1
|
Okada N, Oshima K, Iwasaki Y, Maruko A, Matsumura K, Iioka E, Vu TD, Fujitsuka N, Nishi A, Sugiyama A, Nishiyama M, Kaneko A, Mizoguchi K, Yamamoto M, Nishimura S. Intron retention as a new pre-symptomatic marker of aging and its recovery to the normal state by a traditional Japanese multi-herbal medicine. Gene 2021; 794:145752. [PMID: 34082065 DOI: 10.1016/j.gene.2021.145752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Intron retention (IR) is an important regulatory mechanism that affects gene expression and protein functions. Using klotho mice at the pre-symptomatic state, we discovered that retained-introns accumulated in several organs including the liver and that among these retained introns in the liver a subset was recovered to the normal state by a Japanese traditional herbal medicine. This is the first report of IR recovery by a medicine. IR-recovered genes fell into two categories: those involved in liver-specific metabolism and in splicing. Metabolome analysis of the liver showed that the klotho mice were under starvation stress. In addition, our differentially expressed gene analysis showed that liver metabolism was actually recovered by the herbal medicine at the transcriptional level. By analogy with the widespread accumulation of intron-retained pre-mRNAs induced by heat shock stress, we propose a model in which retained-introns in klotho mice were induced by an aging stress and in which this medicine-related IR recovery is indicative of the actual recovery of liver-specific metabolic function to the healthy state. Accumulation of retained-introns was also observed at the pre-symptomatic state of aging in wild-type mice and may be an excellent marker for this state in general.
Collapse
Affiliation(s)
- Norihiro Okada
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan; Nagahama Institute of Bio-Science and Technology, Nagahama, Japan.
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan
| | - Yuki Iwasaki
- Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan; Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Akiko Maruko
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan
| | - Kenya Matsumura
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Erica Iioka
- Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan
| | - Trieu-Duc Vu
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Akinori Nishi
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Aiko Sugiyama
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Mitsue Nishiyama
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Atsushi Kaneko
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Masahiro Yamamoto
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Susumu Nishimura
- Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan; Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| |
Collapse
|
2
|
Jin MH, Xiao YT, Cheng Y, Hu J, Xue CB, Wu KM. Chromosomal deletions mediated by CRISPR/Cas9 in Helicoverpa armigera. INSECT SCIENCE 2019; 26:1029-1036. [PMID: 29359508 DOI: 10.1111/1744-7917.12570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Helicoverpa armigera, cotton bollworm, is one of the most disastrous pests worldwide, threatening various food and economic crops. Functional genomic tools may provide efficient approaches for its management. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, dependent on a single guide RNA (sgRNA), has been used to induce indels for targeted mutagenesis in cotton bollworm. However, genomic deletions may be more desirable to disrupt the function of noncoding genes or regulatory sequences. By injecting two sgRNAs with Cas9 protein targeting different exons, we obtained predictable genomic deletions of several hundred bases. We achieved this type of modification with different combinations of sgRNA pairs, including HaCad and HaABCC2. Our finding indicated that CRISPR/Cas9 can be used as an efficient tool to engineer genomes with chromosomal deletion in H. armigera.
Collapse
Affiliation(s)
- Ming-Hui Jin
- College of Plant Protection, Southwest University, Chongqing, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Yu-Tao Xiao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Ying Cheng
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Jie Hu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Chao-Bin Xue
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Kong-Ming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Ono M, Yamada K, Bensaddek D, Afzal V, Biddlestone J, Ortmann B, Mudie S, Boivin V, Scott MS, Rocha S, Lamond AI. Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1α Protein Replacement Human Cell Lines. PLoS One 2016; 11:e0154759. [PMID: 27128805 PMCID: PMC4851398 DOI: 10.1371/journal.pone.0154759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
The snoMEN (snoRNA Modulator of gene ExpressioN) vector technology was developed from a human box C/D snoRNA, HBII-180C, which contains an internal sequence that can be manipulated to make it complementary to RNA targets, allowing knock-down of targeted genes. Here we have screened additional human nucleolar snoRNAs and assessed their application for gene specific knock-downs to improve the efficiency of snoMEN vectors. We identify and characterise a new snoMEN vector, termed 47snoMEN, that is derived from box C/D snoRNA U47, demonstrating its use for knock-down of both endogenous cellular proteins and G/YFP-fusion proteins. Using multiplex 47snoMEM vectors that co-express multiple 47snoMEN in a single transcript, each of which can target different sites in the same mRNA, we document >3-fold increase in knock-down efficiency when compared with the original HBII-180C based snoMEN. The multiplex 47snoMEM vector allowed the construction of human protein replacement cell lines with improved efficiency, including the establishment of novel GFP–HIF-1α replacement cells. Quantitative mass spectrometry analysis confirmed the enhanced efficiency and specificity of protein replacement using the 47snoMEN-PR vectors. The 47snoMEN vectors expand the potential applications for snoMEN technology in gene expression studies, target validation and gene therapy.
Collapse
Affiliation(s)
- Motoharu Ono
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kayo Yamada
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dalila Bensaddek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vackar Afzal
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John Biddlestone
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Brian Ortmann
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sharon Mudie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vincent Boivin
- Department of Biochemistry and RNA Group, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Michelle S. Scott
- Department of Biochemistry and RNA Group, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Angus I. Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Khan S, Basit S, Khan MA, Muhammad N, Ahmad W. Genetics of human isolated acromesomelic dysplasia. Eur J Med Genet 2016; 59:198-203. [DOI: 10.1016/j.ejmg.2016.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/27/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
5
|
Ono M, Yamada K, Avolio F, Afzal V, Bensaddek D, Lamond AI. Targeted Knock-Down of miR21 Primary Transcripts Using snoMEN Vectors Induces Apoptosis in Human Cancer Cell Lines. PLoS One 2015; 10:e0138668. [PMID: 26405811 PMCID: PMC4583369 DOI: 10.1371/journal.pone.0138668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/02/2015] [Indexed: 11/18/2022] Open
Abstract
We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2.
Collapse
Affiliation(s)
- Motoharu Ono
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kayo Yamada
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Fabio Avolio
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vackar Afzal
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dalila Bensaddek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Angus I. Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
6
|
Functional analyses of C.2268dup in thyroid peroxidase gene associated with goitrous congenital hypothyroidism. BIOMED RESEARCH INTERNATIONAL 2014; 2014:370538. [PMID: 24745015 PMCID: PMC3976875 DOI: 10.1155/2014/370538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/23/2014] [Accepted: 02/06/2014] [Indexed: 11/17/2022]
Abstract
The c.2268dup mutation in thyroid peroxidase (TPO) gene was reported to be a founder mutation in Taiwanese patients with dyshormonogenetic congenital hypothyroidism (CH). The functional impact of the mutation is not well documented. In this study, homozygous c.2268dup mutation was detected in two Malaysian-Chinese sisters with goitrous CH. Normal and alternatively spliced TPO mRNA transcripts were present in thyroid tissues of the two sisters. The abnormal transcript contained 34 nucleotides originating from intron 12. The c.2268dup is predicted to generate a premature termination codon (PTC) at position 757 (p.Glu757X). Instead of restoring the normal reading frame, the alternatively spliced transcript has led to another stop codon at position 740 (p.Asp739ValfsX740). The two PTCs are located at 116 and 201 nucleotides upstream of the exons 13/14 junction fulfilling the requirement for a nonsense-mediated mRNA decay (NMD). Quantitative RT-PCR revealed an abundance of unidentified transcripts believed to be associated with the NMD. TPO enzyme activity was not detected in both patients, even though a faint TPO band of about 80 kD was present. In conclusion, the c.2268dup mutation leads to the formation of normal and alternatively spliced TPO mRNA transcripts with a consequential loss of TPO enzymatic activity in Malaysian-Chinese patients with goitrous CH.
Collapse
|
7
|
Conservation/Mutation in the splice sites of cytokine receptor genes of mouse and human. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2013; 2013:818954. [PMID: 24455408 PMCID: PMC3877593 DOI: 10.1155/2013/818954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/18/2013] [Accepted: 10/26/2013] [Indexed: 11/18/2022]
Abstract
Conservation/mutation in the intronic initial and terminal hexanucleotides was studied in 26 orthologous cytokine receptor genes of Mouse and Human. Introns began and ended with the canonical dinucleotides GT and AG, respectively. Identical configurations were found in 57% of the 5′ hexanucleotides and 28% of the 3′ hexanucleotides. The actual conservation percentages of the individual variable nucleotides at each position in the hexanucleotides were determined, and the theoretical rates of conservation of groups of three nucleotides were calculated under the hypothesis of a mutual evolutionary independence of the neighboring nucleotides (random association). Analysis of the actual conservation of groups of variable nucleotides showed that, at 5′, GTGAGx was significantly more expressed and GTAAGx was significantly less expressed, as compared to the random association. At 3′, TTTxAG and xTGCAG were overexpressed as compared to a random association. Study of Mouse and Human transcript variants involving the splice sites showed that most variants were not inherited from the common ancestor but emerged during the process of speciation. In some variants the silencing of a terminal hexanucleotide determined skipping of the downstream exon; in other variants the constitutive splicing hexanucleotide was replaced by another potential, in-frame, splicing hexanucleotide, leading to alterations of exon lengths.
Collapse
|
8
|
Djureinovic T, Sjöblom T. Identification of driver genes in microsatellite-unstable colorectal cancers. COLORECTAL CANCER 2013. [DOI: 10.2217/crc.13.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SUMMARY Somatic mutations in key driver genes are necessary for colorectal tumor formation. Whereas the majority of sporadic colorectal cancer (CRC) cases have chromosomal instability, a sixth of cases generate somatic mutations by a deficiency in the mismatch repair system. This choice of mutational mechanism has a strong impact on which genes in CRC pathways are the most likely to be mutated in an individual tumor. A specific challenge in understanding CRC with microsatellite instability is to discriminate driver from passenger genes given the large number of nucleotide repeats that are frequently found mutated in patient tumors. This review, therefore, discusses strategies for the identification and validation of cancer genes in microsatellite-unstable colorectal cancers.
Collapse
Affiliation(s)
- Tatjana Djureinovic
- Department of Immunology, Genetics & Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics & Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
9
|
Wei Q, Shen Y, Chen X, Shifman Y, Ellis RE. Rapid creation of forward-genetics tools for C. briggsae using TALENs: lessons for nonmodel organisms. Mol Biol Evol 2013; 31:468-73. [PMID: 24194560 PMCID: PMC3907053 DOI: 10.1093/molbev/mst213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although evolutionary studies of gene function often rely on RNA interference, the ideal approach would use reverse genetics to create null mutations for cross-species comparisons and forward genetics to identify novel genes in each species. We have used transcription activator-like effector nucleases (TALENs) to facilitate both approaches in Caenorhabditis nematodes. First, by combining golden gate cloning and TALEN technology, we can induce frameshifting mutations in any gene. Second, by combining this approach with bioinformatics we can predict and create the resources needed for forward genetic analysis in species like Caenorhabditis briggsae. Although developing genetic model organisms used to require years to isolate marker mutations, balancers, and tools, with TALENs, these reagents can now be produced in months. Furthermore, the analysis of nonsense mutants in related model organisms allows a directed approach for making these markers and tools. When used together, these methods could simplify the adaptation of other organisms for forward and reverse genetics.
Collapse
Affiliation(s)
- Qing Wei
- Graduate School of the Biomedical Sciences, Rowan University
| | | | | | | | | |
Collapse
|
10
|
Ono M, Yamada K, Endo A, Avolio F, Lamond AI. Analysis of human protein replacement stable cell lines established using snoMEN-PR vector. PLoS One 2013; 8:e62305. [PMID: 23638031 PMCID: PMC3636044 DOI: 10.1371/journal.pone.0062305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/19/2013] [Indexed: 11/20/2022] Open
Abstract
The study of the function of many human proteins is often hampered by technical limitations, such as cytotoxicity and phenotypes that result from overexpression of the protein of interest together with the endogenous version. Here we present the snoMEN (snoRNA Modulator of gene ExpressioN) vector technology for generating stable cell lines where expression of the endogenous protein can be reduced and replaced by an exogenous protein, such as a fluorescent protein (FP)-tagged version. SnoMEN are snoRNAs engineered to contain complementary sequences that can promote knock-down of targeted RNAs. We have established and characterised two such partial protein replacement human cell lines (snoMEN-PR). Quantitative mass spectrometry was used to analyse the specificity of knock-down and replacement at the protein level and also showed an increased pull-down efficiency of protein complexes containing exogenous, tagged proteins in the protein replacement cell lines, as compared with conventional co-expression strategies. The snoMEN approach facilitates the study of mammalian proteins, particularly those that have so far been difficult to investigate by exogenous expression and has wide applications in basic and applied gene-expression research.
Collapse
Affiliation(s)
- Motoharu Ono
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kayo Yamada
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Akinori Endo
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Fabio Avolio
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Angus I. Lamond
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Abstract
For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively removed by the spliceosome, other splice junctions are not used systematically, generating the phenomenon of alternative splicing. Alternative splicing is therefore the process by which a single species of pre-mRNA can be matured to produce different mRNA molecules (Fig. 1). Depending on the number and types of alternative splicing events, a pre-mRNA can generate from two to several thousands different mRNAs leading to the production of a corresponding number of proteins. It is now believed that the expression of at least 70 % of human genes is subjected to alternative splicing, implying an enormous contribution to proteomic diversity, and by extension, to the development and the evolution of complex animals. Defects in splicing have been associated with human diseases (Caceres and Kornblihtt, Trends Genet 18(4):186-93, 2002, Cartegni et al., Nat Rev Genet 3(4):285-98, 2002, Pagani and Baralle, Nat Rev Genet 5(5):389-96, 2004), including cancer (Brinkman, Clin Biochem 37(7):584-94, 2004, Venables, Bioessays 28(4):378-86, 2006, Srebrow and Kornblihtt, J Cell Sci 119(Pt 13):2635-2641, 2006, Revil et al., Bull Cancer 93(9):909-919, 2006, Venables, Transworld Res Network, 2006, Pajares et al., Lancet Oncol 8(4):349-57, 2007, Skotheim and Nees, Int J Biochem Cell Biol 39:1432-1449, 2007). Numerous studies have now confirmed the existence of specific differences in the alternative splicing profiles between normal and cancer tissues. Although there are a few cases where specific mutations are the primary cause for these changes, global alterations in alternative splicing in cancer cells may be primarily derived from changes in the expression of RNA-binding proteins that control splice site selection. Overall, these cancer-specific differences in alternative splicing offer an immense potential to improve the diagnosis and the prognosis of cancer. This review will focus on the functional impact of cancer-associated alternative splicing variants, the molecular determinants that alter the splicing decisions in cancer cells, and future therapeutic strategies.
Collapse
|
12
|
Khan S, Ali RH, Abbasi S, Nawaz M, Muhammad N, Ahmad W. Novel mutations in natriuretic peptide receptor-2 gene underlie acromesomelic dysplasia, type maroteaux. BMC MEDICAL GENETICS 2012; 13:44. [PMID: 22691581 PMCID: PMC3458994 DOI: 10.1186/1471-2350-13-44] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 06/12/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Natriuretic peptides (NPs) are peptide hormones that exert their biological actions by binding to three types of cell surface natriuretic peptide receptors (NPRs). The receptor NPR-B binding C-type natriuretic peptide (CNP) acts locally as a paracrine and/or autocrine regulator in a wide variety of tissues. Mutations in the gene NPR2 have been shown to cause acromesomelic dysplasia-type Maroteaux (AMDM), an autosomal recessive skeletal disproportionate dwarfism disorder in humans. METHODS In the study, presented here, genotyping of six consanguineous families of Pakistani origin with AMDM was carried out using polymorphic microsatellite markers, which are closely linked to the gene NPR2 on chromosome 9p21-p12. To screen for mutations in the gene NPR2, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected and unaffected individuals of the families and sequenced. RESULTS Sequence analysis of the gene NPR2 identified a novel missence mutation (p.T907M) in five families, and a splice donor site mutation c.2986 + 2 T > G in the other family. CONCLUSION We have described two novel mutations in the gene NPR2. The presence of the same mutation (p.T907M) and haplotype in five families (A, B, C, D, E) is suggestive of a founder effect.
Collapse
Affiliation(s)
- Saadullah Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | | | | | | | | | | |
Collapse
|
13
|
Dis3- and exosome subunit-responsive 3' mRNA instability elements. Biochem Biophys Res Commun 2012; 423:461-6. [PMID: 22668878 DOI: 10.1016/j.bbrc.2012.05.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 11/20/2022]
Abstract
Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3'-5' exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3' untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette-harboring four elements-destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of mRNA turnover that involves direct Dis3 and other exosome subunit recruitment to and/or regulation on mRNA substrates.
Collapse
|
14
|
Habib R, Basit S, Khan S, Khan MN, Ahmad W. A novel splice site mutation in gene C2orf37 underlying Woodhouse–Sakati syndrome (WSS) in a consanguineous family of Pakistani origin. Gene 2011; 490:26-31. [DOI: 10.1016/j.gene.2011.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/03/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
|
15
|
Rauch J, Moran-Jones K, Albrecht V, Schwarzl T, Hunter K, Gires O, Kolch W. c-Myc regulates RNA splicing of the A-Raf kinase and its activation of the ERK pathway. Cancer Res 2011; 71:4664-74. [PMID: 21512137 DOI: 10.1158/0008-5472.can-10-4447] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A-Raf kinase can inhibit apoptosis by binding to the proapoptotic mammalian sterile 20-like kinase (MST2). This function relies on expression of hnRNP H, which ensures the correct splicing of a-raf mRNA needed to produce full-length A-Raf protein. Here, we showed that expression of hnRNP H and production of full-length A-Raf is positively controlled by c-Myc. Low c-Myc reduces hnRNP H expression and switches a-raf splicing to produce A-Raf(short), a truncated protein. Importantly, A-Raf(short) fails to regulate MST2 but retains the Ras-binding domain such that it functions as a dominant negative mutant suppressing Ras activation and transformation. Human colon and head and neck cancers exhibit high hnRNP H and high c-Myc levels resulting in enhanced A-Raf expression and reduced expression of A-Raf(short). Conversely, in normal cells and tissues in which c-Myc and hnRNP H are low, A-Raf(short) suppresses extracellular signal regulated kinase activation such that it may act as a safeguard against oncogenic transformation. Our findings offered a new paradigm to understand how c-Myc coordinates diverse cell functions by directly affecting alternate splicing of key signaling components.
Collapse
Affiliation(s)
- Jens Rauch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
16
|
Advances in Research on Pseudogenes. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wasif N, Naqvi SKUH, Basit S, Ali N, Ansar M, Ahmad W. Novel mutations in the keratin-74 (KRT74) gene underlie autosomal dominant woolly hair/hypotrichosis in Pakistani families. Hum Genet 2010; 129:419-24. [PMID: 21188418 DOI: 10.1007/s00439-010-0938-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 12/19/2010] [Indexed: 10/18/2022]
Abstract
Autosomal dominant woolly hair (ADWH) is an inherited condition of tightly curled and twisted scalp hair. Recently, a mutation in human keratin-74 (KRT74) gene has been shown to cause this form of hereditary hair disorder. In the present study, we have described two families (A and B) having multiple individuals affected with autosomal dominant form of hair loss disorders. In family A, 10 individuals showed ADWH phenotype while in the family B, 14 individuals showed hypotrichosis of the scalp. Genotyping using polymorphic microsatellite markers showed linkage of both the families to type II keratin gene cluster on the chromosome 12q12-14.1. Mutation analysis of the KRT74 gene identified two novel mutations in the affected individuals of the families. The sequence analysis revealed a splice acceptor site mutation (c.IVS8-1G>A) in family A and a missense variant (c.1444G>A, p.Asp482Asn) in family B. Mutations identified in the present study extend the body of evidence implicating the KRT74 gene in the pathogenesis of autosomal dominant hair loss disorders.
Collapse
Affiliation(s)
- Naveed Wasif
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | | | | | |
Collapse
|
18
|
Fernández-Guerra P, Navarrete R, Weisiger K, Desviat LR, Packman S, Ugarte M, Rodríguez-Pombo P. Functional characterization of the novel intronic nucleotide change c.288+9C>T within the BCKDHA gene: understanding a variant presentation of maple syrup urine disease. J Inherit Metab Dis 2010; 33 Suppl 3:S191-8. [PMID: 20431954 DOI: 10.1007/s10545-010-9077-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/25/2010] [Accepted: 03/08/2010] [Indexed: 11/26/2022]
Abstract
Mutations in any of the three different genes--BCKDHA, BCKDHB, and DBT--encoding for the E1α, E1β, and E2 catalytic components of the branched-chain α-ketoacid dehydrogenase complex can cause maple syrup urine disease (MSUD). Disease severity ranges from the classic to the mildest variant types and precise genotypes, mostly based on missense mutations, have been associated to the less severe presentations of the disease. Herein, we examine the consequences at the messenger RNA (mRNA) level of the novel intronic alteration c.288+9C>T found in heterozygous fashion in a BCKDHA variant MSUD patient who also carries the nucleotide change c.745G>A (p.Gly249Ser), previously described as a severe change. Direct analysis of the processed transcripts from the patient showed--in addition to a low but measurable level of normal mRNA product--an aberrantly spliced mRNA containing a 7-bp fragment of intron 2, which could be rescued when the patient's cells were treated with emetine. This aberrant transcript with a premature stop codon would be unstable, supporting the possible activation of nonsense-mediated mRNA decay pathway. Consistent with this finding, minigene splicing assays demonstrated that the point mutation c.288+9C>T is sufficient to create a cryptic splice site and cause the observed 7-bp insertion. Furthermore, our results strongly suggest that the c.288+9C>T allele in the patient generates both normal and aberrant transcripts that could sustain the variant presentation of the disease, highlighting the importance of correct genotyping to establish genotype-phenotype correlations and as basis for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Paula Fernández-Guerra
- Centro de Diagnóstico de Enfermedades Moleculares, Dpto Biol Mol., Centro Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus Cantoblanco, F Ciencias Modulo 10, 28049, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Santibanez Koref M, Wilson V, Cartwright N, Cunnington MS, Mathers JC, Bishop DT, Curtis A, Dunlop MG, Burn J. MLH1 Differential Allelic Expression in Mutation Carriers and Controls. Ann Hum Genet 2010; 74:479-88. [DOI: 10.1111/j.1469-1809.2010.00603.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Thoren LA, Nørgaard GA, Weischenfeldt J, Waage J, Jakobsen JS, Damgaard I, Bergström FC, Blom AM, Borup R, Bisgaard HC, Porse BT. UPF2 is a critical regulator of liver development, function and regeneration. PLoS One 2010; 5:e11650. [PMID: 20657840 PMCID: PMC2906512 DOI: 10.1371/journal.pone.0011650] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 06/23/2010] [Indexed: 11/19/2022] Open
Abstract
Background Nonsense-mediated mRNA decay (NMD) is a post-transcriptional RNA surveillance process that facilitates the recognition and destruction of mRNAs bearing premature terminations codons (PTCs). Such PTC-containing (PTC+) mRNAs may arise from different processes, including erroneous processing and expression of pseudogenes, but also from more regulated events such as alternative splicing coupled NMD (AS-NMD). Thus, the NMD pathway serves both as a silencer of genomic noise and a regulator of gene expression. Given the early embryonic lethality in NMD deficient mice, uncovering the full regulatory potential of the NMD pathway in mammals will require the functional assessment of NMD in different tissues. Methodology/Principal Findings Here we use mouse genetics to address the role of UPF2, a core NMD component, in the development, function and regeneration of the liver. We find that loss of NMD during fetal liver development is incompatible with postnatal life due to failure of terminal differentiation. Moreover, deletion of Upf2 in the adult liver results in hepatosteatosis and disruption of liver homeostasis. Finally, NMD was found to be absolutely required for liver regeneration. Conclusion/Significance Collectively, our data demonstrate the critical role of the NMD pathway in liver development, function and regeneration and highlights the importance of NMD for mammalian biology.
Collapse
Affiliation(s)
- Lina A. Thoren
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Section for Gene Therapy Research, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Gitte A. Nørgaard
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Section for Gene Therapy Research, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Section for Gene Therapy Research, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Johannes Waage
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Section for Gene Therapy Research, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Janus S. Jakobsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Section for Gene Therapy Research, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Finsen Laboratory, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Inge Damgaard
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Section for Gene Therapy Research, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Frida C. Bergström
- Department of Laboratory Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Anna M. Blom
- Department of Laboratory Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Rehannah Borup
- Department of Clinical Biochemistry, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Hanne Cathrine Bisgaard
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo T. Porse
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Section for Gene Therapy Research, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
21
|
McIlwain DR, Pan Q, Reilly PT, Elia AJ, McCracken S, Wakeham AC, Itie-Youten A, Blencowe BJ, Mak TW. Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A 2010; 107:12186-91. [PMID: 20566848 PMCID: PMC2901484 DOI: 10.1073/pnas.1007336107] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Smg1 is a PI3K-related kinase (PIKK) associated with multiple cellular functions, including DNA damage responses, telomere maintenance, and nonsense-mediated mRNA decay (NMD). NMD degrades transcripts that harbor premature termination codons (PTCs) as a result of events such as mutation or alternative splicing (AS). Recognition of PTCs during NMD requires the action of the Upstream frameshift protein Upf1, which must first be phosphorylated by Smg1. However, the physiological function of mammalian Smg1 is not known. By using a gene-trap model of Smg1 deficiency, we show that this kinase is essential for mouse embryogenesis such that Smg1 loss is lethal at embryonic day 8.5. High-throughput RNA sequencing (RNA-Seq) of RNA from cells of Smg1-deficient embryos revealed that Smg1 depletion led to pronounced accumulation of PTC-containing splice variant transcripts from approximately 9% of genes predicted to contain AS events capable of eliciting NMD. Among these genes are those involved in splicing itself, as well as genes not previously known to be subject to AS-coupled NMD, including several involved in transcription, intracellular signaling, membrane dynamics, cell death, and metabolism. Our results demonstrate a critical role for Smg1 in early mouse development and link the loss of this NMD factor to major and widespread changes in the mammalian transcriptome.
Collapse
Affiliation(s)
- David R McIlwain
- Campbell Family Cancer Research Institute and Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Harigaya Y, Parker R. No-go decay: a quality control mechanism for RNA in translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:132-41. [PMID: 21956910 DOI: 10.1002/wrna.17] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eukaryotic cells have evolved multiple quality control mechanisms that recognize and eliminate defective mRNA during the process of translation. One mechanism, referred to as No-go decay (NGD), targets mRNAs with elongation stalls for degradation initiated by endonucleolytic cleavage in the vicinity of the stalled ribosome. NGD is promoted by the evolutionarily conserved Dom34 and Hbs1 proteins, which are related to the translation termination factors eRF1 and eRF3, respectively. NGD is likely to occur by Dom34/Hbs1 interacting with the A site in the ribosome leading to release of the peptide or peptidyl-tRNA. The process of NGD and/or the function of Dom34/Hbs1 appear to be important in several different biological contexts.
Collapse
Affiliation(s)
- Yuriko Harigaya
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106, USA
| | | |
Collapse
|
23
|
Wasif N, Tariq M, Ali G, Hassan MJ, Ahmad W. A novel splice site mutation in the EDAR gene underlies autosomal recessive hypohidrotic ectodermal dysplasia in a Pakistani family. Pediatr Dermatol 2010; 27:106-8. [PMID: 20199431 DOI: 10.1111/j.1525-1470.2009.01062.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypohidrotic ectodermal dysplasia is a rare congenital disorder that results in abnormalities in the structures of ectodermal origin: hair, teeth, and eccrine sweat glands. DNA sequence analysis of EDAR gene in a Pakistani family, demonstrating autosomal recessive form of hypohidrotic ectodermal dysplasia, identified a novel homozygous mutation affecting splice donor site of exon 5 [IVS5+1G > or = C] of the gene.
Collapse
Affiliation(s)
- Naveed Wasif
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Dang Y, Low WK, Xu J, Gehring NH, Dietz HC, Romo D, Liu JO. Inhibition of nonsense-mediated mRNA decay by the natural product pateamine A through eukaryotic initiation factor 4AIII. J Biol Chem 2009; 284:23613-21. [PMID: 19570977 DOI: 10.1074/jbc.m109.009985] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) in mammalian cells is a key mechanism for the removal of mRNA containing premature stop codons and is mediated by the coordinated function of numerous proteins that dynamically associate with the exon junction complex. The information communicated by these interactions and the functional consequences from a mechanistic perspective, however, are not completely documented. Herein, we report that the natural product pateamine A (PatA) is capable of inhibiting NMD through direct interaction with eIF4AIII, which is independent of its inhibition of translation initiation. Furthermore, we have characterized the mechanisms by which PatA and cycloheximide modulate NMD. Unlike CHX, PatA was found to inhibit NMD by a novel mechanism that is independent of the phosphorylation of Up-frameshift protein 1.
Collapse
Affiliation(s)
- Yongjun Dang
- Department of Pharmacology, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Gehring NH, Lamprinaki S, Hentze MW, Kulozik AE. The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay. PLoS Biol 2009; 7:e1000120. [PMID: 19478851 PMCID: PMC2682485 DOI: 10.1371/journal.pbio.1000120] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 04/17/2009] [Indexed: 11/19/2022] Open
Abstract
Protein complexes deposited on messenger RNAs during their maturation are able to recruit components of a cellular RNA surveillance pathway, thereby linking RNA maturation to subsequent steps in RNA quality control. Exon junction complexes (EJCs) link nuclear splicing to key features of mRNA function including mRNA stability, translation, and localization. We analyzed the formation of EJCs by the spliceosome, the physiological EJC assembly machinery. We studied a comprehensive set of eIF4A3, MAGOH, and BTZ mutants in complete or C-complex–arrested splicing reactions and identified essential interactions of EJC proteins during and after EJC assembly. These data establish that EJC deposition proceeds through a defined intermediate, the pre-EJC, as an ordered, sequential process that is coordinated by splicing. The pre-EJC consists of eIF4A3 and MAGOH-Y14, is formed before exon ligation, and provides a binding platform for peripheral EJC components that join after release from the spliceosome and connect the core structure with function. Specifically, we identified BTZ to bridge the EJC to the nonsense-mediated messenger RNA (mRNA) decay protein UPF1, uncovering a critical link between mRNP architecture and mRNA stability. Based on this systematic analysis of EJC assembly by the spliceosome, we propose a model of how a functional EJC is assembled in a strictly sequential and hierarchical fashion, including nuclear splicing-dependent and cytoplasmic steps. The first step in the expression of eukaryotic protein-coding genes is transcription into a messenger RNA (mRNA) precursor in the nucleus. These precursor mRNAs then undergo maturation through the removal of introns in a process termed splicing. During splicing, the splicing machinery or “spliceosome” deposits a complex of proteins onto the mRNA that accompanies it during post-transcriptional steps in gene expression, including the regulation of mRNA stability, transport out of the nucleus, cellular localisation, and translation. This complex, the exon junction complex (EJC), represents a molecular memory of the splicing process. Understanding the biogenesis of EJCs and their downstream effects helps reveal the basic principles by which the primary steps of mRNA synthesis are coupled to the regulation of gene expression. Here we show that EJCs are assembled in a strictly splicing-dependent manner through an unexpected, coordinated, and hierarchical assembly pathway. Importantly, we show that the EJC recruits the cytoplasmic protein BTZ, which then bridges the complex to an mRNA quality-control machinery called the nonsense-mediated decay pathway that degrades mRNAs containing premature stop codons. This finding suggests that the EJC and bridging by BTZ help determine the stability of mRNA and thus are essential for proper cellular surveillance of mRNA quality.
Collapse
Affiliation(s)
- Niels H. Gehring
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (NHG); (AEK)
| | - Styliani Lamprinaki
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Matthias W. Hentze
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andreas E. Kulozik
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (NHG); (AEK)
| |
Collapse
|
27
|
Panaro MA, Cianciulli A, Calvello R, Saccia M, Sisto M, Acquafredda A, Mitolo V. An analysis of the human chemokine CXC receptor 4 gene. Immunopharmacol Immunotoxicol 2009; 31:88-93. [PMID: 18798091 DOI: 10.1080/08923970802372863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this article we analyze some of the structural characteristics of the coding section and the intron of the human chemokine CXC receptor 4 (a 7-transmembrane receptor) pre-mRNA. In the coding sequence the frequencies of the individual nucleotides do not depart significantly from 0.25, while in the intron the frequencies of the As and Gs are significantly lower and higher, respectively, than expected from a random distribution. Analysis of the pattern of association of nucleotides into triplets or couples shows that some triplets or couples occur with frequencies significantly higher or lower than expected when assuming a random association of nucleotides. In particular, in the intron combinations of the same nucleotide are over-represented. 7-or-more nucleotide repeats occur in both the coding section and the intron with frequencies which exceed the confidence limits for a random distribution. For the coding sequence this is possibly explained by the alternans of relatively similar hydrophobic-coding sections and relatively similar intervening intracellular and extracellular hydrophilic-coding sections. 7-or-more nucleotide repeats in reverse order and in reverse/complemented order occur in the intron, but not in the coding section, with frequencies which significantly exceed a random distribution. The numerous intronic repeats in reverse/complemented order may be of relevance for the secondary structure of the intron and might be one important element of the integrated splicing code.
Collapse
Affiliation(s)
- Maria A Panaro
- Department of Human Anatomy and Histology, University of Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr Opin Cell Biol 2009; 21:394-402. [PMID: 19359157 DOI: 10.1016/j.ceb.2009.02.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 11/23/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway targets mRNAs with premature termination codons as well as a subset of normal mRNAs for rapid decay. Emerging evidence suggests that mRNAs become NMD substrates based on the composition of the mRNP downstream of the translation termination event, which either stimulates or antagonizes recruitment of the NMD machinery. The NMD mRNP subsequently undergoes several remodeling events, which involve hydrolysis of ATP by the NMD factor Upf1 and in metazoans, a phosphorylation/dephosphorylation cycle of Upf1 mediated by Smg proteins. This leads to mRNA decay following translational repression. Recent evidence suggests that in Drosophila and human cells, decay is initiated by the endonuclease Smg6.
Collapse
|
29
|
Abstract
RNA studies, in recent years, have attracted much attention. These studies have broadened the understanding of the fundamental mechanisms of gene regulation. Molecular mechanisms are frequently conserved among eukaryotes. A system, or finding, in one organism can generally be extended to understanding the corresponding system in other eukaryotic organisms. Nonsense-mediated mRNA decay (NMD) components and pathways are conserved to an extent that depends on the particular eukaryotes being compared. Reports of NMD in a number of species, including higher plants, are gradually increasing so as to contribute to the elucidation of similarities and variations in the mechanisms of NMD among different species, the origin of NMD, and the evolution of NMD. It appears that the contexts of termination codons that are recognized as being "premature" can vary among different organisms. This chapter introduces and summarizes methods for the analysis of NMD-triggered mRNA degradation in plants in the hope that it will contribute to the detailed understanding of NMD.
Collapse
Affiliation(s)
- Koichi Hori
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
30
|
|
31
|
Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet 2009; 10:173-83. [PMID: 19204719 DOI: 10.1038/nrg2520] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue-specific extracellular matrices (ECMs) are crucial for normal development and tissue function, and mutations in ECM genes result in a wide range of serious inherited connective tissue disorders. Mutations cause ECM dysfunction by combinations of two mechanisms. First, secretion of the mutated ECM components can be reduced by mutations affecting synthesis or by structural mutations causing cellular retention and/or degradation. Second, secretion of mutant protein can disturb crucial ECM interactions, structure and stability. Moreover, recent experiments suggest that endoplasmic reticulum (ER) stress, caused by mutant misfolded ECM proteins, contributes to the molecular pathology. Targeting ER stress might offer a new therapeutic strategy.
Collapse
|
32
|
Mishra PC, Kumar A, Sharma A. Analysis of small nucleolar RNAs reveals unique genetic features in malaria parasites. BMC Genomics 2009; 10:68. [PMID: 19200392 PMCID: PMC2656528 DOI: 10.1186/1471-2164-10-68] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 02/07/2009] [Indexed: 01/07/2023] Open
Abstract
Background Ribosome biogenesis is an energy consuming and stringently controlled process that involves hundreds of trans-acting factors. Small nucleolar RNAs (snoRNAs), important components of ribosome biogenesis are non-coding guide RNAs involved in rRNA processing, nucleotide modifications like 2'-O-ribose methylation, pseudouridylation and possibly gene regulation. snoRNAs are ubiquitous and are diverse in their genomic organization, mechanism of transcription and process of maturation. In vertebrates, most snoRNAs are present in introns of protein coding genes and are processed by exonucleolytic cleavage, while in plants they are transcribed as polycistronic transcripts. Results This is a comprehensive analysis of malaria parasite snoRNA genes and proteins that have a role in ribosomal biogenesis. Computational and experimental approaches have been used to identify several box C/D snoRNAs from different species of Plasmodium and confirm their expression. Our analyses reveal that the gene for endoribonuclease Rnt1 is absent from Plasmodium falciparum genome, which indicates the existence of alternative pre-rRNA processing pathways. The structural features of box C/D snoRNAs are highly conserved in Plasmodium genus; however, unlike other organisms most parasite snoRNAs are present in single copy. The genomic localization of parasite snoRNAs shows mixed patterns of those observed in plants, yeast and vertebrates. We have localized parasite snoRNAs in untranslated regions (UTR) of mRNAs, and this is an unprecedented and novel genetic feature. Akin to mammalian snoRNAs, those in Plasmodium may also behave as mobile genetic elements. Conclusion This study provides a comprehensive overview on trans-acting genes involved in ribosome biogenesis and also a genetic insight into malaria parasite snoRNA genes.
Collapse
Affiliation(s)
- Prakash Chandra Mishra
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Road, New Delhi, 110067, India.
| | | | | |
Collapse
|
33
|
Bloethner S, Mould A, Stark M, Hayward NK. Identification of ARHGEF17, DENND2D, FGFR3, and RB1 mutations in melanoma by inhibition of nonsense-mediated mRNA decay. Genes Chromosomes Cancer 2008; 47:1076-85. [PMID: 18677770 DOI: 10.1002/gcc.20598] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene identification by nonsense-mediated mRNA decay inhibition (GINI) has proven to be a strategy for genome-wide discovery of genes containing inactivating mutations in colon and prostate cancers. Here, we present the first study of inhibition of the nonsense-mediated mRNA decay (NMD) pathway in melanoma. We used a combination of emetine and actinomycin D treatment to stabilize mRNAs containing premature termination codons (PTCs), followed by microarray analysis and sequencing to identify novel tumor suppressor genes (TSGs) in a panel of 12 melanoma cell lines. Stringent analysis of the array data was used to select 35 candidate genes for sequencing. Of these, 4 (11%) were found to carry PTCs, including ARHGEF17, DENND2D, FGFR3, and RB1. While RB1 mutations have previously been described in melanoma, the other three genes represent potentially novel melanoma; TSGs. ARHGEF17 showed a G1865A mutation leading to W622X in a cell line derived from a mucosal melanoma; in RB1 a C1411T base change resulting in Q471X was discovered in a cell line derived from an acral melanoma; and the FGFR3 and DENND2D genes had intronic insertions leading to PTCs in cell lines derived from superficially spreading melanomas. We conclude that although the false positive rate is high, most likely due to the lack of DNA mismatch repair gene defects, the GINI protocol is one approach to discover novel TSGs in melanoma.
Collapse
Affiliation(s)
- Sandra Bloethner
- Queensland Institute of Medical Research, 300 Herston Rd, Herston, QLD 4029, Australia
| | | | | | | |
Collapse
|
34
|
Mégarbané H, Cluzeau C, Bodemer C, Fraïtag S, Chababi-Atallah M, Mégarbané A, Smahi A. Unusual presentation of a severe autosomal recessive anhydrotic ectodermal dysplasia with a novel mutation in the EDAR gene. Am J Med Genet A 2008; 146A:2657-62. [PMID: 18816645 DOI: 10.1002/ajmg.a.32509] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report on an 18-year-old woman, born to first-cousin parents, presenting with a severe form of anhydrotic ectodermal dysplasia (EDA/HED). She had sparse hair, absent limb hair, absent sweating, episodes of hyperpyrexia, important hypodontia, and hyperconvex nails. She also showed unusual clinical manifestations such as an absence of breasts, a rudimentary extranumerary areola and nipple on the left side, and marked palmo-plantar hyperkeratosis. Light microscopy of skin biopsies showed orthokeratotic hyperkeratosis and absence of sweat glands. A novel homozygous mutation (IVS9 + 1G > A) in the EDAR gene was identified. This mutation results in a total absence of EDAR transcripts and consequently of the EDAR protein, which likely results in abolition of all ectodysplasin-mediated NF-kappaB signaling. This is the first complete loss-of-function mutation in the EDAR gene reported to date, which may explain the unusual presentation of HED in this patient, enlarging the clinical spectrum linked to the dysfunction of the ectodysplasin mediated NF-kappaB signaling.
Collapse
Affiliation(s)
- Hala Mégarbané
- Unité de Génétique Médicale, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | | | | | | | | | | | | |
Collapse
|
35
|
Ratinier M, Boulant S, Combet C, Targett-Adams P, McLauchlan J, Lavergne JP. Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1. J Gen Virol 2008; 89:1569-1578. [PMID: 18559926 DOI: 10.1099/vir.0.83614-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the first report of frameshifting in HCV-1, its sequence has been the paradigm for examining the mechanism that directs alternative translation of the hepatitis C virus (HCV) genome. The region encoding the core protein from this strain contains a cluster of 10 adenines at codons 8-11, which is thought to direct programmed ribosomal frameshifting (PRF), but formal evidence for this process has not been established unequivocally. To identify the mechanisms of frameshifting, this study used a bicistronic dual luciferase reporter system in a coupled transcription/translation in vitro assay. This approach revealed +1 as well as -1 frameshifting, whereas point mutations, selectively introduced between codons 8 and 11, demonstrated that PRF did not readily account for frameshifting in strain HCV-1. Sequence analysis of cDNAs derived from RNA transcribed by T7 RNA polymerase in the dual luciferase reporter system, as well as in both a subgenomic replicon and an infectious clone derived from strain JFH1, identified additions and deletions of adenines between codons 8 and 11 due to transcriptional slippage (TS). Moreover, RNA isolated from cells infected with virus generated by JFH1 containing the A-rich tract also contained heterogeneity in the adenine sequence, strongly suggesting TS by the NS5B viral polymerase. These findings have important implications for insight into frameshifting events in HCV-1 and demonstrate for the first time the involvement of transcriptional slippage in this recoding event.
Collapse
Affiliation(s)
- Maxime Ratinier
- IBCP (Institut de Biologie et Chimie des Protéines), CNRS, UMR 5086, Université de Lyon, IFR 128, 7 passage du Vercors, F-69367 Lyon, France
| | - Steeve Boulant
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Christophe Combet
- IBCP (Institut de Biologie et Chimie des Protéines), CNRS, UMR 5086, Université de Lyon, IFR 128, 7 passage du Vercors, F-69367 Lyon, France
| | - Paul Targett-Adams
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - John McLauchlan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Jean-Pierre Lavergne
- IBCP (Institut de Biologie et Chimie des Protéines), CNRS, UMR 5086, Université de Lyon, IFR 128, 7 passage du Vercors, F-69367 Lyon, France
| |
Collapse
|
36
|
Weischenfeldt J, Damgaard I, Bryder D, Theilgaard-Mönch K, Thoren LA, Nielsen FC, Jacobsen SEW, Nerlov C, Porse BT. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev 2008; 22:1381-96. [PMID: 18483223 DOI: 10.1101/gad.468808] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a post-transcriptional surveillance process that eliminates mRNAs containing premature termination codons (PTCs). NMD has been hypothesized to impact on several aspects of cellular function; however, its importance in the context of a mammalian organism has not been addressed in detail. Here we use mouse genetics to demonstrate that hematopoietic-specific deletion of Upf2, a core NMD factor, led to the rapid, complete, and lasting cell-autonomous extinction of all hematopoietic stem and progenitor populations. In contrast, more differentiated cells were only mildly affected in Upf2-null mice, suggesting that NMD is mainly essential for proliferating cells. Furthermore, we show that UPF2 loss resulted in the accumulation of nonproductive rearrangement by-products from the Tcrb locus and that this, as opposed to the general loss of NMD, was particularly detrimental to developing T-cells. At the molecular level, gene expression analysis showed that Upf2 deletion led to a profound skewing toward up-regulated mRNAs, highly enriched in transcripts derived from processed pseudogenes, and that NMD impacts on regulated alternative splicing events. Collectively, our data demonstrate a unique requirement of NMD for organismal survival.
Collapse
Affiliation(s)
- Joachim Weischenfeldt
- Section for Gene Therapy Research, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Waanders E, Lameris ALL, Op den Camp HJM, Pluk W, Gloerich J, Strijk SP, Drenth JPH. Hepatocystin Is Not Secreted in Cyst Fluid of Hepatocystin Mutant Polycystic Liver Patients. J Proteome Res 2008; 7:2490-5. [DOI: 10.1021/pr8000282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Esmé Waanders
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, Nijmegen Proteomics Facility, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, and Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500
| | - Anke L. L. Lameris
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, Nijmegen Proteomics Facility, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, and Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500
| | - Huub J. M. Op den Camp
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, Nijmegen Proteomics Facility, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, and Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500
| | - Wendy Pluk
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, Nijmegen Proteomics Facility, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, and Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500
| | - Jolein Gloerich
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, Nijmegen Proteomics Facility, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, and Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500
| | - Simon P. Strijk
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, Nijmegen Proteomics Facility, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, and Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, Nijmegen Proteomics Facility, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, and Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500
| |
Collapse
|
38
|
Menashe I, Abaffy T, Hasin Y, Goshen S, Yahalom V, Luetje CW, Lancet D. Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol 2008; 5:e284. [PMID: 17973576 PMCID: PMC2043052 DOI: 10.1371/journal.pbio.0050284] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 08/31/2007] [Indexed: 11/23/2022] Open
Abstract
The genetic basis of odorant-specific variations in human olfactory thresholds, and in particular of enhanced odorant sensitivity (hyperosmia), remains largely unknown. Olfactory receptor (OR) segregating pseudogenes, displaying both functional and nonfunctional alleles in humans, are excellent candidates to underlie these differences in olfactory sensitivity. To explore this hypothesis, we examined the association between olfactory detection threshold phenotypes of four odorants and segregating pseudogene genotypes of 43 ORs genome-wide. A strong association signal was observed between the single nucleotide polymorphism variants in OR11H7P and sensitivity to the odorant isovaleric acid. This association was largely due to the low frequency of homozygous pseudogenized genotype in individuals with specific hyperosmia to this odorant, implying a possible functional role of OR11H7P in isovaleric acid detection. This predicted receptor–ligand functional relationship was further verified using the Xenopus oocyte expression system, whereby the intact allele of OR11H7P exhibited a response to isovaleric acid. Notably, we also uncovered another mechanism affecting general olfactory acuity that manifested as a significant inter-odorant threshold concordance, resulting in an overrepresentation of individuals who were hyperosmic to several odorants. An involvement of polymorphisms in other downstream transduction genes is one possible explanation for this observation. Thus, human hyperosmia to isovaleric acid is a complex trait, contributed to by both receptor and other mechanisms in the olfactory signaling pathway. Humans can accurately discern thousands of odors, yet there is considerable inter-individual variation in the ability to detect different odors, with individuals exhibiting low sensitivity (hyposmia), high sensitivity (hyperosmia), or even “blindness” (anosmia) to particular odors. Such differences are thought to stem from genetic differences in olfactory receptor (OR) genes, which encode proteins that initiate olfactory signaling. OR segregating pseudogenes, which have both functional and inactive alleles in the population, are excellent candidates for producing this olfactory phenotype diversity. Here, we provide evidence that a particular segregating OR gene is related to sensitivity to a sweaty odorant, isovaleric acid. We show that hypersensitivity towards this odorant is seen predominantly in individuals who carry at least one copy of the intact allele. Furthermore, we demonstrate that this hyperosmia is a complex trait, being driven by additional factors affecting general olfactory acuity. Our results highlight a functional role of segregating pseudogenes in human olfactory variability, and constitute a step towards deciphering the genetic basis of human olfactory variability. Genetic epidemiology analysis reveals a multifaceted mechanism underlying enhanced olfactory sensitivity to the sweaty odor of isovaleric acid in humans.
Collapse
Affiliation(s)
- Idan Menashe
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Crown Human Genome Center, Weizmann Institute of Science, Rehovot, Israel
| | - Tatjana Abaffy
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Yehudit Hasin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Crown Human Genome Center, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Goshen
- Department of Otolaryngology, Meir Hospital, Kfar Saba, Israel
| | - Vered Yahalom
- National Blood Group Reference Laboratory, Magen David Adom National Blood Services Center, Ramat-Gan, Israel
| | - Charles W Luetje
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Crown Human Genome Center, Weizmann Institute of Science, Rehovot, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Neu-Yilik G, Kulozik AE. NMD: multitasking between mRNA surveillance and modulation of gene expression. ADVANCES IN GENETICS 2008; 62:185-243. [PMID: 19010255 DOI: 10.1016/s0065-2660(08)00604-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression is a highly specific and regulated multilayer process with a plethora of interconnections as well as safeguard and feedback mechanisms. Messenger RNA, long neglected as a mere subcarrier of genetic information, is more recently recognized as a linchpin of regulation and control of gene expression. Moreover, the awareness of not only proteins but also mRNA as a modulator of genetic disorders has vastly increased in recent years. Nonsense-mediated mRNA decay (NMD) is a posttranscriptional surveillance mechanism that uses an intricate network of nuclear and cytoplasmic processes to eliminate mRNAs, containing premature termination codons. It thus helps limit the synthesis of potentially harmful truncated proteins. However, recent results suggest functions of NMD that go far beyond this role and affect the expression of wild-type genes and the modulation of whole pathways. In both respects--the elimination of faulty transcripts and the regulation of error-free mRNAs--NMD has many medical implications. Therefore, it has earned increasing interest from researchers of all fields of the life sciences. In the following text, we (1) present current knowledge about the NMD mechanism and its targets, (2) define its relevance in the regulation of important biochemical pathways, (3) explore its medical significance and the prospects of therapeutic interventions, and (4) discuss additional functions of NMD effectors, some of which may be networked to NMD. The main focus of this chapter lies on mammalian NMD and resorts to the features and factors of NMD in other organisms if these help to complete or illuminate the picture.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Andreas E Kulozik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Jones BN, Quang-Dang DU, Oku Y, Gross JD. A kinetic assay to monitor RNA decapping under single- turnover conditions. Methods Enzymol 2008; 448:23-40. [PMID: 19111169 DOI: 10.1016/s0076-6879(08)02602-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The stability of all RNA polymerase II transcripts depends on the 5'-terminal cap structure. Removal of the cap is a prerequisite for 5' to 3'-decay and is catalyzed by distinct cellular and viral decapping activities. Over the past decade, several decapping enzymes have been characterized through functional and structural studies. An emerging theme is that function is regulated by protein interactions; however, in vitro assays to dissect the effects on enzyme activity are unavailable. Here we present a kinetic assay to monitor decapping by the heterodimeric yeast Dcp1/Dcp2 complex. Kinetic constants related to RNA binding and the rate of the catalytic step can be determined with recombinant enzyme and cap-radiolabeled RNA substrate, allowing substrate specificity and the role of activating factors to be firmly established.
Collapse
Affiliation(s)
- Brittnee N Jones
- Program in Chemistry and Chemical Biology, University of California, San Francisco, California, USA
| | | | | | | |
Collapse
|
41
|
Blechingberg J, Lykke-Andersen S, Jensen TH, Jørgensen AL, Nielsen AL. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript. Nucleic Acids Res 2007; 35:7636-50. [PMID: 17981838 PMCID: PMC2190720 DOI: 10.1093/nar/gkm931] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The glial fibrillary acidic protein, GFAP, forms the intermediate cytoskeleton in cells of the glial lineage. Besides the common GFAPα transcript, the GFAPε and GFAPκ transcripts are generated by alternative mRNA 3′-end processing. Here we use a GFAP minigene to characterize molecular mechanisms participating in alternative GFAP expression. Usage of a polyadenylation signal within the alternatively spliced exon 7a is essential to generate the GFAPκ and GFAPκ transcripts. The GFAPκ mRNA is distinct from GFAPε mRNA given that it also includes intron 7a. Polyadenylation at the exon 7a site is stimulated by the upstream splice site. Moreover, exon 7a splice enhancer motifs supported both exon 7a splicing and polyadenylation. SR proteins increased the usage of the exon 7a polyadenylation signal but not the exon 7a splicing, whereas the polypyrimidine tract binding (PTB) protein enhanced both exon 7a polyadenylation and exon 7a splicing. Finally, increasing transcription by the VP16 trans-activator did not affect the frequency of use of the exon 7a polyadenylation signal whereas the exon 7a splicing frequency was decreased. Our data suggest a model with the selection of the exon 7a polyadenylation site being the essential and primary event for regulating GFAP alternative processing.
Collapse
Affiliation(s)
- Jenny Blechingberg
- Institute of Human Genetics, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
42
|
Isken O, Maquat LE. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 2007; 21:1833-56. [PMID: 17671086 DOI: 10.1101/gad.1566807] [Citation(s) in RCA: 433] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cells routinely make mistakes. Some mistakes are encoded by the genome and may manifest as inherited or acquired diseases. Other mistakes occur because metabolic processes can be intrinsically inefficient or inaccurate. Consequently, cells have developed mechanisms to minimize the damage that would result if mistakes went unchecked. Here, we provide an overview of three quality control mechanisms--nonsense-mediated mRNA decay, nonstop mRNA decay, and no-go mRNA decay. Each surveys mRNAs during translation and degrades those mRNAs that direct aberrant protein synthesis. Along with other types of quality control that occur during the complex processes of mRNA biogenesis, these mRNA surveillance mechanisms help to ensure the integrity of protein-encoding gene expression.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
43
|
Baer CF, Miyamoto MM, Denver DR. Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 2007; 8:619-31. [PMID: 17637734 DOI: 10.1038/nrg2158] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A basic knowledge about mutation rates is central to our understanding of a myriad of evolutionary phenomena, including the maintenance of sex and rates of molecular evolution. Although there is substantial evidence that mutation rates vary among taxa, relatively little is known about the factors that underlie this variation at an empirical level, particularly in multicellular eukaryotes. Here we integrate several disparate lines of theoretical and empirical inquiry into a unified framework to guide future studies that are aimed at understanding why and how mutation rates evolve in multicellular species.
Collapse
Affiliation(s)
- Charles F Baer
- Department of Zoology, University of Florida, Gainesville, Florida 32611, USA.
| | | | | |
Collapse
|
44
|
Tarpey PS, Raymond FL, Nguyen LS, Rodriguez J, Hackett A, Vandeleur L, Smith R, Shoubridge C, Edkins S, Stevens C, O'Meara S, Tofts C, Barthorpe S, Buck G, Cole J, Halliday K, Hills K, Jones D, Mironenko T, Perry J, Varian J, West S, Widaa S, Teague J, Dicks E, Butler A, Menzies A, Richardson D, Jenkinson A, Shepherd R, Raine K, Moon J, Luo Y, Parnau J, Bhat SS, Gardner A, Corbett M, Brooks D, Thomas P, Parkinson-Lawrence E, Porteous ME, Warner JP, Sanderson T, Pearson P, Simensen RJ, Skinner C, Hoganson G, Superneau D, Wooster R, Bobrow M, Turner G, Stevenson RE, Schwartz CE, Futreal PA, Srivastava AK, Stratton MR, Gécz J. Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat Genet 2007; 39:1127-33. [PMID: 17704778 PMCID: PMC2872770 DOI: 10.1038/ng2100] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 06/11/2007] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.
Collapse
Affiliation(s)
- Patrick S Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Reddy D M R S, Schorderet M, Feller U, Reinhardt D. A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:739-50. [PMID: 17573800 DOI: 10.1111/j.1365-313x.2007.03175.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The regulation of the arbuscular mycorrhizal (AM) symbiosis is largely under the control of a genetic programme of the plant host. This programme includes a common symbiosis signalling pathway that is shared with the root nodule symbiosis. Whereas this common pathway has been investigated in detail, little is known about the mycorrhiza-specific regulatory steps upstream and downstream of the common pathway. To get further insight in the regulation of the AM symbiosis, a transposon-mutagenized population of Petunia hybrida was screened for mutants with defects in AM development. Here, we describe a petunia mutant, penetration and arbuscule morphogenesis1 (pam1), which is characterized by a strong decrease in colonization by three different AM fungi. Penetrating hyphae are frequently aborted in epidermal cells. Occasionally the fungus can progress to the cortex, but fails to develop arbuscules. The resulting hyphal colonization of the cortex in mutant plants does not support symbiotic acquisition of phosphate and copper by the plant. Expression analysis of three petunia orthologues of the common SYM genes LjPOLLUX, LjSYMRK and MtDMI3 indicates that pam1 is not mutated in these genes. We conclude that the PAM1 gene may play a specific role in intracellular accommodation and morphogenesis of the fungal endosymbiont.
Collapse
Affiliation(s)
- Sekhara Reddy D M R
- Plant Biology, Department of Biology, University of Fribourg, Rte Albert Gockel 3, CH-1700, Fribourg, Switzerland
| | | | | | | |
Collapse
|
46
|
Johns L, Grimson A, Kuchma SL, Newman CL, Anderson P. Caenorhabditis elegans SMG-2 selectively marks mRNAs containing premature translation termination codons. Mol Cell Biol 2007; 27:5630-8. [PMID: 17562857 PMCID: PMC1952128 DOI: 10.1128/mcb.00410-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic mRNAs containing premature translation termination codons (PTCs) are rapidly degraded by a process termed "nonsense-mediated mRNA decay" (NMD). We examined protein-protein and protein-RNA interactions among Caenorhabditis elegans proteins required for NMD. SMG-2, SMG-3, and SMG-4 are orthologs of yeast (Saccharomyces cerevisiae) and mammalian Upf1, Upf2, and Upf3, respectively. A combination of immunoprecipitation and yeast two-hybrid experiments indicated that SMG-2 interacts with SMG-3, SMG-3 interacts with SMG-4, and SMG-2 interacts indirectly with SMG-4 via shared interactions with SMG-3. Such interactions are similar to those observed in yeast and mammalian cells. SMG-2-SMG-3-SMG-4 interactions require neither SMG-2 phosphorylation, which is abolished in smg-1 mutants, nor SMG-2 dephosphorylation, which is reduced or eliminated in smg-5 mutants. SMG-2 preferentially associates with PTC-containing mRNAs. We monitored the association of SMG-2, SMG-3, and SMG-4 with mRNAs of five endogenous genes whose mRNAs are alternatively spliced to either contain or not contain PTCs. SMG-2 associates with both PTC-free and PTC-containing mRNPs, but it strongly and preferentially associates with ("marks") those containing PTCs. SMG-2 marking of PTC-mRNPs is enhanced by SMG-3 and SMG-4, but SMG-3 and SMG-4 are not detectably associated with the same mRNPs. Neither SMG-2 phosphorylation nor dephosphorylation is required for selective association of SMG-2 with PTC-containing mRNPs, indicating that SMG-2 is phosphorylated only after premature terminations have been discriminated from normal terminations. We discuss these observations with regard to the functions of SMG-2 and its phosphorylation during NMD.
Collapse
Affiliation(s)
- Lisa Johns
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
47
|
Kim YK, Furic L, Parisien M, Major F, DesGroseillers L, Maquat LE. Staufen1 regulates diverse classes of mammalian transcripts. EMBO J 2007; 26:2670-81. [PMID: 17510634 PMCID: PMC1888674 DOI: 10.1038/sj.emboj.7601712] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 04/05/2007] [Indexed: 11/10/2022] Open
Abstract
It is currently unknown how extensively the double-stranded RNA-binding protein Staufen (Stau)1 is utilized by mammalian cells to regulate gene expression. To date, Stau1 binding to the 3'-untranslated region (3'-UTR) of ADP ribosylation factor (ARF)1 mRNA has been shown to target ARF1 mRNA for Stau1-mediated mRNA decay (SMD). ARF1 SMD depends on translation and recruitment of the nonsense-mediated mRNA decay factor Upf1 to the ARF1 3'-UTR by Stau1. Here, we demonstrate that Stau1 binds to a complex structure within the ARF1 3'-UTR. We also use microarrays to show that 1.1 and 1.0% of the 11 569 HeLa-cell transcripts that were analyzed are upregulated and downregulated, respectively, at least two-fold upon Stau1 depletion in three independently performed experiments. We localize the Stau1 binding site to the 3'-UTR of four mRNAs that we define as natural SMD targets. Additionally, we provide evidence that the efficiency of SMD increases during the differentiation of C2C12 myoblasts to myotubes. We propose that Stau1 influences the expression of a wide variety of physiologic transcripts and metabolic pathways.
Collapse
Affiliation(s)
- Yoon Ki Kim
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Luc Furic
- Département de Biochimie, Université de Montréal, succursale Centre Ville, Montréal, Québec, Canada
| | - Marc Parisien
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, succursale Centre Ville, Montréal, Québec, Canada
| | - François Major
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, succursale Centre Ville, Montréal, Québec, Canada
| | - Luc DesGroseillers
- Département de Biochimie, Université de Montréal, succursale Centre Ville, Montréal, Québec, Canada
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 712, Rochester, NY 14642, USA. Tel.: +1 585 273 5640; Fax: +1 585 271 2683; E-mail:
| |
Collapse
|
48
|
Akimitsu N, Tanaka J, Pelletier J. Translation of nonSTOP mRNA is repressed post-initiation in mammalian cells. EMBO J 2007; 26:2327-38. [PMID: 17446866 PMCID: PMC1864977 DOI: 10.1038/sj.emboj.7601679] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 03/15/2007] [Indexed: 11/08/2022] Open
Abstract
We investigated the fate of aberrant mRNAs lacking in-frame termination codons (called nonSTOP mRNA) in mammalian cells. We found that translation of nonSTOP mRNA was considerably repressed although a corresponding reduction of mRNA was not observed. The repression appears to be post-initiation since (i) repressed nonSTOP mRNAs were associated with polysomes, (ii) translation of IRES-initiated and uncapped nonSTOP mRNA were repressed, and (iii) protein production from nonSTOP mRNA associating with polysomes was significantly reduced when used to program an in vitro run-off translation assay. NonSTOP mRNAs distributed into lighter polysome fractions compared to control mRNAs encoding a stop codon, and a significant amount of heterogeneous polypeptides were produced during in vitro translation of nonSTOP RNAs, suggesting premature termination of ribosomes translating nonSTOP mRNA. Moreover, a run-off translation assay using hippuristanol and RNAse protection assays suggested the presence of a ribosome stalled at the 3' end of nonSTOP mRNAs. Taken together, these data indicate that ribosome stalling at the 3' end of nonSTOP mRNAs can block translation by preventing upstream translation events.
Collapse
Affiliation(s)
- Nobuyoshi Akimitsu
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba-shi, Ibaraki, Japan.
| | | | | |
Collapse
|
49
|
|
50
|
Shu X, Black GC, Rice JM, Hart-Holden N, Jones A, O'Grady A, Ramsden S, Wright AF. RPGRmutation analysis and disease: an update. Hum Mutat 2007; 28:322-8. [PMID: 17195164 DOI: 10.1002/humu.20461] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene are the most common single cause of retinitis pigmentosa, accounting for up to 15 to 20% of cases in Caucasians. A total of 240 different RPGR mutations have been reported, including 24 novel ones in this work, which are associated with X-linked retinitis pigmentosa (XLRP) (95%), cone, cone-rod dystrophy, or atrophic macular atrophy (3%), and syndromal retinal dystrophies with ciliary dyskinesia and hearing loss (2%). All disease-causing mutations occur in one or more RPGR isoforms containing the carboxyl-terminal exon open reading frame 15 (ORF15), which are widely expressed but show their highest expression in the connecting cilia of rod and cone photoreceptors. Of reported RPGR mutations, 55% occur in a glutamic acid-rich domain within exon ORF15, which accounts for only 31% of the protein. RPGR forms complexes with a variety of other proteins and appears to have a role in microtubular organization and transport between photoreceptor inner and outer segments.
Collapse
Affiliation(s)
- Xinhua Shu
- Medical Research Council Human Genetics Unit, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|