1
|
Dong K, Liu WC, Su Y, Lyu Y, Huang H, Zheng N, Rogers JA, Nan K. Scalable Electrophysiology of Millimeter-Scale Animals with Electrode Devices. BME FRONTIERS 2023; 4:0034. [PMID: 38435343 PMCID: PMC10907027 DOI: 10.34133/bmef.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/08/2023] [Indexed: 03/05/2024] Open
Abstract
Millimeter-scale animals such as Caenorhabditis elegans, Drosophila larvae, zebrafish, and bees serve as powerful model organisms in the fields of neurobiology and neuroethology. Various methods exist for recording large-scale electrophysiological signals from these animals. Existing approaches often lack, however, real-time, uninterrupted investigations due to their rigid constructs, geometric constraints, and mechanical mismatch in integration with soft organisms. The recent research establishes the foundations for 3-dimensional flexible bioelectronic interfaces that incorporate microfabricated components and nanoelectronic function with adjustable mechanical properties and multidimensional variability, offering unique capabilities for chronic, stable interrogation and stimulation of millimeter-scale animals and miniature tissue constructs. This review summarizes the most advanced technologies for electrophysiological studies, based on methods of 3-dimensional flexible bioelectronics. A concluding section addresses the challenges of these devices in achieving freestanding, robust, and multifunctional biointerfaces.
Collapse
Affiliation(s)
- Kairu Dong
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering & Instrument Science,
Zhejiang University, Hangzhou, 310027, China
| | - Wen-Che Liu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
| | - Yuyan Su
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA 02115, USA
| | - Yidan Lyu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
| | - Hao Huang
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies,
Zhejiang University, Hangzhou 310027, China
- College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China
- State Key Lab of Brain-Machine Intelligence,
Zhejiang University, Hangzhou 310058, China
- CCAI by MOE and Zhejiang Provincial Government (ZJU), Hangzhou 310027, China
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics,
Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL 60208, USA
| | - Kewang Nan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
3
|
Wurm Y, Uva P, Ricci F, Wang J, Jemielity S, Iseli C, Falquet L, Keller L. Fourmidable: a database for ant genomics. BMC Genomics 2009; 10:5. [PMID: 19126223 PMCID: PMC2639375 DOI: 10.1186/1471-2164-10-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fourmidable is an infrastructure to curate and share the emerging genetic, molecular, and functional genomic data and protocols for ants. DESCRIPTION The Fourmidable assembly pipeline groups nucleotide sequences into clusters before independently assembling each cluster. Subsequently, assembled sequences are annotated via Interproscan and BLAST against general and insect-specific databases. Gene-specific information can be retrieved using gene identifiers, searching for similar sequences or browsing through inferred Gene Ontology annotations. The database will readily scale as ultra-high throughput sequence data and sequences from additional species become available. CONCLUSION Fourmidable currently houses EST data from two ant species and microarray gene expression data for one of these. Fourmidable is publicly available at http://fourmidable.unil.ch.
Collapse
Affiliation(s)
- Yannick Wurm
- Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Paolo Uva
- Istituto di Ricerche di Biologia Molecolare, Merck Research Laboratories, 00040 Pomezia, Rome, Italy
| | - Frédéric Ricci
- Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - John Wang
- Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Stephanie Jemielity
- Institut for Infectious Diseases, University of Bern, CH-3010 Bern, Switzerland
| | - Christian Iseli
- Ludwig Institute for Cancer Research, CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Laurent Falquet
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Yanay C, Morpurgo N, Linial M. Evolution of insect proteomes: insights into synapse organization and synaptic vesicle life cycle. Genome Biol 2008; 9:R27. [PMID: 18257909 PMCID: PMC2374702 DOI: 10.1186/gb-2008-9-2-r27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/06/2007] [Accepted: 02/07/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The molecular components in synapses that are essential to the life cycle of synaptic vesicles are well characterized. Nonetheless, many aspects of synaptic processes, in particular how they relate to complex behaviour, remain elusive. The genomes of flies, mosquitoes, the honeybee and the beetle are now fully sequenced and span an evolutionary breadth of about 350 million years; this provides a unique opportunity to conduct a comparative genomics study of the synapse. RESULTS We compiled a list of 120 gene prototypes that comprise the core of presynaptic structures in insects. Insects lack several scaffolding proteins in the active zone, such as bassoon and piccollo, and the most abundant protein in the mammalian synaptic vesicle, namely synaptophysin. The pattern of evolution of synaptic protein complexes is analyzed. According to this analysis, the components of presynaptic complexes as well as proteins that take part in organelle biogenesis are tightly coordinated. Most synaptic proteins are involved in rich protein interaction networks. Overall, the number of interacting proteins and the degrees of sequence conservation between human and insects are closely correlated. Such a correlation holds for exocytotic but not for endocytotic proteins. CONCLUSION This comparative study of human with insects sheds light on the composition and assembly of protein complexes in the synapse. Specifically, the nature of the protein interaction graphs differentiate exocytotic from endocytotic proteins and suggest unique evolutionary constraints for each set. General principles in the design of proteins of the presynaptic site can be inferred from a comparative study of human and insect genomes.
Collapse
Affiliation(s)
- Chava Yanay
- Department of Biological Chemistry, Institute of Life Sciences, Givat Ram Campus, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|