1
|
Alonso-Ramos P, Carballo JA. Decoding the Nucleolar Role in Meiotic Recombination and Cell Cycle Control: Insights into Cdc14 Function. Int J Mol Sci 2024; 25:12861. [PMID: 39684572 DOI: 10.3390/ijms252312861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators. This phase separation characteristic of the nucleolus is vital for the specific and timely release of Cdc14, required for most essential functions of phosphatase in the cell cycle. While mitosis distributes chromosomes to daughter cells, meiosis is a specialized division process that produces gametes and introduces genetic diversity. Central to meiosis is meiotic recombination, which enhances genetic diversity by generating crossover and non-crossover products. This process begins with the introduction of double-strand breaks, which are then processed by numerous repair enzymes. Meiotic recombination and progression are regulated by proteins and feedback mechanisms. CDKs and polo-like kinase Cdc5 drive recombination through positive feedback, while phosphatases like Cdc14 are crucial for activating Yen1, a Holliday junction resolvase involved in repairing unresolved recombination intermediates in both mitosis and meiosis. Cdc14 is released from the nucleolus in a regulated manner, especially during the transition between meiosis I and II, where it helps inactivate CDK activity and promote proper chromosome segregation. This review integrates current knowledge, providing a synthesis of these interconnected processes and an overview of the mechanisms governing cell cycle regulation and meiotic recombination.
Collapse
Affiliation(s)
- Paula Alonso-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Jesús A Carballo
- Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Gavrilova AA, Neklesova MV, Zagryadskaya YA, Kuznetsova IM, Turoverov KK, Fonin AV. Stress-Induced Evolution of the Nucleolus: The Role of Ribosomal Intergenic Spacer (rIGS) Transcripts. Biomolecules 2024; 14:1333. [PMID: 39456266 PMCID: PMC11505599 DOI: 10.3390/biom14101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
It became clear more than 20 years ago that the nucleolus not only performs the most important biological function of assembling ribonucleic particles but is also a key controller of many cellular processes, participating in cellular adaptation to stress. The nucleolus's multifunctionality is due to the peculiarities of its biogenesis. The nucleolus is a multilayered biomolecular condensate formed by liquid-liquid phase separation (LLPS). In this review, we focus on changes occurring in the nucleolus during cellular stress, molecular features of the nucleolar response to abnormal and stressful conditions, and the role of long non-coding RNAs transcribed from the intergenic spacer region of ribosomal DNA (IGS rDNA).
Collapse
Affiliation(s)
- Anastasia A. Gavrilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Margarita V. Neklesova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | | | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| |
Collapse
|
3
|
El Dika M, Dudka D, Kloc M, Kubiak JZ. CDC6 as a Key Inhibitory Regulator of CDK1 Activation Dynamics and the Timing of Mitotic Entry and Progression. BIOLOGY 2023; 12:855. [PMID: 37372141 DOI: 10.3390/biology12060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Timely mitosis is critically important for early embryo development. It is regulated by the activity of the conserved protein kinase CDK1. The dynamics of CDK1 activation must be precisely controlled to assure physiologic and timely entry into mitosis. Recently, a known S-phase regulator CDC6 emerged as a key player in mitotic CDK1 activation cascade in early embryonic divisions, operating together with Xic1 as a CDK1 inhibitor upstream of the Aurora A and PLK1, both CDK1 activators. Herein, we review the molecular mechanisms that underlie the control of mitotic timing, with special emphasis on how CDC6/Xic1 function impacts CDK1 regulatory network in the Xenopus system. We focus on the presence of two independent mechanisms inhibiting the dynamics of CDK1 activation, namely Wee1/Myt1- and CDC6/Xic1-dependent, and how they cooperate with CDK1-activating mechanisms. As a result, we propose a comprehensive model integrating CDC6/Xic1-dependent inhibition into the CDK1-activation cascade. The physiological dynamics of CDK1 activation appear to be controlled by the system of multiple inhibitors and activators, and their integrated modulation ensures concomitantly both the robustness and certain flexibility of the control of this process. Identification of multiple activators and inhibitors of CDK1 upon M-phase entry allows for a better understanding of why cells divide at a specific time and how the pathways involved in the timely regulation of cell division are all integrated to precisely tune the control of mitotic events.
Collapse
Affiliation(s)
- Mohammed El Dika
- Department of Biochemistry, Larner College of Medicine, UVM Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Jacek Z Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| |
Collapse
|
4
|
Gavrilova AA, Fefilova AS, Vishnyakov IE, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Roles of the Nuclear Non-Coding RNA-Dependent Membrane-Less Organelles in the Cellular Stress Response. Int J Mol Sci 2023; 24:ijms24098108. [PMID: 37175815 PMCID: PMC10179167 DOI: 10.3390/ijms24098108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
At the beginning of the 21st century, it became obvious that radical changes had taken place in the concept of living matter and, in particular, in the concept of the organization of intracellular space. The accumulated data testify to the essential importance of phase transitions of biopolymers (first of all, intrinsically disordered proteins and RNA) in the spatiotemporal organization of the intracellular space. Of particular interest is the stress-induced reorganization of the intracellular space. Examples of organelles formed in response to stress are nuclear A-bodies and nuclear stress bodies. The formation of these organelles is based on liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and non-coding RNA. Despite their overlapping composition and similar mechanism of formation, these organelles have different functional activities and physical properties. In this review, we will focus our attention on these membrane-less organelles (MLOs) and describe their functions, structure, and mechanism of formation.
Collapse
Affiliation(s)
- Anastasia A Gavrilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Anna S Fefilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Innokentii E Vishnyakov
- Group of Molecular Cytology of Prokaryotes and Bacterial Invasion, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| |
Collapse
|
5
|
Philip J, Örd M, Silva A, Singh S, Diffley JFX, Remus D, Loog M, Ikui AE. Cdc6 is sequentially regulated by PP2A-Cdc55, Cdc14, and Sic1 for origin licensing in S. cerevisiae. eLife 2022; 11:e74437. [PMID: 35142288 PMCID: PMC8830886 DOI: 10.7554/elife.74437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 01/31/2023] Open
Abstract
Cdc6, a subunit of the pre-replicative complex (pre-RC), contains multiple regulatory cyclin-dependent kinase (Cdk1) consensus sites, SP or TP motifs. In Saccharomyces cerevisiae, Cdk1 phosphorylates Cdc6-T7 to recruit Cks1, the Cdk1 phospho-adaptor in S phase, for subsequent multisite phosphorylation and protein degradation. Cdc6 accumulates in mitosis and is tightly bound by Clb2 through N-terminal phosphorylation in order to prevent premature origin licensing and degradation. It has been extensively studied how Cdc6 phosphorylation is regulated by the cyclin-Cdk1 complex. However, a detailed mechanism on how Cdc6 phosphorylation is reversed by phosphatases has not been elucidated. Here, we show that PP2ACdc55 dephosphorylates Cdc6 N-terminal sites to release Clb2. Cdc14 dephosphorylates the C-terminal phospho-degron, leading to Cdc6 stabilization in mitosis. In addition, Cdk1 inhibitor Sic1 releases Clb2·Cdk1·Cks1 from Cdc6 to load Mcm2-7 on the chromatin upon mitotic exit. Thus, pre-RC assembly and origin licensing are promoted by phosphatases through the attenuation of distinct Cdk1-dependent Cdc6 inhibitory mechanisms.
Collapse
Affiliation(s)
- Jasmin Philip
- The PhD Program in Biochemistry, The Graduate Center, CUNYBrooklynUnited States
- Brooklyn CollegeBrooklynUnited States
| | | | - Andriele Silva
- The PhD Program in Biochemistry, The Graduate Center, CUNYBrooklynUnited States
- Brooklyn CollegeBrooklynUnited States
| | - Shaneen Singh
- The PhD Program in Biochemistry, The Graduate Center, CUNYBrooklynUnited States
- Brooklyn CollegeBrooklynUnited States
| | | | - Dirk Remus
- Memorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | | | - Amy E Ikui
- The PhD Program in Biochemistry, The Graduate Center, CUNYBrooklynUnited States
- Brooklyn CollegeBrooklynUnited States
| |
Collapse
|
6
|
Touati SA, Hofbauer L, Jones AW, Snijders AP, Kelly G, Uhlmann F. Cdc14 and PP2A Phosphatases Cooperate to Shape Phosphoproteome Dynamics during Mitotic Exit. Cell Rep 2020; 29:2105-2119.e4. [PMID: 31722221 PMCID: PMC6857435 DOI: 10.1016/j.celrep.2019.10.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/27/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
Temporal control over protein phosphorylation and dephosphorylation is crucial for accurate chromosome segregation and for completion of the cell division cycle during exit from mitosis. In budding yeast, the Cdc14 phosphatase is thought to be a major regulator at this time, while in higher eukaryotes PP2A phosphatases take a dominant role. Here, we use time-resolved phosphoproteome analysis in budding yeast to evaluate the respective contributions of Cdc14, PP2ACdc55, and PP2ARts1. This reveals an overlapping requirement for all three phosphatases during mitotic progression. Our time-resolved phosphoproteome resource reveals how Cdc14 instructs the sequential pattern of phosphorylation changes, in part through preferential recognition of serine-based cyclin-dependent kinase (Cdk) substrates. PP2ACdc55 and PP2ARts1 in turn exhibit a broad substrate spectrum with some selectivity for phosphothreonines and a role for PP2ARts1 in sustaining Aurora kinase activity. These results illustrate synergy and coordination between phosphatases as they orchestrate phosphoproteome dynamics during mitotic progression. Cdc14, PP2ACdc55, and PP2ARts1 phosphatases cooperate during budding yeast mitosis Cdc14 targets serine Cdk motifs for rapid dephosphorylation PP2ACdc55 dephosphorylates Cdk and Plk substrates on threonine residues PP2ARts1 displays regulatory crosstalk with Aurora kinase
Collapse
Affiliation(s)
- Sandra A Touati
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Lorena Hofbauer
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Andrew W Jones
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Gavin Kelly
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
7
|
Precise Replacement of Saccharomyces cerevisiae Proteasome Genes with Human Orthologs by an Integrative Targeting Method. G3-GENES GENOMES GENETICS 2020; 10:3189-3200. [PMID: 32680853 PMCID: PMC7466971 DOI: 10.1534/g3.120.401526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Artificial induction of a chromosomal double-strand break in Saccharomyces cerevisiae enhances the frequency of integration of homologous DNA fragments into the broken region by up to several orders of magnitude. The process of homologous repair can be exploited to integrate, in principle, any foreign DNA into a target site, provided the introduced DNA is flanked at both the 5′ and 3′ ends by sequences homologous to the region surrounding the double-strand break. I have developed tools to precisely direct double-strand breaks to chromosomal target sites with the meganuclease I-SceI and select integration events at those sites. The method is validated in two different applications. First, the introduction of site-specific single-nucleotide phosphorylation site mutations into the S. cerevisiae gene SPO12. Second, the precise chromosomal replacement of eleven S. cerevisiae proteasome genes with their human orthologs. Placing the human genes under S. cerevisiae transcriptional control allowed us to update our understanding of cross-species functional gene replacement. This experience suggests that using native promoters may be a useful general strategy for the coordinated expression of foreign genes in S. cerevisiae. I provide an integrative targeting tool set that will facilitate a variety of precision genome engineering applications.
Collapse
|
8
|
Jiménez J, Queralt E, Posas F, de Nadal E. The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis. Cell Cycle 2020; 19:2105-2118. [PMID: 32794416 PMCID: PMC7513861 DOI: 10.1080/15384101.2020.1804222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During evolution, cells have developed a plethora of mechanisms to optimize survival in a changing and unpredictable environment. In this regard, they have evolved networks that include environmental sensors, signaling transduction molecules and response mechanisms. Hog1 (yeast) and p38 (mammals) stress-activated protein kinases (SAPKs) are activated upon stress and they drive a full collection of cell adaptive responses aimed to maximize survival. SAPKs are extensively used to learn about the mechanisms through which cells adapt to changing environments. In addition to regulating gene expression and metabolism, SAPKs control cell cycle progression. In this review, we will discuss the latest findings related to the SAPK-driven regulation of mitosis upon osmostress in yeast.
Collapse
Affiliation(s)
- Javier Jiménez
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Department of Ciències Bàsiques, Facultat De Medicina I Ciències De La Salut, Universitat Internacional De Catalunya , Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Institut d'Investigacions Biomèdica De Bellvitge (IDIBELL), L'Hospitalet De Llobregat , Barcelona, Spain
| | - Francesc Posas
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| | - Eulàlia de Nadal
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| |
Collapse
|
9
|
PP2A Functions during Mitosis and Cytokinesis in Yeasts. Int J Mol Sci 2019; 21:ijms21010264. [PMID: 31906018 PMCID: PMC6981662 DOI: 10.3390/ijms21010264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation is a common mechanism for the regulation of cell cycle progression. The opposing functions of cell cycle kinases and phosphatases are crucial for accurate chromosome segregation and exit from mitosis. Protein phosphatases 2A are heterotrimeric complexes that play essential roles in cell growth, proliferation, and regulation of the cell cycle. Here, we review the function of the protein phosphatase 2A family as the counteracting force for the mitotic kinases. We focus on recent findings in the regulation of mitotic exit and cytokinesis by PP2A phosphatases in S. cerevisiae and other fungal species.
Collapse
|
10
|
Örd M, Venta R, Möll K, Valk E, Loog M. Cyclin-Specific Docking Mechanisms Reveal the Complexity of M-CDK Function in the Cell Cycle. Mol Cell 2019; 75:76-89.e3. [PMID: 31101497 PMCID: PMC6620034 DOI: 10.1016/j.molcel.2019.04.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/28/2019] [Accepted: 04/19/2019] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinases (CDKs) coordinate hundreds of molecular events during the cell cycle. Multiple cyclins are involved, but the global role of cyclin-specific phosphorylation has remained unsolved. We uncovered a cyclin docking motif, LxF, that mediates binding of replication factor Cdc6 to mitotic cyclin. This interaction leads to phospho-adaptor Cks1-mediated inhibition of M-CDK to facilitate Cdc6 accumulation and sequestration in mitosis. The LxF motif and Cks1 also mediate the mutual inhibition between M-CDK and the tyrosine kinase Swe1. Additionally, the LxF motif is critical for targeting M-CDK to phosphorylate several mitotic regulators; for example, Spo12 is targeted via LxF to release the phosphatase Cdc14. The results complete the full set of G1, S, and M-CDK docking mechanisms and outline the unified role of cyclin specificity and CDK activity thresholds. Cooperation of cyclin and Cks1 docking creates a variety of CDK thresholds and switching orders, including combinations of last in, first out (LIFO) and first in, first out (FIFO) ordering. Mitotic cyclin Clb2 binds a specific linear motif, LxF, in targets or inhibitors LxF interaction enhances mitotic CDK substrate phosphorylation Phospho-adaptor Cks1 and the LxF docking mediate CDK inhibition by Cdc6 and Swe1 Cyclin-specific targeting enables finetuning of CDK function
Collapse
Affiliation(s)
- Mihkel Örd
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Rainis Venta
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Kaidi Möll
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Ervin Valk
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
11
|
Wang M, Bokros M, Theodoridis PR, Lee S. Nucleolar Sequestration: Remodeling Nucleoli Into Amyloid Bodies. Front Genet 2019; 10:1179. [PMID: 31824572 PMCID: PMC6881480 DOI: 10.3389/fgene.2019.01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023] Open
Abstract
This year marks the 20th anniversary of the discovery that the nucleolus can temporarily immobilize proteins, a process known as nucleolar sequestration. This review reflects on the progress made to understand the physiological roles of nucleolar sequestration and the mechanisms involved in the immobilization of proteins. We discuss how protein immobilization can occur through a highly choreographed amyloidogenic program that converts the nucleolus into a large fibrous organelle with amyloid-like characteristics called the amyloid body (A-body). We propose a working model of A-body biogenesis that includes a role for low-complexity ribosomal intergenic spacer RNA (rIGSRNA) and a discrete peptide sequence, the amyloid-converting motif (ACM), found in many proteins that undergo immobilization. Amyloid bodies provide a unique model to study the multistep assembly of a membraneless compartment and may provide alternative insights into the pathological amyloidogenesis involved in neurological disorders.
Collapse
Affiliation(s)
- Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Phaedra Rebecca Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Urology, Miller School of Medicine, University of Miami, FL, United States
- *Correspondence: Stephen Lee,
| |
Collapse
|
12
|
Nakatsukasa K, Sone M, Alemayehu DH, Okumura F, Kamura T. The HECT-type ubiquitin ligase Tom1 contributes to the turnover of Spo12, a component of the FEAR network, in G2/M phase. FEBS Lett 2018; 592:1716-1724. [PMID: 29683484 DOI: 10.1002/1873-3468.13066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 11/11/2022]
Abstract
The ubiquitin-proteasome system plays a crucial role in cell cycle progression. A previous study suggested that Spo12, a component of the Cdc14 early anaphase release (FEAR) network, is targeted for degradation by the APC/CCdh1 complex in G1 phase. In the present study, we demonstrate that the Hect-type ubiquitin ligase Tom1 contributes to the turnover of Spo12 in G2/M phase. Coimmunoprecipitation analysis confirmed that Tom1 and Spo12 interact. Overexpression of Spo12 is cytotoxic in the absence of Tom1. Notably, Spo12 is degraded in S phase even in the absence of Tom1 and Cdh1, suggesting that an additional E3 ligase(s) also mediates Spo12 degradation. Together, we propose that several distinct degradation pathways control the level of Spo12 during the cell cycle.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Megumi Sone
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Dawit Hailu Alemayehu
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| |
Collapse
|
13
|
Botchkarev VV, Haber JE. Functions and regulation of the Polo-like kinase Cdc5 in the absence and presence of DNA damage. Curr Genet 2018; 64:87-96. [PMID: 28770345 PMCID: PMC6249032 DOI: 10.1007/s00294-017-0727-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022]
Abstract
Polo-like kinases are essential cell cycle regulators that are conserved from yeast to humans. Unlike higher eukaryotes, who express multiple Polo-like kinase family members that perform many important functions, budding yeast express only a single Polo-like kinase, Cdc5, which is the homolog of mammalian cell cycle master regulator Polo-like kinase 1. Cdc5 is a fascinating multifaceted protein that is programmed to target its many substrates in a timely, sequential manner to ensure proper cell cycle progression. Over the years, many lessons about Polo-like kinase 1 have been learned by studying Cdc5 in budding yeast. Cdc5 has been well documented in regulating mitotic entry, chromosome segregation, mitotic exit, and cytokinesis. Cdc5 also plays important roles during cell division after DNA damage. Here, we briefly review the many functions of Cdc5 and its regulation in the absence and presence of DNA damage.
Collapse
Affiliation(s)
- Vladimir V Botchkarev
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02454, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02454, USA.
| |
Collapse
|
14
|
Powers BL, Hall MC. Re-examining the role of Cdc14 phosphatase in reversal of Cdk phosphorylation during mitotic exit. J Cell Sci 2017; 130:2673-2681. [PMID: 28663385 DOI: 10.1242/jcs.201012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/26/2017] [Indexed: 01/12/2023] Open
Abstract
Inactivation of cyclin-dependent kinase (Cdk) and reversal of Cdk phosphorylation are universally required for mitotic exit. In budding yeast (Saccharomyces cerevisiae), Cdc14 is essential for both and thought to be the major Cdk-counteracting phosphatase. However, Cdc14 is not required for mitotic exit in many eukaryotes, despite highly conserved biochemical properties. The question of how similar enzymes could have such disparate influences on mitotic exit prompted us to re-examine the contribution of budding yeast Cdc14. By using an auxin-inducible degron, we show that severe Cdc14 depletion has no effect on the kinetics of mitotic exit and bulk Cdk substrate dephosphorylation, but causes a cell separation defect and is ultimately lethal. Phosphoproteomic analysis revealed that Cdc14 is highly selective for distinct Cdk sites in vivo and does not catalyze widespread Cdk substrate dephosphorylation. We conclude that additional phosphatases likely contribute substantially to Cdk substrate dephosphorylation and coordination of mitotic exit in budding yeast, similar to in other eukaryotes, and the critical mitotic exit functions of Cdc14 require trace amounts of enzyme. We propose that Cdc14 plays very specific, and often different, roles in counteracting Cdk phosphorylation in all species.
Collapse
Affiliation(s)
- Brendan L Powers
- Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C Hall
- Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Kerr GW, Wong JH, Arumugam P. PP2A(Cdc55)'s role in reductional chromosome segregation during achiasmate meiosis in budding yeast is independent of its FEAR function. Sci Rep 2016; 6:30397. [PMID: 27455870 PMCID: PMC4960654 DOI: 10.1038/srep30397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/30/2016] [Indexed: 11/09/2022] Open
Abstract
PP2ACdc55 is a highly conserved serine-threonine protein phosphatase that is involved in diverse cellular processes. In budding yeast, meiotic cells lacking PP2ACdc55 activity undergo a premature exit from meiosis I which results in a failure to form bipolar spindles and divide nuclei. This defect is largely due to its role in negatively regulating the Cdc Fourteen Early Anaphase Release (FEAR) pathway. PP2ACdc55 prevents nucleolar release of the Cdk (Cyclin-dependent kinase)-antagonising phosphatase Cdc14 by counteracting phosphorylation of the nucleolar protein Net1 by Cdk. CDC55 was identified in a genetic screen for monopolins performed by isolating suppressors of spo11Δ spo12Δ lethality suggesting that Cdc55 might have a role in meiotic chromosome segregation. We investigated this possibility by isolating cdc55 alleles that suppress spo11Δ spo12Δ lethality and show that this suppression is independent of PP2ACdc55’s FEAR function. Although the suppressor mutations in cdc55 affect reductional chromosome segregation in the absence of recombination, they have no effect on chromosome segregation during wild type meiosis. We suggest that Cdc55 is required for reductional chromosome segregation during achiasmate meiosis and this is independent of its FEAR function.
Collapse
Affiliation(s)
- Gary W Kerr
- School of Environment &Life Sciences, University of Salford, Manchester, UK
| | - Jin Huei Wong
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore
| | - Prakash Arumugam
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| |
Collapse
|
16
|
Yellman CM, Roeder GS. Cdc14 Early Anaphase Release, FEAR, Is Limited to the Nucleus and Dispensable for Efficient Mitotic Exit. PLoS One 2015; 10:e0128604. [PMID: 26090959 PMCID: PMC4474866 DOI: 10.1371/journal.pone.0128604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/28/2015] [Indexed: 11/21/2022] Open
Abstract
Cdc14 phosphatase is a key regulator of exit from mitosis, acting primarily through antagonism of cyclin-dependent kinase, and is also thought to be important for meiosis. Cdc14 is released from its sequestration site in the nucleolus in two stages, first by the non-essential Cdc Fourteen Early Anaphase Release (FEAR) pathway and later by the essential Mitotic Exit Network (MEN), which drives efficient export of Cdc14 to the cytoplasm. We find that Cdc14 is confined to the nucleus during early mitotic anaphase release, and during its meiosis I release. Proteins whose degradation is directed by Cdc14 as a requirement for mitotic exit (e.g. the B-type cyclin, Clb2), remain stable during mitotic FEAR, a result consistent with Cdc14 being restricted to the nucleus and not participating directly in mitotic exit. Cdc14 released by the FEAR pathway has been proposed to have a wide variety of activities, all of which are thought to promote passage through anaphase. Proposed functions of FEAR include stabilization of anaphase spindles, resolution of the rDNA to allow its segregation, and priming of the MEN so that mitotic exit can occur promptly and efficiently. We tested the model for FEAR functions using the FEAR-deficient mutation net1-6cdk. Our cytological observations indicate that, contrary to the current model, FEAR is fully dispensable for timely progression through a series of anaphase landmarks and mitotic exit, although it is required for timely rDNA segregation. The net1-6cdk mutation suppresses temperature-sensitive mutations in MEN genes, suggesting that rather than activating mitotic exit, FEAR either inhibits the MEN or has no direct effect upon it. One interpretation of this result is that FEAR delays MEN activation to ensure that rDNA segregation occurs before mitotic exit. Our findings clarify the distinction between FEAR and MEN-dependent Cdc14 activities and will help guide emerging quantitative models of this cell cycle transition.
Collapse
Affiliation(s)
- Christopher M. Yellman
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, United States of America
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520, United States of America
- * E-mail:
| | - G. Shirleen Roeder
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, United States of America
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520, United States of America
- Department of Genetics, Yale University, New Haven, Connecticut, 06520, United States of America
| |
Collapse
|
17
|
Godfrey M, Kuilman T, Uhlmann F. Nur1 dephosphorylation confers positive feedback to mitotic exit phosphatase activation in budding yeast. PLoS Genet 2015; 11:e1004907. [PMID: 25569132 PMCID: PMC4287440 DOI: 10.1371/journal.pgen.1004907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/20/2014] [Indexed: 12/16/2022] Open
Abstract
Substrate dephosphorylation by the cyclin-dependent kinase (Cdk)-opposing phosphatase, Cdc14, is vital for many events during budding yeast mitotic exit. Cdc14 is sequestered in the nucleolus through inhibitory binding to Net1, from which it is released in anaphase following Net1 phosphorylation. Initial Net1 phosphorylation depends on Cdk itself, in conjunction with proteins of the Cdc14 Early Anaphase Release (FEAR) network. Later on, the Mitotic Exit Network (MEN) signaling cascade maintains Cdc14 release. An important unresolved question is how Cdc14 activity can increase in early anaphase, while Cdk activity, that is required for Net1 phosphorylation, decreases and the MEN is not yet active. Here we show that the nuclear rim protein Nur1 interacts with Net1 and, in its Cdk phosphorylated form, inhibits Cdc14 release. Nur1 is dephosphorylated by Cdc14 in early anaphase, relieving the inhibition and promoting further Cdc14 release. Nur1 dephosphorylation thus describes a positive feedback loop in Cdc14 phosphatase activation during mitotic exit, required for faithful chromosome segregation and completion of the cell division cycle. During the cell cycle, a specific sequence of events leads to the formation of two daughter cells from one mother cell. Progression through the cell cycle is tightly controlled, with events occurring in the right place at the right time. Exactly how this is achieved is still being elucidated. In budding yeast, the events occurring during the final cell cycle phase – “mitotic exit” – are controlled by the phosphatase Cdc14. It is kept sequestered and inactive until it is needed for mitotic exit, at which time it is rapidly released. In this study, we have identified a new regulator of Cdc14 activity, the protein Nur1. In a series of experiments, we saw that Nur1 acts both upstream and downstream of Cdc14 activation, thereby creating a positive feedback loop. On the one hand, Nur1 contributes to inhibiting Cdc14 until the start of mitotic exit. On the other hand, through the actions of Cdc14 itself, Nur1 is disabled as an opponent of the phosphatase. This creates a robust system, rapidly switching between two opposing states and thus driving forward the mitotic exit transition.
Collapse
Affiliation(s)
- Molly Godfrey
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Thomas Kuilman
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Handfield LF, Strome B, Chong YT, Moses AM. Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images. ACTA ACUST UNITED AC 2014; 31:940-7. [PMID: 25398614 DOI: 10.1093/bioinformatics/btu759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MOTIVATION Quantifying variability in protein expression is a major goal of systems biology and cell-to-cell variability in subcellular localization pattern has not been systematically quantified. RESULTS We define a local measure to quantify cell-to-cell variability in high-throughput microscope images and show that it allows comparable measures of variability for proteins with diverse subcellular localizations. We systematically estimate cell-to-cell variability in the yeast GFP collection and identify examples of proteins that show cell-to-cell variability in their subcellular localization. CONCLUSIONS Automated image analysis methods can be used to quantify cell-to-cell variability in microscope images.
Collapse
Affiliation(s)
- Louis-François Handfield
- Department of Computer Science, Department of Cell & Systems Biology and Department of Molecular Genetics, University of Toronto, Ontario M5S 3B2, Canada
| | - Bob Strome
- Department of Computer Science, Department of Cell & Systems Biology and Department of Molecular Genetics, University of Toronto, Ontario M5S 3B2, Canada
| | - Yolanda T Chong
- Department of Computer Science, Department of Cell & Systems Biology and Department of Molecular Genetics, University of Toronto, Ontario M5S 3B2, Canada
| | - Alan M Moses
- Department of Computer Science, Department of Cell & Systems Biology and Department of Molecular Genetics, University of Toronto, Ontario M5S 3B2, Canada Department of Computer Science, Department of Cell & Systems Biology and Department of Molecular Genetics, University of Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
19
|
Marston AL. Chromosome segregation in budding yeast: sister chromatid cohesion and related mechanisms. Genetics 2014; 196:31-63. [PMID: 24395824 PMCID: PMC3872193 DOI: 10.1534/genetics.112.145144] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 12/28/2022] Open
Abstract
Studies on budding yeast have exposed the highly conserved mechanisms by which duplicated chromosomes are evenly distributed to daughter cells at the metaphase-anaphase transition. The establishment of proteinaceous bridges between sister chromatids, a function provided by a ring-shaped complex known as cohesin, is central to accurate segregation. It is the destruction of this cohesin that triggers the segregation of chromosomes following their proper attachment to microtubules. Since it is irreversible, this process must be tightly controlled and driven to completion. Furthermore, during meiosis, modifications must be put in place to allow the segregation of maternal and paternal chromosomes in the first division for gamete formation. Here, I review the pioneering work from budding yeast that has led to a molecular understanding of the establishment and destruction of cohesion.
Collapse
Affiliation(s)
- Adele L Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
20
|
CDK-dependent nuclear localization of B-cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast. PLoS One 2013; 8:e79001. [PMID: 24223874 PMCID: PMC3815228 DOI: 10.1371/journal.pone.0079001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I.
Collapse
|
21
|
Abstract
Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical paarts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle.
Collapse
|
22
|
Kerr GW, Sarkar S, Arumugam P. How to halve ploidy: lessons from budding yeast meiosis. Cell Mol Life Sci 2012; 69:3037-51. [PMID: 22481439 PMCID: PMC11114884 DOI: 10.1007/s00018-012-0974-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 11/26/2022]
Abstract
Maintenance of ploidy in sexually reproducing organisms requires a specialized form of cell division called meiosis that generates genetically diverse haploid gametes from diploid germ cells. Meiotic cells halve their ploidy by undergoing two rounds of nuclear division (meiosis I and II) after a single round of DNA replication. Research in Saccharomyces cerevisiae (budding yeast) has shown that four major deviations from the mitotic cell cycle during meiosis are essential for halving ploidy. The deviations are (1) formation of a link between homologous chromosomes by crossover, (2) monopolar attachment of sister kinetochores during meiosis I, (3) protection of centromeric cohesion during meiosis I, and (4) suppression of DNA replication following exit from meiosis I. In this review we present the current understanding of the above four processes in budding yeast and examine the possible conservation of molecular mechanisms from yeast to humans.
Collapse
Affiliation(s)
- Gary William Kerr
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | | |
Collapse
|
23
|
Broadus MR, Gould KL. Multiple protein kinases influence the redistribution of fission yeast Clp1/Cdc14 phosphatase upon genotoxic stress. Mol Biol Cell 2012; 23:4118-28. [PMID: 22918952 PMCID: PMC3469525 DOI: 10.1091/mbc.e12-06-0475] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Nucleolar release of Cdc14 phosphatases allows them access to substrates. Multiple kinases directly affect the Clp1/Cdc14 phosphostate and the nucleolar to nucleoplasmic transition of Clp1 in fission yeast upon genotoxic stress. In addition, Clp1 regulates its own nucleolar sequestration by antagonizing a subset of these networks. The Cdc14 phosphatase family antagonizes Cdk1 phosphorylation and is important for mitotic exit. To access their substrates, Cdc14 phosphatases are released from nucleolar sequestration during mitosis. Clp1/Flp1, the Schizosaccharomyces pombe Cdc14 orthologue, and Cdc14B, a mammalian orthologue, also exit the nucleolus during interphase upon DNA replication stress or damage, respectively, implicating Cdc14 phosphatases in the response to genotoxic insults. However, a mechanistic understanding of Cdc14 phosphatase nucleolar release under these conditions is incomplete. We show here that relocalization of Clp1 during genotoxic stress is governed by complex phosphoregulation. Specifically, the Rad3 checkpoint effector kinases Cds1 and/or Chk1, the cell wall integrity mitogen-activated protein kinase Pmk1, and the cell cycle kinase Cdk1 directly phosphorylate Clp1 to promote genotoxic stress–induced nucleoplasmic accumulation. However, Cds1 and/or Chk1 phosphorylate RxxS sites preferentially upon hydroxyurea treatment, whereas Pmk1 and Cdk1 preferentially phosphorylate Clp1 TP sites upon H2O2 treatment. Abolishing both Clp1 RxxS and TP phosphosites eliminates any genotoxic stress–induced redistribution. Reciprocally, preventing dephosphorylation of Clp1 TP sites shifts the distribution of the enzyme to the nucleoplasm constitutively. This work advances our understanding of pathways influencing Clp1 localization and may provide insight into mechanisms controlling Cdc14B phosphatases in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew R Broadus
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
24
|
Calabria I, Baro B, Rodriguez-Rodriguez JA, Russiñol N, Queralt E. Zds1 regulates PP2A(Cdc55) activity and Cdc14 activation during mitotic exit through its Zds_C motif. J Cell Sci 2012; 125:2875-84. [PMID: 22427694 PMCID: PMC3434804 DOI: 10.1242/jcs.097865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
At anaphase onset, highly active mitotic cyclin-dependent kinase (Cdk) is inactivated to promote exit from mitosis and completion of cytokinesis. The budding yeast Cdc14p phosphatase is a key mitotic regulator that counteracts cyclin-dependent kinase (Cdk) activity during mitotic exit. Separase, together with Zds1p, promotes the downregulation of the protein phosphatase 2A in conjunction with its Cdc55p regulatory subunit (PP2A(Cdc55)) in early anaphase, enabling accumulation of phosphorylated forms of Net1p and release of Cdc14p from the nucleolus. Here we show that the C-terminal domain of Zds1p, called the Zds_C motif, is required for Zds1-induced release of Cdc14p, and the N-terminal domain of the protein might be involved in regulating this activity. More interestingly, Zds1p physically interacts with Cdc55p, and regulates its localization through the Zds_C motif. Nevertheless, expression of the Zds_C motif at endogenous levels cannot induce timely release of Cdc14p from the nucleolus, despite the proper (nucleolar) localization of Cdc55p. Our results suggest that the activity of PP2A(Cdc55) cannot be modulated solely through regulation of its localization, and that an additional regulatory step is probably required. These results suggest that Zds1p recruits PP2A(Cdc55) to the nucleolus and induces its inactivation by an unknown mechanism.
Collapse
Affiliation(s)
- Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | |
Collapse
|
25
|
Bremmer SC, Hall H, Martinez JS, Eissler CL, Hinrichsen TH, Rossie S, Parker LL, Hall MC, Charbonneau H. Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. J Biol Chem 2011; 287:1662-9. [PMID: 22117071 DOI: 10.1074/jbc.m111.281105] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitotic cell division is controlled by cyclin-dependent kinases (Cdks), which phosphorylate hundreds of protein substrates responsible for executing the division program. Cdk inactivation and reversal of Cdk-catalyzed phosphorylation are universal requirements for completing and exiting mitosis and resetting the cell cycle machinery. Mechanisms that define the timing and order of Cdk substrate dephosphorylation remain poorly understood. Cdc14 phosphatases have been implicated in Cdk inactivation and are thought to be generally specific for Cdk-type phosphorylation sites. We show that budding yeast Cdc14 possesses a strong and unusual preference for phosphoserine over phosphothreonine at Pro-directed sites in vitro. Using serine to threonine substitutions in the Cdk consensus sites of the Cdc14 substrate Acm1, we demonstrate that phosphoserine specificity exists in vivo. Furthermore, it appears to be a conserved property of all Cdc14 family phosphatases. An invariant active site residue was identified that sterically restricts phosphothreonine binding and is largely responsible for phosphoserine selectivity. Optimal Cdc14 substrates also possessed a basic residue at the +3 position relative to the phosphoserine, whereas substrates lacking this basic residue were not effectively hydrolyzed. The intrinsic selectivity of Cdc14 may help establish the order of Cdk substrate dephosphorylation during mitotic exit and contribute to roles in other cellular processes.
Collapse
Affiliation(s)
- Steven C Bremmer
- Department of Biochemistry, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Finlayson MR, Helfer-Hungerbühler AK, Philippsen P. Regulation of exit from mitosis in multinucleate Ashbya gossypii cells relies on a minimal network of genes. Mol Biol Cell 2011; 22:3081-93. [PMID: 21737675 PMCID: PMC3164456 DOI: 10.1091/mbc.e10-12-1006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Saccharomyces cerevisiae, mitosis is coupled to cell division by the action of the Cdc fourteen early anaphase release (FEAR) and mitotic exit network (MEN) regulatory networks, which mediate exit from mitosis by activation of the phosphatase Cdc14. The closely related filamentous ascomycete Ashbya gossypii provides a unique cellular setting to study the evolution of these networks. Within its multinucleate hyphae, nuclei are free to divide without the spatial and temporal constraints described for budding yeast. To investigate how this highly conserved system has adapted to these circumstances, we constructed a series of mutants lacking homologues of core components of MEN and FEAR and monitored phenomena such as progression through mitosis and Cdc14 activation. MEN homologues in A. gossypii were shown to have diverged from their anticipated role in Cdc14 release and exit from mitosis. We observed defects in septation, as well as a partial metaphase arrest, in Agtem1Δ, Agcdc15Δ, Agdbf2/dbf20Δ, and Agmob1Δ. A. gossypii homologues of the FEAR network, on the other hand, have a conserved and more pronounced role in regulation of the M/G1 transition. Agcdc55Δ mutants are unable to sequester AgCdc14 throughout interphase. We propose a reduced model of the networks described in yeast, with a low degree of functional redundancy, convenient for further investigations into these networks.
Collapse
Affiliation(s)
- Mark R Finlayson
- Department of Molecular Microbiology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | |
Collapse
|
27
|
Kerr GW, Sarkar S, Tibbles KL, Petronczki M, Millar JB, Arumugam P. Meiotic nuclear divisions in budding yeast require PP2A(Cdc55)-mediated antagonism of Net1 phosphorylation by Cdk. J Cell Biol 2011; 193:1157-66. [PMID: 21690311 PMCID: PMC3216327 DOI: 10.1083/jcb.201103019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/25/2011] [Indexed: 12/02/2022] Open
Abstract
During meiosis, one round of deoxyribonucleic acid replication is followed by two rounds of nuclear division. In Saccharomyces cerevisiae, activation of the Cdc14 early anaphase release (FEAR) network is required for exit from meiosis I but does not lead to the activation of origins of replication. The precise mechanism of how FEAR regulates meiosis is not understood. In this paper, we report that premature activation of FEAR during meiosis caused by loss of protein phosphatase PP2A(Cdc55) activity blocks bipolar spindle assembly and nuclear divisions. In cdc55 meiotic null (cdc55-mn) cells, the cyclin-dependent kinase (Cdk)-counteracting phosphatase Cdc14 was released prematurely from the nucleolus concomitant with hyperphosphorylation of its nucleolar anchor protein Net1. Crucially, a mutant form of Net1 that lacks six Cdk phosphorylation sites rescued the meiotic defect of cdc55-mn cells. Expression of a dominant mutant allele of CDC14 mimicked the cdc55-mn phenotype. We propose that phosphoregulation of Net1 by PP2A(Cdc55) is essential for preventing precocious exit from meiosis I.
Collapse
Affiliation(s)
- Gary W. Kerr
- University of Warwick, Coventry CV4 7AL, England, UK
| | - Sourav Sarkar
- University of Warwick, Coventry CV4 7AL, England, UK
| | | | - Mark Petronczki
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, Hertfordshire EN6 3LD, England, UK
| | | | | |
Collapse
|
28
|
Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase. Proc Natl Acad Sci U S A 2011; 108:6349-54. [PMID: 21464305 DOI: 10.1073/pnas.1102758108] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The SNF1 protein kinase of Saccharomyces cerevisiae is a member of the SNF1/AMP-activated protein kinase family, which is essential for metabolic control, energy homeostasis, and stress responses in eukaryotes. SNF1 is activated in response to glucose limitation by phosphorylation of Thr210 on the activation loop of the catalytic subunit Snf1. The SNF1 β-subunit contains a glycogen-binding domain that has been implicated in glucose inhibition of Snf1 Thr210 phosphorylation. To assess the role of glycogen, we examined Snf1 phosphorylation in strains with altered glycogen metabolism. A reg1Δ mutant, lacking Reg1-Glc7 protein phosphatase 1, exhibits elevated glycogen accumulation and phosphorylation of Snf1 during growth on high levels of glucose. Unexpectedly, mutations that abolished glycogen synthesis also restored Thr210 dephosphorylation in glucose-grown reg1Δ cells, indicating that elevated glycogen synthesis contributes to activation of SNF1 and that another phosphatase acts on Snf1. We present evidence that Sit4, a type 2A-like protein phosphatase, contributes to dephosphorylation of Snf1 Thr210. Finally, evidence that the effects of glycogen are not mediated by binding to the β-subunit raises the possibility that elevated glycogen synthesis alters glucose metabolism and thereby reduces glucose signaling to the SNF1 pathway.
Collapse
|
29
|
Slk19p of Saccharomyces cerevisiae regulates anaphase spindle dynamics through two independent mechanisms. Genetics 2010; 186:1247-60. [PMID: 20923975 DOI: 10.1534/genetics.110.123257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Slk19p is a member of the Cdc-14 early anaphase release (FEAR) pathway, a signaling network that is responsible for activation of the cell-cycle regulator Cdc14p in Saccharomyces cerevisiae. Disruption of the FEAR pathway results in defects in anaphase, including alterations in the assembly and behavior of the anaphase spindle. Many phenotypes of slk19Δ mutants are consistent with a loss of FEAR signaling, but other phenotypes suggest that Slk19p may have FEAR-independent roles in modulating the behavior of microtubules in anaphase. Here, a series of SLK19 in-frame deletion mutations were used to test whether Slk19p has distinct roles in anaphase that can be ascribed to specific regions of the protein. Separation-of-function alleles were identified that are defective for either FEAR signaling or aspects of anaphase spindle function. The data suggest that in early anaphase one region of Slk19p is essential for FEAR signaling, while later in anaphase another region is critical for maintaining the coordination between spindle elongation and the growth of interpolar microtubules.
Collapse
|
30
|
Cdc14-dependent dephosphorylation of a kinetochore protein prior to anaphase in Saccharomyces cerevisiae. Genetics 2010; 186:1487-91. [PMID: 20923974 DOI: 10.1534/genetics.110.123653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The budding yeast Cdc14 phosphatase reverses Cdk1 phosphorylation to promote mitotic exit. Although Cdc14 activity is thought to be restricted to anaphase, we found that dephosphorylation of the Dsn1 kinetochore protein in metaphase requires Cdc14. These data suggest that there is a nonnucleolar pool of active Cdc14 prior to anaphase.
Collapse
|
31
|
Manzoni R, Montani F, Visintin C, Caudron F, Ciliberto A, Visintin R. Oscillations in Cdc14 release and sequestration reveal a circuit underlying mitotic exit. ACTA ACUST UNITED AC 2010; 190:209-22. [PMID: 20660629 PMCID: PMC2930283 DOI: 10.1083/jcb.201002026] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The phosphatase Cdc14 exerts negative feedback on its upstream regulators to limit its release from the nucleolus to once per cell cycle. In budding yeast, the phosphatase Cdc14 orchestrates progress through anaphase and mitotic exit, thereby resetting the cell cycle for a new round of cell division. Two consecutive pathways, Cdc fourteen early anaphase release (FEAR) and mitotic exit network (MEN), contribute to the progressive activation of Cdc14 by regulating its release from the nucleolus, where it is kept inactive by Cfi1. In this study, we show that Cdc14 activation requires the polo-like kinase Cdc5 together with either Clb–cyclin-dependent kinase (Cdk) or the MEN kinase Dbf2. Once active, Cdc14 triggers a negative feedback loop that, in the presence of stable levels of mitotic cyclins, generates periodic cycles of Cdc14 release and sequestration. Similar phenotypes have been described for yeast bud formation and centrosome duplication. A common theme emerges where events that must happen only once per cycle, although intrinsically capable of oscillations, are limited to one occurrence by the cyclin–Cdk cell cycle engine.
Collapse
Affiliation(s)
- Romilde Manzoni
- The Italian Foundation for Cancer Research Institute of Molecular Oncology, 20139 Milan, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Jeremy M Rock
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge, MA 02142, USA
| | | |
Collapse
|
33
|
König C, Maekawa H, Schiebel E. Mutual regulation of cyclin-dependent kinase and the mitotic exit network. ACTA ACUST UNITED AC 2010; 188:351-68. [PMID: 20123997 PMCID: PMC2819678 DOI: 10.1083/jcb.200911128] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mitotic exit network (MEN) is a spindle pole body (SPB)-associated, GTPase-driven signaling cascade that controls mitotic exit. The inhibitory Bfa1-Bub2 GTPase-activating protein (GAP) only associates with the daughter SPB (dSPB), raising the question as to how the MEN is regulated on the mother SPB (mSPB). Here, we show mutual regulation of cyclin-dependent kinase 1 (Cdk1) and the MEN. In early anaphase Cdk1 becomes recruited to the mSPB depending on the activity of the MEN kinase Cdc15. Conversely, Cdk1 negatively regulates binding of Cdc15 to the mSPB. In addition, Cdk1 phosphorylates the Mob1 protein to inhibit the activity of Dbf2-Mob1 kinase that regulates Cdc14 phosphatase. Our data revise the understanding of the spatial regulation of the MEN. Although MEN activity in the daughter cells is controlled by Bfa1-Bub2, Cdk1 inhibits MEN activity at the mSPB. Consistent with this model, only triple mutants that lack BUB2 and the Cdk1 phosphorylation sites in Mob1 and Cdc15 show mitotic exit defects.
Collapse
Affiliation(s)
- Cornelia König
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), ZMBH-DKFZ Alliance, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
34
|
Liang F, Jin F, Liu H, Wang Y. The molecular function of the yeast polo-like kinase Cdc5 in Cdc14 release during early anaphase. Mol Biol Cell 2009; 20:3671-9. [PMID: 19570916 DOI: 10.1091/mbc.e08-10-1049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, Cdc14 is sequestered within the nucleolus before anaphase entry through its association with Net1/Cfi1, a nucleolar protein. Protein phosphatase PP2A(Cdc55) dephosphorylates Net1 and keeps it as a hypophosphorylated form before anaphase. Activation of the Cdc fourteen early anaphase release (FEAR) pathway after anaphase entry induces a brief Cdc14 release from the nucleolus. Some of the components in the FEAR pathway, including Esp1, Slk19, and Spo12, inactivate PP2A(Cdc55), allowing the phosphorylation of Net1 by mitotic cyclin-dependent kinase (Cdk) (Clb2-Cdk1). However, the function of another FEAR component, the Polo-like kinase Cdc5, remains elusive. Here, we show evidence indicating that Cdc5 promotes Cdc14 release primarily by stimulating the degradation of Swe1, the inhibitory kinase for mitotic Cdk. First, we found that deletion of SWE1 partially suppresses the FEAR defects in cdc5 mutants. In contrast, high levels of Swe1 impair FEAR activation. We also demonstrated that the accumulation of Swe1 in cdc5 mutants is responsible for the decreased Net1 phosphorylation. Therefore, we conclude that the down-regulation of Swe1 protein levels by Cdc5 promotes FEAR activation by relieving the inhibition on Clb2-Cdk1, the kinase for Net1 protein.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Biomedical Sciences, Florida State University, Tallahassee, 32306, USA
| | | | | | | |
Collapse
|