1
|
Keene-Snickers AH, Dunham TJ, Stenglein MD. Experimental assessment of 3D-printed traps and chemical attractants for the collection of wild Drosophila melanogaster. Fly (Austin) 2025; 19:2502184. [PMID: 40370000 PMCID: PMC12087654 DOI: 10.1080/19336934.2025.2502184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
Drosophila melanogaster, the common fruit fly, has been instrumental to our understanding of evolution, genetics and disease. There are benefits to studying these flies in the wild, including assessment of their naturally occurring microbiota. To facilitate efforts to catch wild D. melanogaster, we designed two fly traps and evaluated several candidate attractants. The first trap utilized a stable food substrate that can be used to catch live flies to establish new lab colonies. The second trap was designed to be reusable and easy to ship to enable the collection of flies over time from diverse locations. We evaluated several chemical attractants derived from banana and from marula fruit, which is the proposed ancestral food host of D. melanogaster. We found that wild flies were preferentially attracted to banana-based odorants over marula-derived ones. Overall, these traps and attractants represent an inexpensive and simple option for the collection of wild D. melanogaster and related species for sampling or colony establishment.
Collapse
Affiliation(s)
- Alexandra H. Keene-Snickers
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Quantitative Cell and Molecular Biology Graduate Program, Colorado State University, Fot Collins, CO, USA
| | - Tillie J. Dunham
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mark D. Stenglein
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Duménil C, Spitaler U, Rehermann G, Bianchi F, Favaro R, Castellan I, Schmidt S, Eisenstecken D, Becher PG, Angeli S. Yeast-based attract-and-kill strategies for Drosophila suzukii management without disrupting honey bee activity. PLoS One 2025; 20:e0323653. [PMID: 40388535 PMCID: PMC12088520 DOI: 10.1371/journal.pone.0323653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/12/2025] [Indexed: 05/21/2025] Open
Abstract
Attract-and-kill strategies are effective, sustainable pest control methods. Formulations combining the insecticide spinosad, at a lower dose than conventional methods, with the Drosophila-associated yeast Hanseniaspora uvarum have shown promising results. Recently, Saccharomycopsis vini was identified as the most attractive yeast for ovipositing females. In this study, the potential of S. vini for use in attract-and-kill formulations against D. suzukii was evaluated alongside H. uvarum. Behavioural assays demonstrated that D. suzukii preferred S. vini when both yeasts are simultaneously present in a close range setting but was attracted to both in long range attraction assays. In efficacy assays, S. vini and H. uvarum were equally efficient at reducing oviposition and increasing mortality in formulation with spinosad. Offering yeast formulations at the foraging sites of trained honey bees did not stimulate more feeding when compared to sugar syrup. The characterisation of the organic volatile compounds released from the cultures demonstrated that S. vini and H. uvarum were composed of overlapping as well as distinct chemicals. The antennally active compounds ethyl acetate and ethyl propanoate were abundant in the more attractive S. vini and H. uvarum, while the compounds 3-methyl-1-butanol and 2-methylthiolan-3-one were more abundant in the less attractive S. cerevisiae. These chemicals may be further studied as possible attractants or repellents for D. suzukii. We propose S. vini as a new yeast with potential for use in integrated pest management, with a distinctive volatile profile while maintaining a similar efficacy compared to H. uvarum against D. suzukii. Neither H. uvarum nor S. vini stimulated honey bee foraging behaviour, suggesting that both yeast-based attract-and-kill formulations pose a low non-target risk to honey bees.
Collapse
Affiliation(s)
- Claire Duménil
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Urban Spitaler
- Institute for Plant Health, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Irene Castellan
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| | - Silvia Schmidt
- Institute for Plant Health, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6, Auer-Ora, Italy
| | - Paul G. Becher
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, Italy
| |
Collapse
|
3
|
Edwards S, Naundrup A, Becher PG, De Fine Licht HH. Patterns of genotype-specific interactions in an obligate host-specific insect pathogenic fungus. J Evol Biol 2025; 38:225-239. [PMID: 39671697 DOI: 10.1093/jeb/voae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Host-pathogen infections and possible effects on co-evolutionary patterns depend on the genotypes of both host and pathogen. Obligate fungal pathogens of plants are often characterized by host-pathogen genotype-by-genotype (GxG) interactions, but whether these patterns exist in obligate insect fungal pathogens is unclear. We take advantage of the obligate insect pathogenic fungus Entomophthora muscae, where individual isolates are specific to different dipteran host species in nature but can cross-infect multiple fly species in the laboratory. We collected three new isolates of E. muscae from Drosophila species. Phylogenetic analysis showed that Drosophila-isolated E. muscae represents a distinct geographically widespread Drosophila lineage compared to the house fly (Musca domestica) or Delia species-isolated E. muscae. We used the three new E. muscae isolates from Drosophila spp. together with a genetically distinct E. muscae isolate from house flies and assessed their virulence in a cross-infection experiment using one house fly, three Drosophila suzukii, and two D. melanogaster genotypes as hosts. All fungal isolates successfully infected hosts, induced behavioural manipulation, sporulated in all fly hosts, and differed in virulence between host genotypes, revealing GxG interactions. While house flies were most susceptible to fungal infection with 99% mortality, we found a lower virulence of 49% and 25% mortality in D. melanogaster and D. suzukii genotypes, respectively. Furthermore, all isolates harboured a specific mycovirus (family Iflaviridae), but co-phylogenetic branching patterns did not support fungus-virus co-speciation. We show that the genetic makeup of both fungal pathogen and fly host influence E. muscae infectivity, confirming GxG interactions in obligate fly fungal pathogens.
Collapse
Affiliation(s)
- Sam Edwards
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C. 1871, Denmark
- Department of Biosciences, Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Andreas Naundrup
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C. 1871, Denmark
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, Alnarp 23053, Sweden
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C. 1871, Denmark
| |
Collapse
|
4
|
Keene-Snickers AH, Dunham TJ, Stenglein MD. Experimental assessment of 3D-printed traps and chemical attractants for the collection of wild Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635319. [PMID: 39974904 PMCID: PMC11838337 DOI: 10.1101/2025.01.28.635319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Drosophila melanogaster, the common fruit fly, has been instrumental to our understanding of evolution, genetics and disease. There are benefits to studying these flies in the wild, including assessment of their naturally occurring microbiota. To facilitate efforts to catch wild D. melanogaster, we designed two fly traps and evaluated several candidate attractants. The first trap utilized a stable food substrate that can be used to catch live flies to establish new lab colonies. The second trap was designed to be reusable and easy to ship to enable the collection of flies over time from diverse locations. We evaluated several chemical attractants derived from banana and from marula fruit, which is the proposed ancestral food host of D. melanogaster. We found that wild flies were preferentially attracted to banana-based odorants over marula-derived ones. Overall, these traps and attractants represent an inexpensive and simple option for the collection of wild D. melanogaster and related species for sampling or colony establishment.
Collapse
Affiliation(s)
- Alexandra H. Keene-Snickers
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Quantitative Cell and Molecular Biology Graduate Program
| | - Tillie J. Dunham
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mark D. Stenglein
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Godesberg V, Bockemühl T, Büschges A. Natural variability and individuality of walking behavior in Drosophila. J Exp Biol 2024; 227:jeb247878. [PMID: 39422060 DOI: 10.1242/jeb.247878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Insects use walking behavior in a large number of contexts, such as exploration, foraging, escape and pursuit, or migration. A lot is known about how nervous systems produce this behavior in general and also how certain parameters vary with regard to walking direction or speed, for instance. An aspect that has not received much attention is whether and how walking behavior varies across individuals of a particular species. To address this, we created a large corpus of kinematic walking data of many individuals of the fruit fly Drosophila. We only selected instances of straight walking in a narrow range of walking speeds to minimize the influence of high-level parameters, such as turning and walking speed, aiming to uncover more subtle aspects of variability. Using high-speed videography and automated annotation, we captured the positions of the six leg tips for thousands of steps and used principal components analysis to characterize the postural space individuals used during walking. Our analysis shows that the largest part of walking kinematics can be described by five principal components (PCs). Separation of these five PCs into a 2D and a 3D subspace divided the description of walking behavior into invariant features shared across individuals and features that relate to the specifics of individuals; the latter features can be regarded as idiosyncrasies. We also demonstrate that this approach can detect the effects of experimental interventions in an unbiased manner and that general aspects of individuality, such as the individual walking posture, can be described.
Collapse
Affiliation(s)
- Vincent Godesberg
- Department of Animal Physiology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Till Bockemühl
- Department of Animal Physiology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
6
|
Castellan I, Duménil C, Rehermann G, Eisenstecken D, Bianchi F, Robatscher P, Spitaler U, Favaro R, Schmidt S, Becher PG, Angeli S. Chemical and Electrophysiological Characterisation of Headspace Volatiles from Yeasts Attractive to Drosophila suzukii. J Chem Ecol 2024; 50:830-846. [PMID: 38691267 PMCID: PMC11543737 DOI: 10.1007/s10886-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Chemical control of Drosophila suzukii (Diptera: Drosophilidae) based on the use of insecticides is particularly challenging as the insect attacks ripening fruits shortly before harvest. An alternative strategy may rely on the use of yeasts as phagostimulants and baits, applied on canopy as attract-and-kill formulations. The aim of this research was to identify the most attractive among six yeast species for D. suzukii: Saccharomyces cerevisiae, Hanseniaspora uvarum, Clavispora santaluciae, Saccharomycopsis vini, Issatchenkia terricola, and Metschnikowia pulcherrima. The volatile profile of C. santaluciae was described for the first time. Behavioural experiments identified H. uvarum and S. vini as the most attractive yeasts. The characterization of yeast headspace volatiles using direct headspace (DHS) and solid-phase microextraction (SPME) revealed several strain-specific compounds. With DHS injection, 19 volatiles were characterised, while SPME revealed 71 compounds constituting the yeast headspace. Both analyses revealed terpenoids including β-ocimene, citronellol, (Z)-geraniol (nerol), and geranial as distinct constituents of S. vini. H. uvarum and S. vini were further investigated using closed-loop stripping analysis (CSLA) and electroantennography. Out of 14 compounds quantified by CSLA, ethyl acetate, isoamyl acetate, β-myrcene, benzaldehyde and linalool were detected by D. suzukii antennae and might generate the strong attractiveness of S. vini and H. uvarum. Our results highlight a strong attraction of D. suzukii to various yeasts associated with both the flies and their habitat and demonstrate how different sampling methods can impact the results of volatile compound characterization. It remains to be demonstrated whether the distinct attraction is based on special adaptations to certain yeasts and to what extent the metabolites causing attraction are interchangeable.
Collapse
Affiliation(s)
- Irene Castellan
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Claire Duménil
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Paul G Becher
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
7
|
Ali MZ, Anushree, Ahsan A, Ola MS, Haque R, Ahsan J. Ionotropic receptors mediate olfactory learning and memory in Drosophila. INSECT SCIENCE 2024; 31:1249-1269. [PMID: 38114448 DOI: 10.1111/1744-7917.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
Phenylacetaldehyde (PAH), an aromatic compound, is present in a diverse range of fruits including overripe bananas and prickly pear cactus, the two major host fruits for Drosophila melanogaster. PAH acts as a potent ligand for the ionotropic receptor 84a (IR84a) in the adult fruit fly and it is detected by the IR84a/IR8a heterotetrameric complex. Its role in the male courtship behavior through IR84a as an environmental aphrodisiac is of additional importance. In D. melanogaster, two distinct kinds of olfactory receptors, that is, odorant receptors (ORs) and ionotropic receptors (IRs), perceive the odorant stimuli. They display unique structural, molecular, and functional characteristics in addition to having different evolutionary origins. Traditionally, olfactory cues detected by the ORs such as ethyl acetate, 1-butanol, isoamyl acetate, 1-octanol, 4-methylcyclohexanol, etc. classified as aliphatic esters and alcohols have been employed in olfactory classical conditioning using fruit flies. This underlines the participation of OR-activated olfactory pathways in learning and memory formation. Our study elucidates that likewise ethyl acetate (EA) (an OR-responsive odorant), PAH (an IR-responsive aromatic compound) too can form learning and memory when associated with an appetitive gustatory reinforcer. The association of PAH with sucrose (PAH/SUC) led to learning and formation of the long-term memory (LTM). Additionally, the Orco1, Ir84aMI00501, and Ir8a1 mutant flies were used to confirm the exclusive participation of the IR84a/IR8a complex in PAH/SUC olfactory associative conditioning. These results highlight the involvement of IRs via an IR-activated pathway in facilitating robust olfactory behavior.
Collapse
Affiliation(s)
- Md Zeeshan Ali
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Anushree
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Jawaid Ahsan
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
8
|
Anushree, Ali MZ, Bilgrami AL, Ahsan J. Acute Exposure to Arsenic Affects Pupal Development and Neurological Functions in Drosophila melanogaster. TOXICS 2023; 11:327. [PMID: 37112554 PMCID: PMC10142172 DOI: 10.3390/toxics11040327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 10/04/2023]
Abstract
Millions of people in developing countries are affected by arsenic (As) toxicity and its prevalence. Arsenic's detrimental effects on humans have been amplified by an unacceptable level of exposure to food and drinking water, the ongoing rise in industrial usage, and several other occupational conditions. Due to increased cellular absorption and the ability to cross the blood-brain barrier (BBB), inorganic arsenic (iAs) is extremely hazardous to living organisms in its trivalent form. Arsenic toxicity damages an organism's tissues and organs, resulting in skin cancer, circulatory system abnormalities, and central nervous system disorders. However, a competent model system is required to investigate the acute effects of arsenic on the brain, cognition ability, and to assess any behavioral impairment. Hence, Drosophila, with its short generation time, genomic similarities with humans, and its availability for robust behavioral paradigms, may be considered an ideal model for studying arsenic toxicity. The present study helps to understand the toxic effects of acute arsenic treatment on the behavior, cognition, and development of Drosophila in a time-dependent manner. We found that the exposure of fruit flies to arsenic significantly affected their locomotor abilities, pupae size, cognitive functions, and neurobehavioral impairment. Hence, providing a better understanding of how arsenic toxicity affects the brain leading to acute behavioral disorders and neurological alterations, this study will lead to a better understanding of the mechanisms.
Collapse
Affiliation(s)
- Anushree
- Drosophila Behavior Laboratory, Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India
| | - Md Zeeshan Ali
- Drosophila Behavior Laboratory, Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India
| | - Anwar L. Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jawaid Ahsan
- Drosophila Behavior Laboratory, Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India
| |
Collapse
|
9
|
Biasazin TD, Herrera SL, Kimbokota F, Dekker T. Diverging olfactory sensitivities to yeast volatiles reflect resource partitioning of tephritids and drosophilids. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As pests of fruits and vegetables, ovipositing tephritid fruit flies are infamous for their frugivory. Yet, adult tephritids have remained saprophytic in their feeding behavior, as they require decomposing, protein rich media for sexual maturation and oogenesis. Drosophilid fruit flies, in contrast, are saprophytic both during oviposition and feeding. Here we compared the sensory and behavioral responses of two tephritid (Bactrocera dorsalis and Ceratitis capitata) and two drosophilid species (Drosophila melanogaster and Drosophila suzukii) to differentially aged cultures of the yeast Saccharomyces cerevisiae. We assessed convergence and divergence in the detection of and behavioral response to these attractive substrates, and how these might be linked to the roles of the substrates for the different taxa. The headspace shifted substantially as broth cultures transitioned from active (1-day) to inactive (8- and 15-days). Interestingly, Drosophila flies were significantly attracted to actively fermenting 1-day old yeast cultures, whereas the preference shifted to older cultures for the tephritids. Bactrocera dorsalis flies preferred inactive, lysing cultures (8- and 15-days old). We identified compounds from the 1- to 8-days old broth cultures that elicited antennal responses in each species. Synthetic blends composed of antennally active compounds evoked similar behavioral responses as broth cultures. Similarly, the attractiveness of less attractive broth cultures (1- and 8-days old for drosophilids and tephritids, respectively) could be augmented by adding volatiles of the more attractive cultures. The results show that the volatile profiles of fermenting substrates evolve quantitatively and qualitatively, and that fly species key into volatile blends that indicate suitability of the substrates for their purposes. For drosophilids early arrival at fermenting substrates confers a competitive advantage to offspring. In contrast, for tephritid the concentration and availability of protein is facilitated by older, lysed yeast cultures. The data from this comparative study are also instrumental in the development of novel lures for these pests.
Collapse
|
10
|
Malacrida S, De Lazzari F, Mrakic-Sposta S, Vezzoli A, Zordan MA, Bisaglia M, Menti GM, Meda N, Frighetto G, Bosco G, Dal Cappello T, Strapazzon G, Reggiani C, Gussoni M, Megighian A. Lifespan and ROS levels in different Drosophila melanogaster strains after 24 h hypoxia exposure. Biol Open 2022; 11:275522. [PMID: 35616023 PMCID: PMC9253781 DOI: 10.1242/bio.059386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
During recent decades, model organisms such as Drosophila melanogaster have made it possible to study the effects of different environmental oxygen conditions on lifespan and oxidative stress. However, many studies have often yielded controversial results usually assigned to variations in Drosophila genetic background and differences in study design. In this study, we compared longevity and ROS levels in young, unmated males of three laboratory wild-type lines (Canton-S, Oregon-R and Berlin-K) and one mutant line (Sod1n1) as a positive control of redox imbalance, under both normoxic and hypoxic (2% oxygen for 24 h) conditions. Lifespan was used to detect the effects of hypoxic treatment and differences were analysed by means of Kaplan–Meier survival curves and log-rank tests. Electron paramagnetic resonance spectroscopy was used to measure ROS levels and analysis of variance was used to estimate the effects of hypoxic treatment and to assess ROS differences between strains. We observed that the genetic background is a relevant factor involved in D. melanogaster longevity and ROS levels. Indeed, as expected, in normoxia Sod1n1 are the shortest-lived, while the wild-type strains, despite a longer lifespan, show some differences, with the Canton-S line displaying the lowest mortality rate. After hypoxic stress these variances are amplified, with Berlin-K flies showing the highest mortality rate and most evident reduction of lifespan. Moreover, our analysis highlighted differential effects of hypoxia on redox balance/unbalance. Canton-S flies had the lowest increase of ROS level compared to all the other strains, confirming it to be the less sensitive to hypoxic stress. Sod1n1 flies displayed the highest ROS levels in normoxia and after hypoxia. These results should be used to further standardize future Drosophila research models designed to investigate genes and pathways that may be involved in lifespan and/or ROS, as well as comparative studies on specific mutant strains. Summary: In our study Drosophila melanogaster was used to evaluate the effects of different environmental oxygen conditions on survival and ROS levels in three wild-type and one mutant strain.
Collapse
Affiliation(s)
- Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Federica De Lazzari
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.,Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Mauro A Zordan
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Marco Bisaglia
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Giulio Maria Menti
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | - Nicola Meda
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | - Giovanni Frighetto
- Department of Integrative Biology and Physiology, University of California, 610 Charles Young Drive East, Los Angeles, CA 90095-7239, USA
| | - Gerardo Bosco
- Department of Biomedical Science, University of Padova, Via Marzolo 3, 35121 Padova, Italy
| | - Tomas Dal Cappello
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, Via Marzolo 3, 35121 Padova, Italy
| | - Maristella Gussoni
- Institute of Chemical Sciences and Technologies "G. Natta"-SCITEC, National Research Council, CNR-SCITEC, Via A. Corti 12, 20133 Milan, Italy
| | - Aram Megighian
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| |
Collapse
|
11
|
Borrero-Echeverry F, Solum M, Trona F, Becher PG, Wallin EA, Bengtsson M, Witzgall P, Lebreton S. The female sex pheromone (Z)-4-undecenal mediates flight attraction and courtship in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104355. [PMID: 35007554 DOI: 10.1016/j.jinsphys.2022.104355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/24/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Specific mate communication and recognition underlies reproduction and hence speciation. Our study provides new insights in Drosophila melanogaster premating olfactory communication. Mate communication evolves during adaptation to ecological niches and makes use of social signals and habitat cues. Female-produced, species-specific volatile pheromone (Z)-4-undecenal (Z4-11Al) and male pheromone (Z)-11-octadecenyl acetate (cVA) interact with food odour in a sex-specific manner. Furthermore, Z4-11Al, which mediates upwind flight attraction in both sexes, also elicits courtship in experienced males. Two isoforms of the olfactory receptor Or69a are co-expressed in the same olfactory sensory neurons. Z4-11Al is perceived via Or69aB, while the food odorant (R)-linalool is a main ligand for the other variant, Or69aA. However, only Z4-11Al mediates courtship in experienced males, not (R)-linalool. Behavioural discrimination is reflected by calcium imaging of the antennal lobe, showing distinct glomerular activation patterns by these two compounds. Male sex pheromone cVA is known to affect male and female courtship at close range, but does not elicit upwind flight attraction as a single compound, in contrast to Z4-11Al. A blend of the food odour vinegar and cVA attracted females, while a blend of vinegar and female pheromone Z4-11Al attracted males, instead. Sex-specific upwind flight attraction to blends of food volatiles and male and female pheromone, respectively, adds a new element to Drosophila olfactory premating communication and is an unambiguous paradigm for identifying the behaviourally active components, towards a more complete concept of food-pheromone odour objects.
Collapse
Affiliation(s)
- Felipe Borrero-Echeverry
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden; Corporación Colombiana de Investgación Agropecuaria, Agrosavia, Mosquera, Colombia
| | - Marit Solum
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Federica Trona
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Paul G Becher
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Erika A Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | - Marie Bengtsson
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Peter Witzgall
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Sebastien Lebreton
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden; IRSEA, Research Institute for Semiochemistry and Applied Ethology, Quartier Salignan, 84400 Apt, France
| |
Collapse
|
12
|
Poivet E, Gallot A, Montagné N, Senin P, Monsempès C, Legeai F, Jacquin-Joly E. Transcriptome Profiling of Starvation in the Peripheral Chemosensory Organs of the Crop Pest Spodoptera littoralis Caterpillars. INSECTS 2021; 12:insects12070573. [PMID: 34201462 PMCID: PMC8303696 DOI: 10.3390/insects12070573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Starvation increases olfactory sensitivity in a manner that enhances the search for food in animals, including insects. However, the molecular mechanisms via which starvation modulates olfactory receptor neuron function are poorly understood. In this study, we sequenced and compared the whole transcriptomes of the main olfactory organs (antennae and palps) of fed and starved caterpillars from the species Spodoptera littoralis. We revealed that transcripts involved in several biological processes are regulated upon starvation. These processes include glucose metabolism, immune defense, foraging activity, and olfaction. In this last process, we evidenced regulation of chemosensory proteins and odorant-degrading enzymes, known to play a role in the dynamics and the sensitivity of the olfactory receptor neuron response. Our results identify new elements in the cascade of olfactory neuron modulation, in addition to insulin, GABA, and short neuropeptide F signaling. Abstract Starvation is frequently encountered by animals under fluctuating food conditions in nature, and response to it is vital for life span. Many studies have investigated the behavioral and physiological responses to starvation. In particular, starvation is known to induce changes in olfactory behaviors and olfactory sensitivity to food odorants, but the underlying mechanisms are not well understood. Here, we investigated the transcriptional changes induced by starvation in the chemosensory tissues of the caterpillar Spodoptera littoralis, using Illumina RNA sequencing. Gene expression profiling revealed 81 regulated transcripts associated with several biological processes, such as glucose metabolism, immune defense, response to stress, foraging activity, and olfaction. Focusing on the olfactory process, we observed changes in transcripts encoding proteins putatively involved in the peri-receptor events, namely, chemosensory proteins and odorant-degrading enzymes. Such modulation of their expression may drive fluctuations in the dynamics and the sensitivity of the olfactory receptor neuron response. In combination with the enhanced presynaptic activity mediated via the short neuropeptide F expressed during fasting periods, this could explain an enhanced olfactory detection process. Our observations suggest that a coordinated transcriptional response of peripheral chemosensory organs participates in the regulation of olfactory signal reception and olfactory-driven behaviors upon starvation.
Collapse
Affiliation(s)
- Erwan Poivet
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (E.P.); (A.G.); (N.M.); (C.M.)
| | - Aurore Gallot
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (E.P.); (A.G.); (N.M.); (C.M.)
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (E.P.); (A.G.); (N.M.); (C.M.)
| | - Pavel Senin
- IRISA, INRIA, CNRS, Université de Rennes, 35000 Rennes, France; (P.S.); (F.L.)
| | - Christelle Monsempès
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (E.P.); (A.G.); (N.M.); (C.M.)
| | - Fabrice Legeai
- IRISA, INRIA, CNRS, Université de Rennes, 35000 Rennes, France; (P.S.); (F.L.)
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35000 Rennes, France
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (E.P.); (A.G.); (N.M.); (C.M.)
- Correspondence:
| |
Collapse
|
13
|
Schwarz F, Wierzbicki F, Senti KA, Kofler R. Tirant Stealthily Invaded Natural Drosophila melanogaster Populations during the Last Century. Mol Biol Evol 2021; 38:1482-1497. [PMID: 33247725 PMCID: PMC8042734 DOI: 10.1093/molbev/msaa308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It was long thought that solely three different transposable elements (TEs)-the I-element, the P-element, and hobo-invaded natural Drosophila melanogaster populations within the last century. By sequencing the "living fossils" of Drosophila research, that is, D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbor degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, likely predating the split of D. melanogaster and D. simulans. These degraded insertions produce distinct piRNAs that were unable to prevent the novel Tirant invasion. In contrast to the I-element, P-element, and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs, and phenotypic effects, we provide a comprehensive study of a natural TE invasion.
Collapse
Affiliation(s)
- Florian Schwarz
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | | | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
14
|
Montoro M, De Fine Licht HH, Sigsgaard L. Nutritional quality of Drosophila melanogaster as factitious prey for rearing the predatory bug Orius majusculus. INSECT SCIENCE 2021; 28:191-202. [PMID: 31990127 DOI: 10.1111/1744-7917.12758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The predatory bug, Orius majusculus (Reuter), is an important predator of thrips commercially produced for augmentative releases using the eggs of the Mediterranean flour moth Ephestia kuehniella (Zeller). In this study, we assessed the potential for using frozen adults of fruit flies, Drosophila melanogaster (Meigen), either as nymphal rearing diet or as diet throughout the entire life-cycle. We compared life-history traits and reproduction of predators when fed D. melanogaster with high lipid body content (lipid-rich) and with high protein body content (protein-rich), using a diet of 100% E. kuehniella eggs as control. We also analyzed the biochemical composition of both prey and predator in order to assess the nutritional quality of each diet, which partially explained the adequacy of the different diets for O. majusculus. There were significant differences between predators fed the two types of D. melanogaster, with the protein-rich flies as diet providing the best results in terms of mortality and fecundity. Furthermore, we show that while feeding O. majusculus throughout their development with D. melanogaster increases mortality and reduces reproduction, protein-rich D. melanogaster can be used as nymphal diet with minimal reduction in reproductivity and minimal increase in mortality.
Collapse
Affiliation(s)
- Marta Montoro
- Department of Plant and Environmental Sciences, Section of Organismal Biology, University of Copenhagen, Frederiksberg C, Denmark
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, Section of Organismal Biology, University of Copenhagen, Frederiksberg C, Denmark
| | - Lene Sigsgaard
- Department of Plant and Environmental Sciences, Section of Organismal Biology, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
15
|
Behavioral and Transcriptional Response to Selection for Olfactory Behavior in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:1283-1296. [PMID: 32024668 PMCID: PMC7144070 DOI: 10.1534/g3.120.401117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The detection, discrimination, and behavioral responses to chemical cues in the environment can have marked effects on organismal survival and reproduction, eliciting attractive or aversive behavior. To gain insight into mechanisms mediating this hedonic valence, we applied thirty generations of divergent artificial selection for Drosophila melanogaster olfactory behavior. We independently selected for positive and negative behavioral responses to two ecologically relevant chemical compounds: 2,3-butanedione and cyclohexanone. We also tested the correlated responses to selection by testing behavioral responses to other odorants and life history traits. Measurements of behavioral responses of the selected lines and unselected controls to additional odorants showed that the mechanisms underlying responses to these odorants are, in some cases, differentially affected by selection regime and generalization of the response to other odorants was only detected in the 2,3-butanedione selection lines. Food consumption and lifespan varied with selection regime and, at times, sex. An analysis of gene expression of both selection regimes identified multiple differentially expressed genes. New genes and genes previously identified in mediating olfactory behavior were identified. In particular, we found functional enrichment of several gene ontology terms, including cell-cell adhesion and sulfur compound metabolic process, the latter including genes belonging to the glutathione S-transferase family. These findings highlight a potential role for glutathione S-transferases in the evolution of hedonic valence to ecologically relevant volatile compounds and set the stage for a detailed investigation into mechanisms by which these genes mediate attraction and aversion.
Collapse
|
16
|
False positives from impurities result in incorrect functional characterization of receptors in chemosensory studies. Prog Neurobiol 2019; 181:101661. [DOI: 10.1016/j.pneurobio.2019.101661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/24/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022]
|
17
|
Shaw KH, Johnson TK, Anderson A, de Bruyne M, Warr CG. Molecular and Functional Evolution at the Odorant Receptor Or22 Locus in Drosophila melanogaster. Mol Biol Evol 2019; 36:919-929. [PMID: 30768139 PMCID: PMC6502086 DOI: 10.1093/molbev/msz018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insect odorant receptor (Or) genes determine the responses of sensory neurons that mediate critical behaviors. The Drosophila melanogaster Or22 locus represents an interesting example of molecular evolution, with high levels of sequence divergence and copy number variation between D. melanogaster and other Drosophila species, and a corresponding high level of variability in the responses of the neuron it controls, ab3A. However, the link between Or22 molecular and functional diversity has not been established. Here, we show that several naturally occurring Or22 variants generate major shifts in neuronal response properties. We determine the molecular changes that underpin these response shifts, one of which represents a chimeric gene variant previously suggested to be under natural selection. In addition, we show that several alternative molecular genetic mechanisms have evolved for ensuring that where there is more than one gene copy at this locus, only one functional receptor is generated. Our data thus provide a causal link between the striking levels of phenotypic neuronal response variation found in natural populations of D. melanogaster and genetic variation at the Or22 locus. Since neuronal responses govern animal behavior, we predict that Or22 may be a key player in underlying one or more olfactory-driven behaviors of significant adaptive importance.
Collapse
Affiliation(s)
- Katherine H Shaw
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | | | - Marien de Bruyne
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Coral G Warr
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
18
|
Xu X, Cai X, Bian L, Luo Z, Li Z, Chen Z. Does Background Odor in Tea Gardens Mask Attractants? Screening and Application of Attractants for Empoasca onukii Matsuda. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2357-2363. [PMID: 29040654 DOI: 10.1093/jee/tox269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 06/07/2023]
Abstract
Plant volatiles help herbivores to locate their hosts, and therefore, they could be used to help develop pesticide-free pest management strategies. To develop an attractant for tea leafhopper (Empoasca onukii), we screened nine tea plant volatile compounds for their attractiveness using Y-tube olfactometer assays. Results indicated that tea leafhoppers significantly preferred ocimene, limonene, (Z)-3-hexenol, and (Z)-3-hexenyl acetate over clean air. These compounds were combined in a blend which lost its attractiveness at concentrations below 10-2 g/ml in liquid paraffin. In field tests, the blend was attractive to leafhoppers only in autumn, but not in summer. Analyses of the tea field background odor showed that all four components of the blend were present at much higher concentrations in summer (0.05-0.001 ng/liter) than in autumn (~10- to 25-fold lower). In field Y-tube bioassays, compared with the tea field background odor, the blend was attractive at a concentration of 10-1 g/ml in liquid paraffin, but not at 10-2 g/ml. These results suggest that field background odor can disrupt the attractiveness of an attractant based on plant volatiles to herbivores.
Collapse
Affiliation(s)
- Xiuxiu Xu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, China
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, China
| | - Xiaoming Cai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Lei Bian
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Zongxiu Luo
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Zhaoqun Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Zongmao Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
19
|
Steiner C, Bozzolan F, Montagné N, Maïbèche M, Chertemps T. Neofunctionalization of "Juvenile Hormone Esterase Duplication" in Drosophila as an odorant-degrading enzyme towards food odorants. Sci Rep 2017; 7:12629. [PMID: 28974761 PMCID: PMC5626784 DOI: 10.1038/s41598-017-13015-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/12/2017] [Indexed: 11/08/2022] Open
Abstract
Odorant degrading enzymes (ODEs) are thought to be responsible, at least in part, for olfactory signal termination in the chemosensory system by rapid degradation of odorants in the vicinity of the receptors. A carboxylesterase, specifically expressed in Drosophila antennae, called "juvenile hormone esterase duplication (JHEdup)" has been previously reported to hydrolyse different fruit esters in vitro. Here we functionally characterize JHEdup in vivo. We show that the jhedup gene is highly expressed in large basiconic sensilla that have been reported to detect several food esters. An electrophysiological analysis demonstrates that ab1A olfactory neurons of jhedup mutant flies exhibit an increased response to certain food acetates. Furthermore, mutant flies show a higher sensitivity towards the same odorants in behavioural assays. A phylogenetic analysis reveals that jhedup arose as a duplication of the juvenile hormone esterase gene during the evolution of Diptera, most likely in the ancestor of Schizophora, and has been conserved in all the 12 sequenced Drosophila species. Jhedup exhibits also an olfactory-predominant expression pattern in other Drosophila species. Our results support the implication of JHEdup in the degradation of food odorants in D. melanogaster and propose a neofunctionalization of this enzyme as a bona fide ODE in Drosophilids.
Collapse
Affiliation(s)
- Claudia Steiner
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Françoise Bozzolan
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Nicolas Montagné
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Martine Maïbèche
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France.
| | - Thomas Chertemps
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| |
Collapse
|
20
|
Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin EA, Hedenström E, Hansson BS, Gustavsson AL, Bengtsson M, Birgersson G, Walker WB, Dweck HKM, Becher PG, Witzgall P. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol 2017; 15:88. [PMID: 28962619 PMCID: PMC5622430 DOI: 10.1186/s12915-017-0427-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
Background Mate finding and recognition in animals evolves during niche adaptation and involves social signals and habitat cues. Drosophila melanogaster and related species are known to be attracted to fermenting fruit for feeding and egg-laying, which poses the question of whether species-specific fly odours contribute to long-range premating communication. Results We have discovered an olfactory channel in D. melanogaster with a dual affinity to sex and food odorants. Female flies release a pheromone, (Z)-4-undecenal (Z4-11Al), that elicits flight attraction in both sexes. Its biosynthetic precursor is the cuticular hydrocarbon (Z,Z)-7,11-heptacosadiene (7,11-HD), which is known to afford reproductive isolation between the sibling species D. melanogaster and D. simulans during courtship. Twin olfactory receptors, Or69aB and Or69aA, are tuned to Z4-11Al and food odorants, respectively. They are co-expressed in the same olfactory sensory neurons, and feed into a neural circuit mediating species-specific, long-range communication; however, the close relative D. simulans, which shares food resources with D. melanogaster, does not respond to Z4-11Al. Conclusion The Or69aA and Or69aB isoforms have adopted dual olfactory traits. The underlying gene yields a collaboration between natural and sexual selection, which has the potential to drive speciation.
Collapse
Affiliation(s)
- Sebastien Lebreton
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Felipe Borrero-Echeverry
- Biological Control Laboratory, Colombian Corporation of Agricultural Research, AA 240142 Las Palmas, Bogota, Colombia
| | - Francisco Gonzalez
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Marit Solum
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Erika A Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 172, 17165, Solna, Sweden
| | - Marie Bengtsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Göran Birgersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Hany K M Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| |
Collapse
|
21
|
Lebreton S, Carlsson MA, Witzgall P. Insulin Signaling in the Peripheral and Central Nervous System Regulates Female Sexual Receptivity during Starvation in Drosophila. Front Physiol 2017; 8:685. [PMID: 28943854 PMCID: PMC5596093 DOI: 10.3389/fphys.2017.00685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
Abstract
Many animals adjust their reproductive behavior according to nutritional state and food availability. Drosophila females for instance decrease their sexual receptivity following starvation. Insulin signaling, which regulates many aspects of insect physiology and behavior, also affects reproduction in females. We show that insulin signaling is involved in the starvation-induced reduction in female receptivity. More specifically, females mutant for the insulin-like peptide 5 (dilp5) were less affected by starvation compared to the other dilp mutants and wild-type flies. Knocking-down the insulin receptor, either in all fruitless-positive neurons or a subset of these neurons dedicated to the perception of a male aphrodisiac pheromone, decreased the effect of starvation on female receptivity. Disrupting insulin signaling in some parts of the brain, including the mushroom bodies even abolished the effect of starvation. In addition, we identified fruitless-positive neurons in the dorso-lateral protocerebrum and in the mushroom bodies co-expressing the insulin receptor. Together, our results suggest that the interaction of insulin peptides determines the tuning of female sexual behavior, either by acting on pheromone perception or directly in the central nervous system.
Collapse
Affiliation(s)
- Sébastien Lebreton
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural SciencesAlnarp, Sweden
| | | | - Peter Witzgall
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural SciencesAlnarp, Sweden
| |
Collapse
|
22
|
Verschut TA, Hambäck PA, Anderson P. Mating affects resource selection and modulates associational effects between neighbouring resources. OIKOS 2017. [DOI: 10.1111/oik.04315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Thomas A. Verschut
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ.; SE-106 91 Stockholm Sweden
| | - Peter A. Hambäck
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ.; SE-106 91 Stockholm Sweden
| | - Peter Anderson
- Dept of Plant Protection Biology, Swedish Univ. of Agricultural Sciences; Alnarp Sweden
| |
Collapse
|
23
|
Different age-dependent performance in Drosophila wild-type Canton-S and the white mutant w1118 flies. Comp Biochem Physiol A Mol Integr Physiol 2017; 206:17-23. [PMID: 28087331 DOI: 10.1016/j.cbpa.2017.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/23/2016] [Accepted: 01/08/2017] [Indexed: 11/23/2022]
Abstract
Aging has significant effects on the locomotor performance of insects including Drosophila. Using a protocol for the high-throughput analysis of fly locomotion in a circular arena, we examined age-dependent behavioral characteristics in adult flies. There are widely used wild-type and genetically engineered background lines including the Canton-S strain and the w1118 strain, which has a null mutation of the white gene. Under standard rearing conditions, we found similar survival and median lifespans in Canton-S (50days) and w1118 (54days) strains, however, w1118 flies maintained stable body mass for up to 43days, whereas Canton-S flies gained body mass at young age, followed by a gradual decline. We also tested the behavioral performance of young and old flies. Compared with young w1118 flies (5-10days), old w1118 flies (40-45days) had an increased boundary preference during locomotion in small circular arenas, and increased speed of locomotor recovery from anoxia. Old Canton-S files, however, exhibited unchanged boundary preference and reduced recovery speed from anoxia relative to young flies. In addition, old w1118 flies showed decreased path length per minute and reduced 0.2s path increment compared with young flies, whereas old Canton-S flies displayed the same path length per minute and the same 0.2s path increment compared with young flies. We conclude that age-dependent behavioral and physiological changes differ between Canton-S and w1118 flies. These results illustrate that phenotypic differences between strains can change qualitatively, as well as quantitatively, as the animals age.
Collapse
|
24
|
Morgan SL, Seggio JA, Nascimento NF, Huh DD, Hicks JA, Sharp KA, Axelrod JD, Wang KC. The Phenotypic Effects of Royal Jelly on Wild-Type D. melanogaster Are Strain-Specific. PLoS One 2016; 11:e0159456. [PMID: 27486863 PMCID: PMC4972316 DOI: 10.1371/journal.pone.0159456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/01/2016] [Indexed: 11/19/2022] Open
Abstract
The role for royal jelly (RJ) in promoting caste differentiation of honeybee larvae into queens rather than workers is well characterized. A recent study demonstrated that this poorly understood complex nutrition drives strikingly similar phenotypic effects in Drosophila melanogaster, such as increased body size and reduced developmental time, making possible the use of D. melanogaster as a model system for the genetic analysis of the cellular mechanisms underlying RJ and caste differentiation. We demonstrate here that RJ increases the body size of some wild-type strains of D. melanogaster but not others, and report significant delays in developmental time in all flies reared on RJ. These findings suggest that cryptic genetic variation may be a factor in the D. melanogaster response to RJ, and should be considered when attempting to elucidate response mechanisms to environmental changes in non-honeybee species.
Collapse
Affiliation(s)
- Stefanie L. Morgan
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, 94305, United States of America
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, 94305, United States of America
| | - Joseph A. Seggio
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, 02325, United States of America
| | - Nara F. Nascimento
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, 02325, United States of America
| | - Dana D. Huh
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, 94305, United States of America
| | - Jasmin A. Hicks
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, 02325, United States of America
| | - Katherine A. Sharp
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, United States of America
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, United States of America
| | - Kevin C. Wang
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, 94305, United States of America
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, 94305, United States of America
- Veterans Affairs Healthcare System, Palo Alto, CA, 94304, United States of America
| |
Collapse
|
25
|
Verschut TA, Becher PG, Anderson P, Hambäck PA. Disentangling associational effects: both resource density and resource frequency affect search behaviour in complex environments. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Thomas A. Verschut
- Department of Ecology Environment and Plant Sciences Stockholm University 106 91 Stockholm Sweden
| | - Paul G. Becher
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 230 53 Alnarp Sweden
| | - Peter Anderson
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 230 53 Alnarp Sweden
| | - Peter A. Hambäck
- Department of Ecology Environment and Plant Sciences Stockholm University 106 91 Stockholm Sweden
| |
Collapse
|
26
|
Wallingford AK, Hesler SP, Cha DH, Loeb GM. Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. PEST MANAGEMENT SCIENCE 2016; 72:701-6. [PMID: 25973596 DOI: 10.1002/ps.4040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND Drosophilia suzukii Matsumura is an invasive pest insect that lays its eggs in the fruit of several commercially grown crops. An effective oviposition deterrent could contribute to its management. Repellant odors were evaluated in the laboratory and in the field. RESULTS Geosmin and 1-octen-3-ol were found to be aversive to seven-day-old female D. suzukii at concentrations of 10(-1) and 10(-2) in laboratory choice tests. Field experiments found that fewer eggs were observed in fruit on the day of harvest and fewer adult D. suzukii were reared from fruit associated with 1-octen-3-ol odors than control fruit in cultivated red raspberry. CONCLUSION Geosmin and 1-octen-3-ol induce aversive behaviors in Drosophila suzukii and are potential oviposition deterrents for its management in fruit crops.
Collapse
Affiliation(s)
- Anna K Wallingford
- Cornell University, New York Agricultural Experiment Station 630 W. North St, Geneva, NY, USA
| | - Stephen P Hesler
- Cornell University, New York Agricultural Experiment Station 630 W. North St, Geneva, NY, USA
| | - Dong H Cha
- Cornell University, New York Agricultural Experiment Station 630 W. North St, Geneva, NY, USA
- Yakima Agricultural Research Laboratory, USDA-ARS, Wapato, WA, USA
| | - Gregory M Loeb
- Cornell University, New York Agricultural Experiment Station 630 W. North St, Geneva, NY, USA
| |
Collapse
|
27
|
Lebreton S, Mansourian S, Bigarreau J, Dekker T. The Adipokinetic Hormone Receptor Modulates Sexual Behavior, Pheromone Perception and Pheromone Production in a Sex-Specific and Starvation-Dependent Manner in Drosophila melanogaster. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2015.00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Ramirez-Sierra MJ, Dumonteil E. Infection Rate by Trypanosoma cruzi and Biased Vertebrate Host Selection in the Triatoma dimidiata (Hemiptera: Reduvidae) Species Complex. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:20-25. [PMID: 26474882 DOI: 10.1093/jme/tjv157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Chagas disease is a vector-borne disease, caused by the protozoan parasite Trypanosoma cruzi and transmitted by hematophagous insects. Triatoma dimidiata (Hemiptera: Reduvidae (Latreille 1811)) is one of the main vectors, and recent molecular studies indicate that it is a species complex, with potentially different vectorial competences. We investigated the differences in natural T. cruzi infection rate within T. dimidiata complex in Yucatan, Mexico. ITS-2 hybrid bugs had a twofold higher infection rate than ITS-2 Groups 2 and 3 bugs, and this pattern was consistent over time and in several villages. To test if T. dimidiata ITS-2 hybrid bugs could feed more frequently on T. cruzi-infected hosts, we evaluated their host-seeking behavior in a dual-choice chamber. Group 2 and 3 bugs were equally attracted to T. cruzi-infected or uninfected mice. On the contrary, ITS-2 hybrid bugs reached three times more frequently the T. cruzi-infected mouse, compared to the uninfected one, indicating a significant bias toward an infected host. This behavior may explain in part their higher natural infection rate. Further studies should explore the complex and unique interactions among T. cruzi, triatomines vectors, and mammalian hosts, as this may led to new strategies to interfere with transmission cycles and improve Chagas disease control.
Collapse
Affiliation(s)
- M J Ramirez-Sierra
- Laboratorio de Parasitología, Centro de Investigaciones Regionales ''Dr. Hideyo Noguchi'', Universidad Autónoma de Yucatán, 97000 Mérida, Yucatán, México
| | - E Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales ''Dr. Hideyo Noguchi'', Universidad Autónoma de Yucatán, 97000 Mérida, Yucatán, México , Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, 70112, New Orleans, LA, and
| |
Collapse
|
29
|
Versace E, Vallortigara G. Origins of Knowledge: Insights from Precocial Species. Front Behav Neurosci 2015; 9:338. [PMID: 26696856 PMCID: PMC4673401 DOI: 10.3389/fnbeh.2015.00338] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
Behavioral responses are influenced by knowledge acquired during the lifetime of an individual and by predispositions transmitted across generations. Establishing the origin of knowledge and the role of the unlearned component is a challenging task, given that both learned and unlearned knowledge can orient perception, learning, and the encoding of environmental features since the first stages of life. Ethical and practical issues constrain the investigation of unlearned knowledge in altricial species, including human beings. On the contrary, precocial animals can be tested on a wide range of tasks and capabilities immediately after birth and in controlled rearing conditions. Insects and precocial avian species are very convenient models to dissect the knowledge systems that enable young individuals to cope with their environment in the absence of specific previous experience. We present the state of the art of research on the origins of knowledge that comes from different models and disciplines. Insects have been mainly used to investigate unlearned sensory preferences and prepared learning mechanisms. The relative simplicity of the neural system and fast life cycle of insects make them ideal models to investigate the neural circuitry and evolutionary dynamics of unlearned traits. Among avian species, chicks of the domestic fowl have been the focus of many studies, and showed to possess unlearned knowledge in the sensory, physical, spatial, numerical and social domains. Solid evidence shows the existence of unlearned knowledge in different domains in several species, from sensory and social preferences to the left-right representation of the mental number line. We show how non-mammalian models of cognition, and in particular precocial species, can shed light into the adaptive value and evolutionary history of unlearned knowledge.
Collapse
Affiliation(s)
- Elisabetta Versace
- Animal Cognition and Neuroscience Laboratory, Center for Mind/Brain Sciences, University of Trento Rovereto, Italy
| | - Giorgio Vallortigara
- Animal Cognition and Neuroscience Laboratory, Center for Mind/Brain Sciences, University of Trento Rovereto, Italy
| |
Collapse
|
30
|
Abstract
Sensory cues that predict reward or punishment are fundamental drivers of animal behavior. For example, attractive odors of palatable food or a potential mate predict reward, while aversive odors of pathogen-laced food or a predator predict punishment. Aversive and attractive odors can be detected by intermingled sensory neurons that express highly related olfactory receptors and display similar central projections. These findings raise basic questions of how innate odor valence is extracted from olfactory circuits, how such circuits are developmentally endowed and modulated by state, and how innate and learned odor responses are related. Here, we review odors, receptors and neural circuits associated with stimulus valence, discussing salient principles derived from studies on nematodes, insects and vertebrates. Understanding the organization of neural circuitry that mediates odor aversion and attraction will provide key insights into how the brain functions.
Collapse
|
31
|
Günther CS, Goddard MR, Newcomb RD, Buser CC. The Context of Chemical Communication Driving a Mutualism. J Chem Ecol 2015; 41:929-36. [PMID: 26392279 DOI: 10.1007/s10886-015-0629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/19/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
Recent work suggests that Drosophila and Saccharomyces yeasts may establish a mutualistic association, and that this is driven by chemical communication. While individual volatiles have been implicated in the attraction of D. melanogaster, the semiochemicals affecting the behavior of the sibling species D. simulans are less well characterized. Here, we scrutinized a broad range of volatiles produced by attractive and repulsive yeasts to experimentally evaluate the chemical nature of communication between these species. When grown in liquid or on agar-solidified grape juice, attraction to S. cerevisiae was driven primarily by 3-methylbutyl acetate (isoamyl acetate) and repulsion by acetic acid, a known attractant to D. melanogaster (also known as vinegar fly). By using T-maze choice tests and synthetic compounds, we showed that these responses are strongly influenced by compound concentration. Moreover, the behavioral response is impacted further by the chemical context of the environment. Thus, chemical communication between yeasts and flies is complex, and is not driven simply by the presence of single volatiles, but modulated by compound interactions. The ecological context of chemical communication needs to be taken into consideration when testing for ecologically realistic responses.
Collapse
Affiliation(s)
- Catrin S Günther
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland mail centre, Auckland, 1142, New Zealand. .,School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, UK.
| | - Matthew R Goddard
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland mail centre, Auckland, 1142, New Zealand.,School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, UK
| | - Richard D Newcomb
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland mail centre, Auckland, 1142, New Zealand.,The New Zealand Institute for Plant & Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
| | - Claudia C Buser
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland mail centre, Auckland, 1142, New Zealand
| |
Collapse
|
32
|
Versace E, Reisenberger J. Large-scale assessment of olfactory preferences and learning in Drosophila melanogaster: behavioral and genetic components. PeerJ 2015; 3:e1214. [PMID: 26357595 PMCID: PMC4562235 DOI: 10.7717/peerj.1214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/05/2015] [Indexed: 01/08/2023] Open
Abstract
In the Evolve and Resequence method (E&R), experimental evolution and genomics are combined to investigate evolutionary dynamics and the genotype-phenotype link. As other genomic approaches, this methods requires many replicates with large population sizes, which imposes severe restrictions on the analysis of behavioral phenotypes. Aiming to use E&R for investigating the evolution of behavior in Drosophila, we have developed a simple and effective method to assess spontaneous olfactory preferences and learning in large samples of fruit flies using a T-maze. We tested this procedure on (a) a large wild-caught population and (b) 11 isofemale lines of Drosophila melanogaster. Compared to previous methods, this procedure reduces the environmental noise and allows for the analysis of large population samples. Consistent with previous results, we show that flies have a preference for orange vs. apple odor. With our procedure wild-derived flies exhibit olfactory learning in the absence of previous laboratory selection. Furthermore, we find genetic differences in the olfactory learning with relatively high heritability. We propose this large-scale method as an effective tool for E&R and genome-wide association studies on olfactory preferences and learning.
Collapse
Affiliation(s)
- Elisabetta Versace
- Institut für Populationsgenetik, Vetmeduni, Vienna, Austria
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | |
Collapse
|
33
|
Zalucki O, Day R, Kottler B, Karunanithi S, van Swinderen B. Behavioral and electrophysiological analysis of general anesthesia in 3 background strains of Drosophila melanogaster. Fly (Austin) 2015; 9:7-15. [PMID: 26267354 DOI: 10.1080/19336934.2015.1072663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
General anesthetics achieve behavioral unresponsiveness via a mechanism that is incompletely understood. The study of genetic model systems such as the fruit fly Drosophila melanogaster is crucial to advancing our understanding of how anesthetic drugs render animals unresponsive. Previous studies have shown that wild-type control strains differ significantly in their sensitivity to general anesthetics, which potentially introduces confounding factors for comparing genetic mutations placed on these wild-type backgrounds. Here, we examined a variety of behavioral and electrophysiological endpoints in Drosophila, in both adult and larval animals. We characterized these endpoints in 3 commonly used fly strains: wild-type Canton Special (CS), and 2 commonly used white-eyed strains, isoCJ1 and w(1118). We found that CS and isoCJ1 show remarkably similar sensitivity to isoflurane across a variety of behavioral and electrophysiological endpoints. In contrast, w(1118) is resistant to isoflurane compared to the other 2 strains at both the adult and larval stages. This resistance is however not reflected at the level of neurotransmitter release at the larval neuromuscular junction (NMJ). This suggests that the w(1118) strain harbors another mutation that produces isoflurane resistance, by acting on an arousal pathway that is most likely preserved between larval and adult brains. This mutation probably also affects sleep, as marked differences between isoCJ1 and w(1118) have also recently been found for behavioral responsiveness and sleep intensity measures.
Collapse
Affiliation(s)
- Oressia Zalucki
- a Queensland Brain Institute; The University of Queensland ; Brisbane , Queensland , Australia
| | | | | | | | | |
Collapse
|
34
|
Feeding regulates sex pheromone attraction and courtship in Drosophila females. Sci Rep 2015; 5:13132. [PMID: 26255707 PMCID: PMC4530334 DOI: 10.1038/srep13132] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023] Open
Abstract
In Drosophila melanogaster, gender-specific behavioural responses to the male-produced sex pheromone cis-vaccenyl acetate (cVA) rely on sexually dimorphic, third-order neural circuits. We show that nutritional state in female flies modulates cVA perception in first-order olfactory neurons. Starvation increases, and feeding reduces attraction to food odour, in both sexes. Adding cVA to food odour, however, maintains attraction in fed females, while it has no effect in males. Upregulation of sensitivity and behavioural responsiveness to cVA in fed females is paralleled by a strong increase in receptivity to male courtship. Functional imaging of the antennal lobe (AL), the olfactory centre in the insect brain, shows that olfactory input to DA1 and VM2 glomeruli is also modulated by starvation. Knocking down insulin receptors in neurons converging onto the DA1 glomerulus suggests that insulin-signalling partly controls pheromone perception in the AL, and adjusts cVA attraction according to nutritional state and sexual receptivity in Drosophila females.
Collapse
|
35
|
Bruce TJA. Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:455-65. [PMID: 25271259 DOI: 10.1093/jxb/eru391] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In an environment with changing availability and quality of host plants, phytophagous insects are under selection pressure to find quality hosts. They need to maximize their fitness by locating suitable plants and avoiding unsuitable ones. Thus, they have evolved a finely tuned sensory system, for detection of host cues, and a nervous system, capable of integrating inputs from sensory neurons with a high level of spatio-temporal resolution. Insect responses to cues are not fixed but depend on the context in which they are perceived, the physiological state of the insect, and prior learning experiences. However, there are examples of insects making 'mistakes' and being attracted to poor quality hosts. While insects have evolved ways of finding hosts, plants have been under selection pressure to do precisely the opposite and evade detection or defend themselves when attacked. Once on the plant, insect-associated molecules may trigger or suppress defence depending on whether the plant or the insect is ahead in evolutionary terms. Plant volatile emission is influenced by defence responses induced by insect feeding or oviposition which can attract natural enemies but repel herbivores. Conversely, plant reproductive fitness is increased by attraction of pollinators. Interactions can be altered by other organisms associated with the plant such as other insects, plant pathogens, or mycorrhizal fungi. Plant phenotype is plastic and can be changed by epigenetic factors in adaptation to periods of biotic stress. Space and time play crucial roles in influencing the outcome of interactions between insects and plants.
Collapse
|
36
|
Venu I, Durisko Z, Xu J, Dukas R. Social attraction mediated by fruit flies' microbiome. ACTA ACUST UNITED AC 2015; 217:1346-52. [PMID: 24744425 DOI: 10.1242/jeb.099648] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Larval and adult fruit flies are attracted to volatiles emanating from food substrates that have been occupied by larvae. We tested whether such volatiles are emitted by the larval gut bacteria by conducting tests under bacteria-free (axenic) conditions. We also tested attraction to two bacteria species, Lactobacillus brevis, which we cultured from larvae in our lab, and L. plantarum, a common constituent of fruit flies' microbiome in other laboratory populations and in wild fruit flies. Neither larvae nor adults showed attraction to axenic food that had been occupied by axenic larvae, but both showed the previously reported attraction to standard food that had been occupied by larvae with an intact microbiome. Larvae also showed significant attraction to volatiles from axenic food and larvae to which we added only either L. brevis or L. plantarum, and volatiles from L. brevis reared on its optimal growth medium. Controlled learning experiments indicated that larvae experienced with both standard and axenic used food do not perceive either as superior, while focal larvae experienced with simulated used food, which contains burrows, perceive it as superior to unused food. Our results suggest that flies rely on microbiome-derived volatiles for long-distance attraction to suitable food patches. Under natural settings, fruits often contain harmful fungi and bacteria, and both L. brevis and L. plantarum produce compounds that suppress the growth of some antagonistic fungi and bacteria. The larval microbiome volatiles may therefore lead prospective fruit flies towards substrates with a hospitable microbial environment.
Collapse
Affiliation(s)
- Isvarya Venu
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | | | | | | |
Collapse
|
37
|
Lebreton S, Witzgall P, Olsson M, Becher PG. Dietary glucose regulates yeast consumption in adult Drosophila males. Front Physiol 2014; 5:504. [PMID: 25566097 PMCID: PMC4273620 DOI: 10.3389/fphys.2014.00504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/03/2014] [Indexed: 11/20/2022] Open
Abstract
The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.
Collapse
Affiliation(s)
- Sébastien Lebreton
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences Alnarp, Sweden
| | - Peter Witzgall
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences Alnarp, Sweden
| | - Marie Olsson
- Unit of Plant Product Quality, Department of Plant Breeding, Swedish University of Agricultural Sciences Alnarp, Sweden
| | - Paul G Becher
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences Alnarp, Sweden
| |
Collapse
|
38
|
Lebreton S, Grabe V, Omondi AB, Ignell R, Becher PG, Hansson BS, Sachse S, Witzgall P. Love makes smell blind: mating suppresses pheromone attraction in Drosophila females via Or65a olfactory neurons. Sci Rep 2014; 4:7119. [PMID: 25406576 PMCID: PMC4236738 DOI: 10.1038/srep07119] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/04/2014] [Indexed: 01/29/2023] Open
Abstract
In Drosophila, the male sex pheromone cis-vaccenyl acetate (cVA) elicits aggregation and courtship, through the odorant receptor Or67d. Long-lasting exposure to cVA suppresses male courtship, via a second channel, Or65a. In females, the role of Or65a has not been studied. We show that, shortly after mating, Drosophila females are no longer attracted to cVA and that activation of olfactory sensory neurons (OSNs) expressing Or65a generates this behavioral switch: when silencing Or65a, mated females remain responsive to cVA. Neurons expressing Or67d converge into the DA1 glomerulus in the antennal lobe, where they synapse onto projection neurons (PNs), that connect to higher neural circuits generating the attraction response to cVA. Functional imaging of these PNs shows that the DA1 glomerulus is inhibited by simultaneous activation of Or65a OSNs, which leads to a suppression of the attraction response to cVA. The behavioral role of postmating cVA exposure is substantiated by the observation that matings with starved males, which produce less cVA, do not alter the female response. Moreover, exposure to synthetic cVA abolishes attraction and decreases sexual receptivity in unmated females. Taken together, Or65a mediates an aversive effect of cVA and may accordingly regulate remating, through concurrent behavioral modulation in males and females.
Collapse
Affiliation(s)
- Sébastien Lebreton
- 1] Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Unit, 230 53 Alnarp, Sweden [2] Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Aman B Omondi
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Unit, 230 53 Alnarp, Sweden
| | - Rickard Ignell
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Unit, 230 53 Alnarp, Sweden
| | - Paul G Becher
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Unit, 230 53 Alnarp, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Peter Witzgall
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Unit, 230 53 Alnarp, Sweden
| |
Collapse
|
39
|
Chen Y, Amrein H. Enhancing perception of contaminated food through acid-mediated modulation of taste neuron responses. Curr Biol 2014; 24:1969-77. [PMID: 25131671 DOI: 10.1016/j.cub.2014.07.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Natural foods contain not only nutrients, but also nonnutritious and potentially harmful chemicals. Thus, animals need to evaluate food content in order to make adequate feeding decisions. RESULTS Here, we investigate the effects of acids on the taste neuron responses and on taste behavior of desirable, nutritious sugars and sugar/bitter compound mixtures in Drosophila melanogaster. Using Ca2+ imaging, we show that acids activate neither sweet nor bitter taste neurons in tarsal taste sensilla. However, they suppress responses to bitter compounds in bitter-sensing neurons. Moreover, acids reverse suppression of bitter compounds exerted on sweet-sensing neurons. Consistent with these observations, behavioral analyses show that bitter-compound-mediated inhibition on feeding behavior is alleviated by acids. To investigate the cellular mechanism by which acids modulate these effects, we silenced bitter-sensing gustatory neurons. Surprisingly, this intervention had little effect on acid-mediated derepression of sweet neuron or feeding responses to either sugar/bitter compound mixtures or sugar/bitter compound/acid mixtures, suggesting that there are two independent pathways by which bitter compounds are sensed. CONCLUSIONS Our investigations reveal that acids, when presented in dietary relevant concentrations, enhance the perception of sugar/bitter compound mixtures. Drosophila's natural food sources-fruits and cohabitating yeast-are rich in sugars and acids but are rapidly colonized by microorganisms, such as fungi, protozoan parasites, and bacteria, many of which produce bitter compounds. We propose that the acids present in most fruits counteract the inhibitory effects of these bitter compounds during feeding.
Collapse
Affiliation(s)
- Yan Chen
- Department of Molecular and Cellular Medicine, Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Hubert Amrein
- Department of Molecular and Cellular Medicine, Health Science Center, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
40
|
Pischedda A, Shahandeh MP, Cochrane WG, Cochrane VA, Turner TL. Natural variation in the strength and direction of male mating preferences for female pheromones in Drosophila melanogaster. PLoS One 2014; 9:e87509. [PMID: 24489930 PMCID: PMC3905024 DOI: 10.1371/journal.pone.0087509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/28/2013] [Indexed: 11/18/2022] Open
Abstract
Many animal species communicate using chemical signals. In Drosophila, cuticular hydrocarbons (CHCs) are involved in species and sexual identification, and have long been thought to act as stimulatory pheromones as well. However, a previous study reported that D. melanogaster males were more attracted to females that were lacking CHCs. This surprising result is consistent with several evolutionary hypotheses but is at odds with other work demonstrating that female CHCs are attractive to males. Here, we investigated natural variation in male preferences for female pheromones using transgenic flies that cannot produce CHCs. By perfuming females with CHCs and performing mate choice tests, we found that some male genotypes prefer females with pheromones, some have no apparent preference, and at least one male genotype prefers females without pheromones. This variation provides an excellent opportunity to further investigate the mechanistic causes and evolutionary implications of divergent pheromone preferences in D. melanogaster males.
Collapse
Affiliation(s)
- Alison Pischedda
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| | - Michael P. Shahandeh
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Wesley G. Cochrane
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Veronica A. Cochrane
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Thomas L. Turner
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
41
|
Abstract
Odors are highly evocative, yet how and where in the brain odors derive meaning remains unknown. Our analysis of the Drosophila brain extends the role of a small number of hunger-sensing neurons to include food-odor value representation. In vivo two-photon calcium imaging shows the amplitude of food odor-evoked activity in neurons expressing Drosophila neuropeptide F (dNPF), the neuropeptide Y homolog, strongly correlates with food-odor attractiveness. Hunger elevates neural and behavioral responses to food odors only, although food odors that elicit attraction in the fed state also evoke heightened dNPF activity in fed flies. Inactivation of a subset of dNPF-expressing neurons or silencing dNPF receptors abolishes food-odor attractiveness, whereas genetically enhanced dNPF activity not only increases food-odor attractiveness but promotes attraction to aversive odors. Varying the amount of presented odor produces matching graded neural and behavioral curves, which can function to predict preference between odors. We thus demonstrate a possible motivationally scaled neural "value signal" accessible from uniquely identifiable cells.
Collapse
|
42
|
Faucher CP, Hilker M, de Bruyne M. Interactions of carbon dioxide and food odours in Drosophila: olfactory hedonics and sensory neuron properties. PLoS One 2013; 8:e56361. [PMID: 23457557 PMCID: PMC3574157 DOI: 10.1371/journal.pone.0056361] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Behavioural responses of animals to volatiles in their environment are generally dependent on context. Most natural odours are mixtures of components that can each induce different behaviours when presented on their own. We have investigated how a complex of two olfactory stimuli is evaluated by Drosophila flies in a free-flying two-trap choice assay and how these stimuli are encoded in olfactory receptor neurons. We first observed that volatiles from apple cider vinegar attracted flies while carbon dioxide (CO2) was avoided, confirming their inherent positive and negative values. In contradiction with previous results obtained from walking flies in a four-field olfactometer, in the present assay the addition of CO2 to vinegar increased rather than decreased the attractiveness of vinegar. This effect was female-specific even though males and females responded similarly to CO2 and vinegar on their own. To test whether the female-specific behavioural response to the mixture correlated with a sexual dimorphism at the peripheral level we recorded from olfactory receptor neurons stimulated with vinegar, CO2 and their combination. Responses to vinegar were obtained from three neuron classes, two of them housed with the CO2-responsive neuron in ab1 sensilla. Sensitivity of these neurons to both CO2 and vinegar per se did not differ between males and females and responses from female neurons did not change when CO2 and vinegar were presented simultaneously. We also found that CO2-sensitive neurons are particularly well adapted to respond rapidly to small concentration changes irrespective of background CO2 levels. The ability to encode temporal properties of stimulations differs considerably between CO2- and vinegar-sensitive neurons. These properties may have important implications for in-flight navigation when rapid responses to fragmented odour plumes are crucial to locate odour sources. However, the flies' sex-specific response to the CO2-vinegar combination and the context-dependent hedonics most likely originate from central rather than peripheral processing.
Collapse
Affiliation(s)
- Cécile P. Faucher
- Institute of Biology - Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Institute of Biology - Applied Zoology, Freie Universität Berlin, Berlin, Germany
| | - Marien de Bruyne
- Institute of Biology - Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
43
|
Abstract
We studied complete dose-response curves for 53 odorants in the third instar larvae of Drosophila melanogaster. All odorants, except one, elicited an attraction response. Some odorants also elicited a decrease from their peak response at higher concentrations. This concentration-dependent decrease in olfactory response could be due to either desensitization or repulsion, 2 possibilities that we cannot distinguish in our current assay. We observed high variations in factors like slopes, thresholds, and peaks of responses that, in agreement with previous studies, suggest that the responses of different receptors are quite different for the similar change in concentration of various ligands. We also observed that lower attraction thresholds predicted higher peak amplitude. This suggests that if odor responses encompassed wider concentration range than can be covered by the dynamic range of a single receptor, then responses tend to be high in magnitude.
Collapse
Affiliation(s)
- Sukant Khurana
- National Center for Biological Sciences, GKVK Campus, Bangalore, Karnataka, India.
| | | |
Collapse
|
44
|
Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piškur J, Witzgall P, Bengtsson M. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02006.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Gerhard Flick
- University of Applied Sciences; 17033; Neubrandenburg; Germany
| | | | | | - Arne Hagman
- Department of Biology; Lund University; 22362; Lund; Sweden
| | - Sébastien Lebreton
- Chemical Ecology Group; Swedish University of Agricultural Sciences; 23053; Alnarp; Sweden
| | - Mattias C. Larsson
- Chemical Ecology Group; Swedish University of Agricultural Sciences; 23053; Alnarp; Sweden
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; Hans-Knoell Strasse 8; 07745; Jena; Germany
| | - Jure Piškur
- Department of Biology; Lund University; 22362; Lund; Sweden
| | - Peter Witzgall
- Chemical Ecology Group; Swedish University of Agricultural Sciences; 23053; Alnarp; Sweden
| | - Marie Bengtsson
- Chemical Ecology Group; Swedish University of Agricultural Sciences; 23053; Alnarp; Sweden
| |
Collapse
|
45
|
Pacheco-Tucuch FS, Ramirez-Sierra MJ, Gourbière S, Dumonteil E. Public street lights increase house infestation by the Chagas disease vector Triatoma dimidiata. PLoS One 2012; 7:e36207. [PMID: 22558384 PMCID: PMC3338588 DOI: 10.1371/journal.pone.0036207] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/02/2012] [Indexed: 11/30/2022] Open
Abstract
Triatoma dimidiata is one of the primary vectors of Chagas disease. We previously documented the spatio-temporal infestation of houses by this species in the Yucatan peninsula, Mexico, and found that non-domiciliated triatomines were specifically attracted to houses. However, the factors mediating this attraction remained unclear. Artificial light has been known for a long time to attract many insect species, and therefore may contribute to the spread of different vector-borne diseases. Also, based on the collection of different species of triatomines with light traps, several authors have suggested that light might attract triatomines to houses, but the role of artificial light in house infestation has never been clearly demonstrated and quantified. Here we performed a spatial analysis of house infestation pattern by T. dimidiata in relation to the distribution of artificial light sources in three different villages from the Yucatan peninsula, Mexico. In all three villages, infested houses were significantly closer to public street light sources than non-infested houses (18.0±0.6 vs 22.6±0.4 m), and street lights rather than domestic lights were associated with house infestation. Accordingly, houses closer to a public street lights were 1.64 times more likely to be infested than houses further away (OR, CI95% 1.23–2.18). Behavioral experiments using a dual-choice chamber further confirmed that adult male and females were attracted to white light during their nocturnal activity. Attraction was also dependent on light color and decreased with increasing wavelength. While public lighting is usually associated with increased development, these data clearly show that it also directly contributes to house infestation by non-domiciliated T. dimidiata.
Collapse
Affiliation(s)
- Freddy Santiago Pacheco-Tucuch
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Maria Jesus Ramirez-Sierra
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Sébastien Gourbière
- UMR 5244 CNRS-UPVD ‘Ecologie et Evolution des Interactions,’ Université de Perpignan Via Domitia, Perpignan, France
- Centre for the Study of Evolution, University of Sussex, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
46
|
Spatial representation of odorant valence in an insect brain. Cell Rep 2012; 1:392-9. [PMID: 22832228 DOI: 10.1016/j.celrep.2012.03.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 11/24/2022] Open
Abstract
Brains have to decide whether and how to respond to detected stimuli based on complex sensory input. The vinegar fly Drosophila melanogaster evaluates food sources based on olfactory cues. Here, we performed a behavioral screen using the vinegar fly and established the innate valence of 110 odorants. Our analysis of neuronal activation patterns evoked by attractive and aversive odorants suggests that even though the identity of odorants is coded by the set of activated receptors, the main representation of odorant valence is formed at the output level of the antennal lobe. The topographic clustering within the antennal lobe of valence-specific output neurons resembles a corresponding domain in the olfactory bulb of mice. The basal anatomical structure of the olfactory circuit between insects and vertebrates is known to be similar; our study suggests that the representation of odorant valence is as well.
Collapse
|
47
|
A high-throughput behavioral paradigm for Drosophila olfaction - The Flywalk. Sci Rep 2012; 2:361. [PMID: 22511996 PMCID: PMC3328172 DOI: 10.1038/srep00361] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/23/2012] [Indexed: 02/03/2023] Open
Abstract
How can odor-guided behavior of numerous individual Drosophila be assessed
automatically with high temporal resolution? For this purpose we introduce the
automatic integrated tracking and odor-delivery system Flywalk. In fifteen
aligned small wind tunnels individual flies are exposed to repeated odor pulses,
well defined in concentration and timing. The flies' positions are visually tracked,
which allows quantification of the odor-evoked walking behavior with high temporal
resolution of up to 100 ms. As a demonstration of Flywalk we show that the
flies' behavior is odorant-specific; attractive odors elicit directed upwind
movements, while repellent odors evoke decreased activity, followed by downwind
movements. These changes in behavior differ between sexes. Furthermore our findings
show that flies can evaluate the sex of a conspecific and males can determine a
female's mating status based on olfactory cues. Consequently, Flywalk allows
automatic screening of individual flies for their olfactory preference and
sensitivity.
Collapse
|
48
|
Innate preference in Drosophila melanogaster. SCIENCE CHINA-LIFE SCIENCES 2012; 55:8-14. [PMID: 22314485 DOI: 10.1007/s11427-012-4271-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/01/2011] [Indexed: 10/14/2022]
Abstract
Innate preference behaviors are fundamental for animal survival. They actually form the basis for many animal complex behaviors. Recent years have seen significant progresses in disclosing the molecular and neural mechanism underlying animal innate preferences, especially in Drosophila. In this review, I will review these studies according to the sensory modalities adopted for preference assaying, such as vision, olfaction, thermal sensation. The behavioral strategies and the theoretic models for the formation of innate preferences are also reviewed and discussed.
Collapse
|
49
|
Díaz-Castillo C, Xia XQ, Ranz JM. Evaluation of the role of functional constraints on the integrity of an ultraconserved region in the genus Drosophila. PLoS Genet 2012; 8:e1002475. [PMID: 22319453 PMCID: PMC3271063 DOI: 10.1371/journal.pgen.1002475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/29/2011] [Indexed: 01/02/2023] Open
Abstract
Why gene order is conserved over long evolutionary timespans remains elusive. A common interpretation is that gene order conservation might reflect the existence of functional constraints that are important for organismal performance. Alteration of the integrity of genomic regions, and therefore of those constraints, would result in detrimental effects. This notion seems especially plausible in those genomes that can easily accommodate gene reshuffling via chromosomal inversions since genomic regions free of constraints are likely to have been disrupted in one or more lineages. Nevertheless, no empirical test has been performed to this notion. Here, we disrupt one of the largest conserved genomic regions of the Drosophila genome by chromosome engineering and examine the phenotypic consequences derived from such disruption. The targeted region exhibits multiple patterns of functional enrichment suggestive of the presence of constraints. The carriers of the disrupted collinear block show no defects in their viability, fertility, and parameters of general homeostasis, although their odorant perception is altered. This change in odorant perception does not correlate with modifications of the level of expression and sex bias of the genes within the genomic region disrupted. Our results indicate that even in highly rearranged genomes, like those of Diptera, unusually high levels of gene order conservation cannot be systematically attributed to functional constraints, which raises the possibility that other mechanisms can be in place and therefore the underpinnings of the maintenance of gene organization might be more diverse than previously thought.
Collapse
Affiliation(s)
- Carlos Díaz-Castillo
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan, China
| | - José M. Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
50
|
Lebreton S, Becher PG, Hansson BS, Witzgall P. Attraction of Drosophila melanogaster males to food-related and fly odours. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:125-129. [PMID: 22067291 DOI: 10.1016/j.jinsphys.2011.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/19/2011] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
The fruit fly Drosophila melanogaster has become a model for olfaction and odour-mediated behaviour. In the wild, Drosophila flies aggregate on decaying fruit where they mate and oviposit and a strategy to find mates would be to locate fruit which has already been colonized by other flies. We therefore developed a bioassay to investigate attraction of males to food and fly odours. We showed that upwind flights are initiated by food odours. At shorter distances, males are attracted by volatiles produced by conspecifics. However, only odours produced by copulating flies attract males. This suggests either a synergistic effect of both male and female odours or changes in pheromone release during mating, that indicate the presence of sexually receptive females. Our findings demonstrate the essential role of food odours and pheromones for mate location in D. melanogaster.
Collapse
Affiliation(s)
- Sébastien Lebreton
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Group, Alnarp, Sweden.
| | | | | | | |
Collapse
|