor skills for both MI and ME. We hypothesize that differences between MI and ME training would emerge in terms of reduced consolidation and retention of motor skills. Twenty-four young healthy subjects were divided into two groups, performing MI or ME training. Participants wore sensor-engineered gloves and their sensorimotor performance was assessed over a period of 15 days with 4-days training. We analysed the touch duration (TD), the inter-tapping interval (ITI), movement rate and accuracy. Results showed that (i) during the first phase of acquisition of motor skills, sensorimotor performance improved similarly in MI and ME groups; (ii) during the second learning phase movement rate increased more in ME than MI group and this difference was mainly driven by differences in the duration of TD; (iii) consolidation deficits with MI training reflected in impaired retention of the acquired skills, as TD and ITI were larger and movement rate was lower in the MI group with respect to the ME, till to 10 days after the last training session. Explicit component of motor learning, accuracy, was maintained in retention phase in both groups. Following our hypothesis, our findings show that MI training is as effective as ME within the first learning phase, but consolidation and retention of motor skills are less effective following MI training. This study highlights MI limitations and suggests option to enhance MI, as by providing an external sensory feedback.
Collapse
Affiliation(s)
- Gaia Bonassi
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | | | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino, IRCCS, Genoa, Italy.
| |
Collapse
|
3
|
Edwards LL, King EM, Buetefisch CM, Borich MR. Putting the "Sensory" Into Sensorimotor Control: The Role of Sensorimotor Integration in Goal-Directed Hand Movements After Stroke. Front Integr Neurosci 2019; 13:16. [PMID: 31191265 PMCID: PMC6539545 DOI: 10.3389/fnint.2019.00016] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
Integration of sensory and motor information is one-step, among others, that underlies the successful production of goal-directed hand movements necessary for interacting with our environment. Disruption of sensorimotor integration is prevalent in many neurologic disorders, including stroke. In most stroke survivors, persistent paresis of the hand reduces function and overall quality of life. Current rehabilitative methods are based on neuroplastic principles to promote motor learning that focuses on regaining motor function lost due to paresis, but the sensory contributions to motor control and learning are often overlooked and currently understudied. There is a need to evaluate and understand the contribution of both sensory and motor function in the rehabilitation of skilled hand movements after stroke. Here, we will highlight the importance of integration of sensory and motor information to produce skilled hand movements in healthy individuals and individuals after stroke. We will then discuss how compromised sensorimotor integration influences relearning of skilled hand movements after stroke. Finally, we will propose an approach to target sensorimotor integration through manipulation of sensory input and motor output that may have therapeutic implications.
Collapse
Affiliation(s)
- Lauren L Edwards
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Erin M King
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Cathrin M Buetefisch
- Department of Rehabilitation Medicine, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Neurology, Emory University, Atlanta, GA, United States.,Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA, United States
| | - Michael R Borich
- Department of Rehabilitation Medicine, Laney Graduate School, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Tiberghien K, Sahan MI, De Smedt B, Fias W, Lyons IM. Disentangling Neural Sources of Problem Size and Interference Effects in Multiplication. J Cogn Neurosci 2018; 31:453-467. [PMID: 30457916 DOI: 10.1162/jocn_a_01359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multiplication is thought to be primarily solved via direct retrieval from memory. Two of the main factors known to influence the retrieval of multiplication facts are problem size and interference. Because these factors are often intertwined, we sought to investigate the unique influences of problem size and interference on both performance and neural responses during multiplication fact retrieval in healthy adults. Behavioral results showed that both problem size and interference explained separate unique portions of RT variance, but with significantly stronger contribution from problem size, which contrasts with previous work in children. Whole-brain fMRI results relying on a paradigm that isolated multiplication fact retrieval from response selection showed highly overlapping brain areas parametrically modulated by both problem size and interference in a large network of frontal, parietal, and subcortical brain areas. Subsequent analysis within these regions revealed problem size to be the stronger and more consistent "unique" modulating factor in overlapping regions as well as those that appeared to respond only to problem size or interference at the whole-brain level, thus underscoring the need to look beyond anatomical overlap using arbitrary thresholds. Additional unique contributions of interference (beyond problem size) were identified in right angular gyrus and subcortical regions associated with procedural processing. Together, our results suggest that problem size, relative to interference, tends to be the more dominant factor in driving behavioral and neural responses during multiplication fact retrieval in adults. Nevertheless, unique contributions of both factors demonstrate the importance of considering the overlapping and unique contributions of each in explaining the cognitive and neural bases of mental multiplication.
Collapse
|
5
|
Lage GM, Apolinário-Souza T, Albuquerque MR, Portes LL, Januário MDS, Vieira MM, Ugrinowitsch H. The effect of constant practice in transfer tests. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Thomas R, Johnsen LK, Geertsen SS, Christiansen L, Ritz C, Roig M, Lundbye-Jensen J. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity. PLoS One 2016; 11:e0159589. [PMID: 27454423 PMCID: PMC4959698 DOI: 10.1371/journal.pone.0159589] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/06/2016] [Indexed: 11/30/2022] Open
Abstract
A single bout of high intensity aerobic exercise (~90% VO2peak) was previously demonstrated to amplify off-line gains in skill level during the consolidation phase of procedural memory. High intensity exercise is not always a viable option for many patient groups or in a rehabilitation setting where low to moderate intensities may be more suitable. The aim of this study was to investigate the role of intensity in mediating the effects of acute cardiovascular exercise on motor skill learning. We investigated the effects of different exercise intensities on the retention (performance score) of a visuomotor accuracy tracking task. Thirty six healthy male subjects were randomly assigned to one of three groups that performed either a single bout of aerobic exercise at 20 min post motor skill learning at 45% (EX45), 90% (EX90) maximal power output (Wmax) or rested (CON). Randomization was stratified to ensure that the groups were matched for relative peak oxygen consumption (ml O2/min/kg) and baseline score in the tracking task. Retention tests were carried out at 1 (R1) and 7 days (R7) post motor skill learning. At R1, changes in performance scores were greater for EX90 compared to CON (p<0.001) and EX45 (p = 0.011). The EX45 and EX90 groups demonstrated a greater change in performance score at R7 compared to the CON group (p = 0.003 and p<0.001, respectively). The change in performance score for EX90 at R7 was also greater than EX45 (p = 0.049). We suggest that exercise intensity plays an important role in modulating the effects that a single bout of cardiovascular exercise has on the consolidation phase following motor skill learning. There appears to be a dose-response relationship in favour of higher intensity exercise in order to augment off-line effects and strengthen procedural memory.
Collapse
Affiliation(s)
- Richard Thomas
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience & Pharmacology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Line K. Johnsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Svend S. Geertsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Christiansen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience & Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Marc Roig
- School of Physical & Occupational Therapy, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Montréal Center for Interdisciplinary Research in Rehabilitation (CRIR), Montréal, Québec, Canada
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing. Neural Plast 2016; 2016:6205452. [PMID: 27446616 PMCID: PMC4947505 DOI: 10.1155/2016/6205452] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation.
Collapse
|
8
|
Hilgenstock R, Weiss T, Huonker R, Witte OW. Behavioural and neurofunctional impact of transcranial direct current stimulation on somatosensory learning. Hum Brain Mapp 2016; 37:1277-95. [PMID: 26757368 DOI: 10.1002/hbm.23101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/08/2015] [Accepted: 12/13/2015] [Indexed: 11/12/2022] Open
Abstract
We investigated the effect of repeated delivery of anodal transcranial direct current stimulation (tDCS) on somatosensory performance and long-term learning. Over the course of five days, tDCS was applied to the primary somatosensory cortex (S1) by means of neuronavigation employing magnetencephalography (MEG). Compared to its sham application, tDCS promoted tactile learning by reducing the two-point discrimination threshold assessed by the grating orientation task (GOT) primarily by affecting intersessional changes in performance. These results were accompanied by alterations in the neurofunctional organization of the brain, as revealed by functional magnetic resonance imaging conducted prior to the study, at the fifth day of tDCS delivery and four weeks after the last application of tDCS. A decrease in activation at the primary site of anodal tDCS delivery in the left S1 along retention of superior tactile acuity was observed at follow-up four weeks after the application of tDCS. Thus, we demonstrate long-term effects that repeated tDCS imposes on somatosensory functioning. This is the first study to provide insight into the mode of operation of tDCS on the brain's response to long-term perceptual learning, adding an important piece of evidence from the domain of non-invasive brain stimulation to show that functional changes detectable by fMRI in primary sensory cortices participate in perceptual learning.
Collapse
Affiliation(s)
- Raphael Hilgenstock
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.,Department of Pediatrics, HELIOS Children's Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| | - Thomas Weiss
- Department of Biological and Clinical Psychology, Friedrich Schiller University, Jena, Germany
| | - Ralph Huonker
- Brain Imaging Center, Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
9
|
Nielsen JB, Willerslev-Olsen M, Christiansen L, Lundbye-Jensen J, Lorentzen J. Science-Based Neurorehabilitation: Recommendations for Neurorehabilitation From Basic Science. J Mot Behav 2015; 47:7-17. [DOI: 10.1080/00222895.2014.931273] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Skill memory escaping from distraction by sleep--evidence from dual-task performance. PLoS One 2012; 7:e50983. [PMID: 23226554 PMCID: PMC3514228 DOI: 10.1371/journal.pone.0050983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/31/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sleep facilitates off-line consolidation of memories, as shown for learning of motor skills in the absence of concomitant distractors. We often perform complex tasks focusing our attention mostly on one single part of them. However, we are equally able to skillfully perform other concurrent tasks. One may even improve performance on disregarded parts of complex tasks, which were learned implicitly. In the present study we investigated the role of sleep in the off-line consolidation of procedural skills when attention is diverted from the procedural task because of interference from a concurrent task. METHODOLOGY/PRINCIPAL FINDINGS We used a dual-task paradigm containing (i) procedural serial reaction time task (SRTT), which was labeled as subordinate and unimportant and (ii) declarative word-pair association task (WPAT), performed concomitantly. The WPAT served as a masked distractor to SRTT and was strongly reinforced by the instructions. One experimental and three control groups were tested. The experimental group was re-tested after two nights of sleep (sleep group, SG). The first control group had sleep deprivation on the first post-learning night (nighttime-awake group, NA), the second control group was tested in the morning and then re-tested after 12-hours (daytime-awake group, DA); the third one had the same assignments as DA but with a subsequent, instead of a concomitant, WPAT (daytime-awake-subsequent-WPAT group, DAs). We found SRTT performance gains in SG but not in NA and DA groups. Furthermore, SG reached similar learning gains in SRTT as the DAs group, which gained in SRTT performance because of post-training interference from the declarative task. CONCLUSIONS/SIGNIFICANCE The results demonstrate that sleep allows off-line consolidation, which is resistant to deteriorating effects of a reinforced distractor on the implicit procedural learning and allowing for gains which are consistent with those produced when inhibited declarative memories of SRTT do not compete with procedural ones.
Collapse
|
11
|
Kantak SS, Winstein CJ. Learning–performance distinction and memory processes for motor skills: A focused review and perspective. Behav Brain Res 2012; 228:219-31. [DOI: 10.1016/j.bbr.2011.11.028] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 01/17/2023]
|
12
|
Abstract
Perceptual skills improve with daily practice (Fahle and Poggio, 2002; Fine and Jacobs, 2002). Practice induces plasticity in task-relevant brain regions during an "offline" consolidation period thought to last several hours, during which initially fragile memory traces become stable (Karni, 1996; Dudai, 2004). Impaired retention of a task if followed by training in another task is considered evidence for the instability of memory traces during consolidation (Dudai, 2004). However, it remains unknown when after training memory traces become stable and resistant against interference, where in the brain the neuronal mechanisms responsible for interference are localized, and how these mechanisms produce interference. Here, we show in human participants strong interference between two visual skill-learning tasks for surprisingly long time intervals between training periods (up to 24 h). Interference occurred during asymptotic learning, but only when stimuli were similar between tasks. This supports a strong contribution to interference of low-level visual cortical areas (Karni and Bertini, 1997; Ahissar and Hochstein, 2004), where similar stimuli recruit overlapping neuronal populations. Our finding of stimulus-dependent and time-independent interference reveals a fundamental limit in cortical plasticity that constrains the simultaneous representation of multiple skills in a single neuronal population, rather than a time-limited consolidation process.
Collapse
|
13
|
Bauerly KR, De Nil LF. Speech sequence skill learning in adults who stutter. JOURNAL OF FLUENCY DISORDERS 2011; 36:349-60. [PMID: 22133413 DOI: 10.1016/j.jfludis.2011.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 05/21/2023]
Abstract
UNLABELLED The present study compared the ability of 12 people who stutter (PWS) and 12 people who do not stutter (PNS) to consolidate a novel sequential speech task. Participants practiced 100 repetitions of a single, monosyllabic, nonsense word sequence during an initial practice session and returned 24-h later to perform an additional 50 repetitions. Results showed significantly slower sequence durations in the PWS compared to PNS following extensive practice and consolidation. However, the hypothesis that poor performance gains in PWS compared to PNS during practice would be maintained following a 24-h consolidation period was not supported. Further descriptive analysis revealed large within group differences in PWS which to some extent were attributed to a subgroup of PWS who failed to show any improvements in performance following practice or consolidation. The results and the possible presence of subgroups of PWS are discussed with regard to their limitations in motor learning abilities. EDUCATIONAL OBJECTIVES The reader will be able to (1) explain the difference between practice and learning, (2) define consolidation and explain the importance of measuring performance following a consolidation period, (3) understand past research on PWS' performance during both speech and nonspeech motor tasks, and (4) explain why individual differences in practice effects and learning may have important implications for client variability in treatment outcome.
Collapse
Affiliation(s)
- Kim R Bauerly
- Department of Speech and Language Pathology, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
14
|
Impact of focal interictal epileptiform discharges on behaviour and cognition in children. Neurophysiol Clin 2011; 42:53-8. [PMID: 22200342 DOI: 10.1016/j.neucli.2011.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/29/2011] [Accepted: 11/01/2011] [Indexed: 11/23/2022] Open
Abstract
It is hypothesised that focal interictal epileptiform discharges (IED) may exert a deleterious effect on behaviour and cognition in children. This hypothesis is supported by the abnormally high prevalence of IED in several developmental disorders, like specific language impairment, and of cognitive and behavioural deficits in epileptic children after excluding confounding factors such as underlying structural brain lesions, drug effects, or the occurrence of frequent or prolonged epileptic seizures. Neurophysiological and functional neuroimaging evidence suggests that IED may impact cognition through either transient effects on brain processing mechanisms, or through more long-lasting effects leading to prolonged inhibition of brain areas distant from but connected with the epileptic focus (i.e. remote inhibition effect). Sustained IED may also impair sleep-related learning consolidation processes. Nowadays, the benefits of anti-epileptic treatment aimed at reducing IED are not established except in specific situations like epileptic encephalopathies with continuous spike and waves during slow-wave sleep. Well-designed pharmacological studies are still necessary to address this issue.
Collapse
|
15
|
Designing training programs for perceptual-motor skills: Practical implications from the serial reaction time task. EUROPEAN REVIEW OF APPLIED PSYCHOLOGY-REVUE EUROPEENNE DE PSYCHOLOGIE APPLIQUEE 2011. [DOI: 10.1016/j.erap.2010.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Lin CH(J, Winstein CJ, Fisher BE, Wu AD. Neural Correlates of the Contextual Interference Effect in Motor Learning: A Transcranial Magnetic Stimulation Investigation. J Mot Behav 2010; 42:223-32. [DOI: 10.1080/00222895.2010.492720] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chien-Ho (Janice) Lin
- a Division of Biokinesiology and Physical Therapy, School of Dentistry , University of Southern California , Los Angeles
- b Department of Neurology, David Geffen School of Medicine , University of California , Los Angeles
- c Ahmanson-Lovelace Brain Mapping Center , University of California , Los Angeles
| | - Carolee J. Winstein
- a Division of Biokinesiology and Physical Therapy, School of Dentistry , University of Southern California , Los Angeles
- d Department of Neurology, Keck School of Medicine , University of Southern California , Los Angeles
| | - Beth E. Fisher
- a Division of Biokinesiology and Physical Therapy, School of Dentistry , University of Southern California , Los Angeles
- d Department of Neurology, Keck School of Medicine , University of Southern California , Los Angeles
| | - Allan D. Wu
- b Department of Neurology, David Geffen School of Medicine , University of California , Los Angeles
- c Ahmanson-Lovelace Brain Mapping Center , University of California , Los Angeles
| |
Collapse
|
17
|
Boyd LA, Linsdell MA. Excitatory repetitive transcranial magnetic stimulation to left dorsal premotor cortex enhances motor consolidation of new skills. BMC Neurosci 2009; 10:72. [PMID: 19583831 PMCID: PMC2713248 DOI: 10.1186/1471-2202-10-72] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 07/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Following practice of skilled movements, changes continue to take place in the brain that both strengthen and modify memory for motor learning. These changes represent motor memory consolidation a process whereby new memories are transformed from a fragile to a more permanent, robust and stable state. In the present study, the neural correlates of motor memory consolidation were probed using repetitive transcranial magnetic stimulation (rTMS) to the dorsal premotor cortex (PMd). Participants engaged in four days of continuous tracking practice that immediately followed either excitatory 5 HZ, inhibitory 1 HZ or control, sham rTMS. A delayed retention test assessed motor learning of repeated and random sequences of continuous movement; no rTMS was applied at retention. RESULTS We discovered that 5 HZ excitatory rTMS to PMd stimulated motor memory consolidation as evidenced by off-line learning, whereas only memory stabilization was noted following 1 Hz inhibitory or sham stimulation. CONCLUSION Our data support the hypothesis that PMd is important for continuous motor learning, specifically via off-line consolidation of learned motor behaviors.
Collapse
Affiliation(s)
- Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
18
|
Abstract
Long after playing squash, your brain continues to process the events that occurred during the game, thereby improving your game, and more generally, enhancing adaptive behavior. Understanding these mysterious processes may require novel theories.
Collapse
Affiliation(s)
- Edwin M Robertson
- Berenson-Allen Centerfor Non-Invasive Brain Stimulation, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Romero-Munguía MA. Mnesic imbalance: a cognitive theory about autism spectrum disorders. Ann Gen Psychiatry 2008; 7:20. [PMID: 18925971 PMCID: PMC2577648 DOI: 10.1186/1744-859x-7-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 10/17/2008] [Indexed: 11/10/2022] Open
Abstract
Autism is characterized by impairments in social interaction, communicative capacity and behavioral flexibility. Some cognitive theories can be useful for finding a relationship between these irregularities and the biological mechanisms that may give rise to this disorder. Among such theories are mentalizing deficit, weak central coherence and executive dysfunction, but none of them has been able to explain all three diagnostic symptoms of autism. These cognitive disorders may be related among themselves by faulty learning, since several research studies have shown that the brains of autistic individuals have abnormalities in the cerebellum, which plays a role in procedural learning. In keeping with this view, one may postulate the possibility that declarative memory replaces faulty procedural memory in some of its functions, which implies making conscious efforts in order to perform actions that are normally automatic. This may disturb cognitive development, resulting in autism symptoms. Furthermore, this mnesic imbalance is probably involved in all autism spectrum disorders. In the present work, this theory is expounded, including preliminary supporting evidence.
Collapse
Affiliation(s)
- Miguel Angel Romero-Munguía
- Hospital Psiquiátrico Dr, Samuel Ramírez Moreno, Autopista México-Puebla Km 5,5 Col, Santa Catarina, Del, Tláhuac, CP,13100, México City, México.
| |
Collapse
|
20
|
Memmert D. Long-term effects of type of practice on the learning and transfer of a complex motor skill. Percept Mot Skills 2007; 103:912-6. [PMID: 17326522 DOI: 10.2466/pms.103.3.912-916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study analyzed the long-term effects of practice schedule on shooting performance in basketball during actual field training. 32 college students (16 female) ages 20 to 29 years completed voluntary basketball training in one of two equal-sized groups employing either constant versus random training. The constant practice group took 160 shots from the free throw line, while the variable practice group took 160 shots from different positions around the restricted area. Learning and transfer (variation of throwing distance and size of the ball) performance was assessed with the Basketball-Shooting Test before and after training and on a retention test 1 yr. later. Significant measures in performance were attributed to learning and transfer in both training groups at all measurement times. Constant training groups had better acquisition and random training groups had better retention. The anticipated transfer effect in the random group was not found.
Collapse
|
21
|
Dorfberger S, Adi-Japha E, Karni A. Reduced susceptibility to interference in the consolidation of motor memory before adolescence. PLoS One 2007; 2:e240. [PMID: 17327907 PMCID: PMC1800346 DOI: 10.1371/journal.pone.0000240] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 01/30/2007] [Indexed: 12/05/2022] Open
Abstract
Are children superior to adults in consolidating procedural memory? This notion has been tied to “critical,” early life periods of increased brain plasticity. Here, using a motor sequence learning task, we show, in experiment 1, that a) the rate of learning during a training session, b) the gains accrued, without additional practice, within a 24 hours post-training interval (delayed consolidation gains), and c) the long-term retention of these gains, were as effective in 9, 12 and 17-year-olds and comparable to those reported for adults. However, a follow-up experiment showed that the establishment of a memory trace for the trained sequence of movements was significantly more susceptible to interference by a subsequent motor learning experience (practicing a reversed movement sequence) in the 17-year-olds compared to the 9 and 12-year-olds. Unlike the 17-year-olds, the younger age-groups showed significant delayed gains even after interference training. Altogether, our results indicate the existence of an effective consolidation phase in motor learning both before and after adolescence, with no childhood advantage in the learning or retention of a motor skill. However, the ability to co-consolidate different, successive motor experiences, demonstrated in both the 9 and 12-year-olds, diminishes after puberty, suggesting that a more selective memory consolidation process takes over from the childhood one. Only the adult consolidation process is gated by a recency effect, and in situations of multiple, clashing, experiences occurring within a short time-interval, adults may less effectively establish in memory experiences superseded by newer ones.
Collapse
Affiliation(s)
- Shoshi Dorfberger
- The Laboratory for Functional Brain Imaging and Learning Research, The Brain Behavior Research Center, University of Haifa, Haifa, Israel
| | - Esther Adi-Japha
- School of Education, Bar Ilan University, Ramat-Gan, Israel
- * To whom correspondence should be addressed. E-mail:
| | - Avi Karni
- The Laboratory for Functional Brain Imaging and Learning Research, The Brain Behavior Research Center, University of Haifa, Haifa, Israel
| |
Collapse
|
22
|
Cohen H, Pourcher E. Intact encoding, impaired consolidation in procedural learning in Parkinson's disease. Exp Brain Res 2007; 179:703-8. [PMID: 17279386 DOI: 10.1007/s00221-006-0827-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Idiopathic Parkinson's disease (IPD) patients and matched healthy participants were compared on a non-motor procedural task involving semantically related inverted word pairs, and 3 months later to determine the extent of skill consolidation. IPD patients were found to acquire new procedural skills necessary to read these inverted words, thus indicating that they are not impaired in all types of procedural learning. However, results on post-tests 3 months later, revealed significant group differences with IPD subjects showing little off-line learning relative to the controls. This suggests that a dopamine (DA)-deafferented neural system is not consolidated in the same way that a normally DA-innervated system is, and that impaired maintenance of procedures and routines may place IPD patients in a situation of constant relearning of embedded strategies in motor and non-motor domains.
Collapse
Affiliation(s)
- Henri Cohen
- Cognitive Neuroscience Center, Université du Québec à Montréal and Laboratoire Psychologie et Neurosciences Cognitives, CNRS-Paris Descartes, Stn. Centre-Ville, PB 8888, Montréal, QC, H3C 3P8 Canada.
| | | |
Collapse
|
23
|
Fischer S, Wilhelm I, Born J. Developmental Differences in Sleep's Role for Implicit Off-line Learning: Comparing Children with Adults. J Cogn Neurosci 2007; 19:214-27. [PMID: 17280511 DOI: 10.1162/jocn.2007.19.2.214] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Sleep crucially contributes to the off-line consolidation of memories. Although this view was confirmed in numerous studies in adults, it is not known whether it can be generalized to sleep during development. Here, we examined effects of sleep on implicit memory formation considered of particular relevance in children, because brain structures underlying implicit learning develop earlier in ontogeny than structures supporting explicit learning. Subjects were 7- to 11-year-old children (n = 14) and 20- to 30-year-old adults (n = 12) tested on a serial reaction time task before (learning) and after (retest) equal length retention periods of overnight sleep and daytime wakefulness. At learning, after eight training blocks, all subjects had acquired implicit knowledge of the probabilistic rules underlying the sequential stimulus materials, as indicated by a substantial difference in response time to grammatical versus nongrammatical trials in two test blocks that followed the training blocks. At learning, this response time difference was greater in children (48.49 ± 6.08 msec) than adults (28.02 ± 3.65 msec, p < .01), but did not differ between sleep and wake retention conditions in either age group. Consistent with previous studies, retesting in the adults revealed that the reaction time differences between grammatical and nongrammatical trials increased by 9.78 ± 4.82 msec after sleep, but decreased by −12.76 ± 5.49 msec after the wake retention period (p < .01). Contrary to this finding in adults, sleep in children did not lead to an increase, but to a decrease in the reaction time difference averaging −26.68 ± 12.25 msec (p < .05), whereas across the wake retention interval the reaction time difference remained nearly unchanged. The sleep-dependent deterioration in measures of implicit sequence knowledge in children was in striking contrast to the gain of such knowledge in the adults during sleep (p < .01). Our findings indicate that the functional role of sleep in implicit memory consolidation depends on age. We speculate that the overnight decrease of implicit knowledge in children reflects a preferential effect of sleep toward the enhancement of explicit aspects of task performance that interferes with implicit performance gains.
Collapse
|
24
|
Fischer S, Drosopoulos S, Tsen J, Born J. Implicit Learning–Explicit Knowing: A Role for Sleep in Memory System Interaction. J Cogn Neurosci 2006. [DOI: 10.1162/jocn.2006.18.3.311] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
There is evidence that sleep supports the enhancement of implicit as well as explicit memories (i.e., two memory systems that during learning normally appear to act together). Here, employing a serial reaction time task (SRTT) paradigm, we examined the question whether sleep can provide explicit knowledge on an implicitly acquired skill. At learning, young healthy subjects (n = 20) were first trained on the SRTT. Then, implicit knowledge was assessed on two test blocks, in which grammatically incorrect target positions were occasionally interspersed by the difference in reaction times between grammatically correct and incorrect target positions. To assess explicit sequence knowledge, thereafter subjects performed on a generation task in which they were explicitly instructed to predict the sequential target positions. In half the subjects, learning took place before a 9-hour retention interval filled with nocturnal sleep (sleep group), in the other half, the retention interval covered a 9-hour period of daytime wakefulness (wake group). At subsequent retesting, both testing on the generation task and the SRTT test blocks was repeated. At learning before the retention interval, subjects displayed significant implicit sequence knowledge which was comparable for the sleep and wake groups. Moreover, both groups did not display any explicit sequence knowledge as indicated by a prediction performance not differing from chance on the generation task. However, at retesting, there was a distinct gain in explicit knowledge in the subjects who had slept in the retention interval, whereas generation task performance in the wake group remained at chance level. SRTT performance in the test blocks at retesting did not indicate any further gain in skill (i.e., unchanged reaction time differences between grammatically correct and incorrect target positions) independently of whether subjects had slept or remained awake after learning. Our results indicate a selective enhancement of explicit memory formation during sleep. Because before sleep subjects only had implicit knowledge on the sequence of target transitions, these data point to an interaction between implicit and explicit memory systems during sleep-dependent off-line learning.
Collapse
|
25
|
MEMMERT DANIEL. LONG-TERM EFFECTS OF TYPE OF PRACTICE ON THE LEARNING AND TRANSFER OF A COMPLEX MOTOR SKILL. Percept Mot Skills 2006. [DOI: 10.2466/pms.103.7.912-916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Abstract
PURPOSE OF REVIEW The human brain supports acquisition mechanisms that can extract structural regularities implicitly from experience without the induction of an explicit model. Reber defined the process by which an individual comes to respond appropriately to the statistical structure of the input ensemble as implicit learning. He argued that the capacity to generalize to new input is based on the acquisition of abstract representations that reflect underlying structural regularities in the acquisition input. We focus this review of the implicit learning literature on studies published during 2004 and 2005. We will not review studies of repetition priming ('implicit memory'). Instead we focus on two commonly used experimental paradigms: the serial reaction time task and artificial grammar learning. Previous comprehensive reviews can be found in Seger's 1994 article and the Handbook of Implicit Learning. RECENT FINDINGS Emerging themes include the interaction between implicit and explicit processes, the role of the medial temporal lobe, developmental aspects of implicit learning, age-dependence, the role of sleep and consolidation. SUMMARY The attempts to characterize the interaction between implicit and explicit learning are promising although not well understood. The same can be said about the role of sleep and consolidation. Despite the fact that lesion studies have relatively consistently suggested that the medial temporal lobe memory system is not necessary for implicit learning, a number of functional magnetic resonance studies have reported medial temporal lobe activation in implicit learning. This issue merits further research. Finally, the clinical relevance of implicit learning remains to be determined.
Collapse
Affiliation(s)
- Christian Forkstam
- Cognitive Neurophysiology Research Group, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|