1
|
Teeters G, Cucolo CE, Kasar SN, Worley MI, Siegrist SE. Spatiotemporal control of cell ablation using Ronidazole with Nitroreductase in Drosophila. Dev Biol 2025; 520:31-40. [PMID: 39736378 PMCID: PMC11830547 DOI: 10.1016/j.ydbio.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
The ability to induce cell death in a controlled stereotypic manner has led to the discovery of evolutionary conserved molecules and signaling pathways necessary for tissue growth, repair, and regeneration. Here we report the development of a new method to genetically induce cell death in a controlled stereotypic manner in Drosophila. This method has advantages over other current methods and relies on expression of the E. coli enzyme Nitroreductase (NTR) with exogenous application of the nitroimidazole prodrug, Ronidazole. NTR expression is controlled spatially using the GAL4/UAS system while temporal control of cell death is achieved through timed feeding of Ronidazole supplied in the diet. In cells expressing NTR, Ronidazole is converted to a toxic substance inducing DNA damage and cell death. Caspase cell death is achieved in a range of NTR-expressing cell types with Ronidazole feeding, including epithelial, neurons, and glia. Removing Ronidazole from the diet restores cell death to normal unperturbed levels. Unlike other genetic ablation methods, temporal control is achieved through feeding not temperature, circumventing developmental complications associated with temperature changes. Ronidazole-NTR also requires only two transgenes, a GAL4 driver and UAS-NTR, which is generated as a GFP-NTR fusion allowing for easy setup of large-scale screening of UAS-RNAi lines. Altogether, Ronidazole-NTR provides a new streamlined method for inducing cell death in Drosophila with temperature-independent ON/OFF control.
Collapse
Affiliation(s)
- Gary Teeters
- Program in Fundamental Neuroscience, Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA; Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Christina E Cucolo
- Program in Fundamental Neuroscience, Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA; Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Sagar N Kasar
- Program in Fundamental Neuroscience, Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA; Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Melanie I Worley
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Sarah E Siegrist
- Program in Fundamental Neuroscience, Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA; Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
2
|
Hsu FTY, Smith-Bolton R. Myc and Tor drive growth and cell competition in the regeneration blastema of Drosophila wing imaginal discs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643479. [PMID: 40161768 PMCID: PMC11952556 DOI: 10.1101/2025.03.15.643479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
During the regeneration of injured or lost tissues, the regeneration blastema serves as a hub for robust growth. Drosophila imaginal discs are a genetically tractable and simple model system for the study of regeneration and organization of this regrowth. Key signals that contribute to regenerative growth in these discs, such as ROS, Wnt/Wg, JNK, p38, JAK/STAT, and the Hippo pathway, have been identified. However, a detailed exploration of the spatial organization of regrowth, the factors that directly drive this growth, and the consequences of activating drivers of regeneration has not been undertaken. Here, we find that regenerative growth in imaginal discs is controlled by the transcription factor Myc and by Tor signaling, which additively drive proliferation and translation in the regeneration blastema. The spatial organization of growth in the blastema is arranged into concentric growth zones defined by Myc expression, elevated Tor activity, and elevated translation. In addition, the increased Myc expression in the innermost zone induced Xrp1-independent cell competition-like death in the adjacent zones, revealing a delicate balance between driving growth and inducing death in the regenerating tissue.
Collapse
Affiliation(s)
- Felicity Ting-Yu Hsu
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel Smith-Bolton
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
4
|
Teeters G, Weasner BM, Ordway AJ, Weasner BP, Kumar JP. Control of fate specification within the dorsal head of Drosophila melanogaster. Development 2024; 151:dev199885. [PMID: 39190554 PMCID: PMC11385744 DOI: 10.1242/dev.199885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/11/2024] [Indexed: 08/29/2024]
Abstract
During development, unique combinations of transcription factors and signaling pathways carve the nascent eye-antennal disc of the fruit fly Drosophila melanogaster into several territories that will eventually develop into the compound eye, ocelli, head epidermis, bristles, antenna and maxillary palpus of the adult head. Juxtaposed patterns of Hedgehog (Hh) and Decapentaplegic (Dpp) initiate compound eye development, while reciprocal domains of Dpp and Wingless (Wg) induce formation of the antennal and maxillary palp fields. Hh and Wg signaling, but not Dpp, contribute to the patterning of the dorsal head vertex. Here, we show that combinatorial reductions of the Pax6 transcription factor Twin of Eyeless and either the Wg pathway or the Mirror (Mirr) transcription factor trigger a transformation of the ocelli into a compound eye and the neighboring head epidermis into an antenna. These changes in fate are accompanied by the ectopic expression of Dpp, which might be expected to trigger these changes in fate. However, the transformation of the field cannot be replicated by increasing Dpp levels alone despite the recreation of adjacent Hh-Dpp and Wg-Dpp domains. As such, the emergence of these ectopic organs occurs through a unique regulatory path.
Collapse
Affiliation(s)
- Gary Teeters
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bonnie M. Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alison J. Ordway
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
McPherson WK, Van Gorder EE, Hilovsky DL, Jamali LA, Keliinui CN, Suzawa M, Bland ML. Synchronizing Drosophila larvae with the salivary gland reporter Sgs3-GFP for discovery of phenotypes in the late third instar stage. Dev Biol 2024; 512:35-43. [PMID: 38710381 DOI: 10.1016/j.ydbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The larval stage of the Drosophila melanogaster life cycle is characterized by rapid growth and nutrient storage that occur over three instar stages separated by molts. In the third instar, the steroid hormone ecdysone drives key developmental processes and behaviors that occur in a temporally-controlled sequence and prepare the animal to undergo metamorphosis. Accurately staging Drosophila larvae within the final third instar is critical due to the rapid developmental progress at this stage, but it is challenging because the rate of development varies widely across a population of animals even if eggs are laid within a short period of time. Moreover, many methods to stage third instar larvae are cumbersome, and inherent variability in the rate of development confounds some of these approaches. Here we demonstrate the usefulness of the Sgs3-GFP transgene, a fusion of the Salivary gland secretion 3 (Sgs3) and GFP proteins, for staging third instar larvae. Sgs3-GFP is expressed in the salivary glands in an ecdysone-dependent manner from the midpoint of the third instar, and its expression pattern changes reproducibly as larvae progress through the third instar. We show that Sgs3-GFP can easily be incorporated into experiments, that it allows collection of developmentally-equivalent individuals from a mixed population of larvae, and that its use enables precise assessment of changing levels of hormones, metabolites, and gene expression during the second half of the third instar.
Collapse
Affiliation(s)
- W Kyle McPherson
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0875, USA
| | - Elizabeth E Van Gorder
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0875, USA
| | - Dalton L Hilovsky
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0875, USA
| | - Leila A Jamali
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0875, USA
| | - Cami N Keliinui
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0875, USA
| | - Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0875, USA
| | - Michelle L Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0875, USA.
| |
Collapse
|
6
|
Terry D, Schweibenz C, Moberg K. Local Ecdysone synthesis in a wounded epithelium sustains developmental delay and promotes regeneration in Drosophila. Development 2024; 151:dev202828. [PMID: 38775023 PMCID: PMC11234263 DOI: 10.1242/dev.202828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024]
Abstract
Regenerative ability often declines as animals mature past embryonic and juvenile stages, suggesting that regeneration requires redirection of growth pathways that promote developmental growth. Intriguingly, the Drosophila larval epithelia require the hormone ecdysone (Ec) for growth but require a drop in circulating Ec levels to regenerate. Examining Ec dynamics more closely, we find that transcriptional activity of the Ec-receptor (EcR) drops in uninjured regions of wing discs, but simultaneously rises in cells around the injury-induced blastema. In parallel, blastema depletion of genes encoding Ec biosynthesis enzymes blocks EcR activity and impairs regeneration but has no effect on uninjured wings. We find that local Ec/EcR signaling is required for injury-induced pupariation delay following injury and that key regeneration regulators upd3 and Ets21c respond to Ec levels. Collectively, these data indicate that injury induces a local source of Ec within the wing blastema that sustains a transcriptional signature necessary for developmental delay and tissue repair.
Collapse
Affiliation(s)
- Douglas Terry
- Graduate Programs in Genetic and Molecular Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colby Schweibenz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Kenneth Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Urban JM, Bateman JR, Garza KR, Borden J, Jain J, Brown A, Thach BJ, Bliss JE, Gerbi SA. Bradysia (Sciara) coprophila larvae up-regulate DNA repair pathways and down-regulate developmental regulators in response to ionizing radiation. Genetics 2024; 226:iyad208. [PMID: 38066617 PMCID: PMC10917502 DOI: 10.1093/genetics/iyad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
The level of resistance to radiation and the developmental and molecular responses can vary between species, and even between developmental stages of one species. For flies (order: Diptera), prior studies concluded that the fungus gnat Bradysia (Sciara) coprophila (sub-order: Nematocera) is more resistant to irradiation-induced mutations that cause visible phenotypes than the fruit fly Drosophila melanogaster (sub-order: Brachycera). Therefore, we characterized the effects of and level of resistance to ionizing radiation on B. coprophila throughout its life cycle. Our data show that B. coprophila embryos are highly sensitive to even low doses of gamma-irradiation, whereas late-stage larvae can tolerate up to 80 Gy (compared to 40 Gy for D. melanogaster) and still retain their ability to develop to adulthood, though with a developmental delay. To survey the genes involved in the early transcriptional response to irradiation of B. coprophila larvae, we compared larval RNA-seq profiles with and without radiation treatment. The up-regulated genes were enriched for DNA damage response genes, including those involved in DNA repair, cell cycle arrest, and apoptosis, whereas the down-regulated genes were enriched for developmental regulators, consistent with the developmental delay of irradiated larvae. Interestingly, members of the PARP and AGO families were highly up-regulated in the B. coprophila radiation response. We compared the transcriptome responses in B. coprophila to the transcriptome responses in D. melanogaster from 3 previous studies: whereas pathway responses are highly conserved, specific gene responses are less so. Our study lays the groundwork for future work on the radiation responses in Diptera.
Collapse
Affiliation(s)
- John M Urban
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
- Department of Embryology, Carnegie Institution for Science, Howard Hughes Medical Institute Research Laboratories, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Kodie R Garza
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Julia Borden
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| | - Jaison Jain
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| | - Alexia Brown
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Bethany J Thach
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jacob E Bliss
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| | - Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| |
Collapse
|
8
|
Terry D, Schweibenz C, Moberg K. Local ecdysone synthesis in a wounded epithelium sustains developmental delay and promotes regeneration in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581888. [PMID: 38464192 PMCID: PMC10925115 DOI: 10.1101/2024.02.25.581888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Regenerative ability often declines as animals mature past embryonic and juvenile stages, suggesting that regeneration requires redirection of growth pathways that promote developmental growth. Intriguingly, the Drosophila larval epithelia require the hormone ecdysone (Ec) for growth but require a drop in circulating Ec levels to regenerate. Examining Ec dynamics more closely, we find that transcriptional activity of the Ec-receptor (EcR) drops in uninjured regions of wing discs, but simultaneously rises in cells around the injury-induced blastema. In parallel, blastema depletion of genes encoding Ec biosynthesis enzymes blocks EcR activity and impairs regeneration but has no effect on uninjured wings. We find that local Ec/EcR signaling is required for injury-induced pupariation delay following injury and that key regeneration regulators upd3 and Ets21c respond to Ec levels. Collectively, these data indicate that injury induces a local source of Ec within the wing blastema that sustains a transcriptional signature necessary for developmental delay and tissue repair.
Collapse
Affiliation(s)
- Douglas Terry
- Graduate Programs in Genetics and Molecular Biology, Laney Graduate School, Emory University
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Colby Schweibenz
- Graduate Programs in Biochemistry, Cell, and Developmental Biology, Laney Graduate School, Emory University
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Kenneth Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
9
|
Abidi SNF, Hsu FTY, Smith-Bolton RK. Regenerative growth is constrained by brain tumor to ensure proper patterning in Drosophila. PLoS Genet 2023; 19:e1011103. [PMID: 38127821 PMCID: PMC10769103 DOI: 10.1371/journal.pgen.1011103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/05/2024] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Some animals respond to injury by inducing new growth to regenerate the lost structures. This regenerative growth must be carefully controlled and constrained to prevent aberrant growth and to allow correct organization of the regenerating tissue. However, the factors that restrict regenerative growth have not been identified. Using a genetic ablation system in the Drosophila wing imaginal disc, we have identified one mechanism that constrains regenerative growth, impairment of which also leads to erroneous patterning of the final appendage. Regenerating discs with reduced levels of the RNA-regulator Brain tumor (Brat) exhibit enhanced regeneration, but produce adult wings with disrupted margins that are missing extensive tracts of sensory bristles. In these mutants, aberrantly high expression of the pro-growth factor Myc and its downstream targets likely contributes to this loss of cell-fate specification. Thus, Brat constrains the expression of pro-regeneration genes and ensures that the regenerating tissue forms the proper final structure.
Collapse
Affiliation(s)
- Syeda Nayab Fatima Abidi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Felicity Ting-Yu Hsu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rachel K. Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
10
|
Nemoto K, Masuko K, Fuse N, Kurata S. Dilp8 and its candidate receptor, Drl, are involved in the transdetermination of the Drosophila imaginal disc. Genes Cells 2023; 28:857-867. [PMID: 37817293 DOI: 10.1111/gtc.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Drosophila imaginal disc cells can change their identity under stress conditions through transdetermination (TD). Research on TD can help elucidate the in vivo process of cell fate conversion. We previously showed that the overexpression of winged eye (wge) induces eye-to-wing TD in the eye disc and that an insulin-like peptide, Dilp8, is then highly expressed in the disc. Although Dilp8 is known to mediate systemic developmental delay via the Lgr3 receptor, its role in TD remains unknown. This study showed that Dilp8 is expressed in specific cells that do not express eye or wing fate markers during Wge-mediated TD and that the loss of Dilp8 impairs the process of eye-to-wing transition. Thus, Dilp8 plays a pivotal role in the cell fate conversion under wge overexpression. Furthermore, we found that instead of Lgr3, another candidate receptor, Drl, is involved in Wge-mediated TD and acts locally in the eye disc cells. We propose a model in which Dilp8-Drl signaling organizes cell fate conversion in the imaginal disc during TD.
Collapse
Grants
- Japan Science Society
- Tohoku University Advanced Graduate School Pioneering Research Support Project
- 15J03403 JSPS KAKENHI
- 22J10423 JSPS KAKENHI
- 22KJ0220 JSPS KAKENHI
- 18016001 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 18055003 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20052004 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 25670019 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- Mitsubishi Foundation
Collapse
Affiliation(s)
- Kazuya Nemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Keita Masuko
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Abstract
Tissue regeneration is not simply a local repair event occurring in isolation from the distant, uninjured parts of the body. Rather, evidence indicates that regeneration is a whole-animal process involving coordinated interactions between different organ systems. Here, we review recent studies that reveal how remote uninjured tissues and organ systems respond to and engage in regeneration. We also discuss the need for toolkits and technological advancements to uncover and dissect organ communication during regeneration.
Collapse
Affiliation(s)
- Fei Sun
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Abstract
Regeneration requires the collective effort of multiple organ systems. A recent study of planarian whole-body regeneration finds that Erk kinase activity propagates rapidly across the entire animal through longitudinal muscle cells to coordinate animal-wide wound responses and that this signal propagation is required for regeneration.
Collapse
Affiliation(s)
- Fei Sun
- Duke Regeneration Center and Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Alessandro De Simone
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
13
|
Yamada T, Yoshinari Y, Tobo M, Habara O, Nishimura T. Nacα protects the larval fat body from cell death by maintaining cellular proteostasis in Drosophila. Nat Commun 2023; 14:5328. [PMID: 37658058 PMCID: PMC10474126 DOI: 10.1038/s41467-023-41103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Protein homeostasis (proteostasis) is crucial for the maintenance of cellular homeostasis. Impairment of proteostasis activates proteotoxic and unfolded protein response pathways to resolve cellular stress or induce apoptosis in damaged cells. However, the responses of individual tissues to proteotoxic stress and evoking cell death program have not been extensively explored in vivo. Here, we show that a reduction in Nascent polypeptide-associated complex protein alpha subunit (Nacα) specifically and progressively induces cell death in Drosophila fat body cells. Nacα mutants disrupt both ER integrity and the proteasomal degradation system, resulting in caspase activation through JNK and p53. Although forced activation of the JNK and p53 pathways was insufficient to induce cell death in the fat body, the reduction of Nacα sensitized fat body cells to intrinsic and environmental stresses. Reducing overall protein synthesis by mTor inhibition or Minute mutants alleviated the cell death phenotype in Nacα mutant fat body cells. Our work revealed that Nacα is crucial for protecting the fat body from cell death by maintaining cellular proteostasis, thus demonstrating the coexistence of a unique vulnerability and cell death resistance in the fat body.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Yuto Yoshinari
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Masayuki Tobo
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan.
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
14
|
Fan Y, Chai C, Li P, Zou X, Ferrell JE, Wang B. Ultrafast distant wound response is essential for whole-body regeneration. Cell 2023; 186:3606-3618.e16. [PMID: 37480850 PMCID: PMC10957142 DOI: 10.1016/j.cell.2023.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/11/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Injury induces systemic responses, but their functions remain elusive. Mechanisms that can rapidly synchronize wound responses through long distances are also mostly unknown. Using planarian flatworms capable of whole-body regeneration, we report that injury induces extracellular signal-regulated kinase (Erk) activity waves to travel at a speed 10-100 times faster than those in other multicellular tissues. This ultrafast propagation requires longitudinal body-wall muscles, elongated cells forming dense parallel tracks running the length of the organism. The morphological properties of muscles allow them to act as superhighways for propagating and disseminating wound signals. Inhibiting Erk propagation prevents tissues distant to the wound from responding and blocks regeneration, which can be rescued by a second injury to distal tissues shortly after the first injury. Our findings provide a mechanism for long-range signal propagation in large, complex tissues to coordinate responses across cell types and highlight the function of feedback between spatially separated tissues during whole-body regeneration.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Pengyang Li
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Zhang Y, Zhang Y, Shen C, Hao S, Duan W, Liu L, Wei H. Ionizing radiation alters functional neurotransmission in Drosophila larvae. Front Cell Neurosci 2023; 17:1151489. [PMID: 37484822 PMCID: PMC10357008 DOI: 10.3389/fncel.2023.1151489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Patients undergoing cranial ionizing radiation therapy for brain malignancies are at increased risk of long-term neurocognitive decline, which is poorly understood and currently untreatable. Although the molecular pathogenesis has been intensively researched in many organisms, whether and how ionizing radiation alters functional neurotransmission remains unknown. This is the first study addressing physiological changes in neurotransmission after ionizing radiation exposure. Methods To elucidate the cellular mechanisms of radiation damage, using calcium imaging, we analyzed the effects of ionizing radiation on the neurotransmitter-evoked responses of prothoracicotropic hormone (PTTH)-releasing neurons in Drosophila larvae, which play essential roles in normal larval development. Results The neurotransmitters dopamine and tyramine decreased intracellular calcium levels of PTTH neurons in a dose-dependent manner. In gamma irradiated third-instar larvae, a dose of 25 Gy increased the sensitivity of PTTH neurons to dopamine and tyramine, and delayed development, possibly in response to abnormal functional neurotransmission. This irradiation level did not affect the viability and arborization of PTTH neurons and successful survival to adulthood. Exposure to a 40-Gy dose of gamma irradiation decreased the neurotransmitter sensitivity, physiological viability and axo-dendritic length of PTTH neurons. These serious damages led to substantial developmental delays and a precipitous reduction in the percentage of larvae that survived to adulthood. Our results demonstrate that gamma irradiation alters neurotransmitter-evoked responses, indicating synapses are vulnerable targets of ionizing radiation. Discussion The current study provides new insights into ionizing radiation-induced disruption of physiological neurotransmitter signaling, which should be considered in preventive therapeutic interventions to reduce risks of neurological deficits after photon therapy.
Collapse
Affiliation(s)
- Yi Zhang
- North China Research Institute of Electro-Optics, Beijing, China
| | - Yihao Zhang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Cong Shen
- China Electronics Technology Group Corporation No. 45 Research Institute, Beijing, China
| | - Shun Hao
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Wenlan Duan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Hongying Wei
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Okada M, Takano T, Ikegawa Y, Ciesielski H, Nishida H, Yoo SK. Oncogenic stress-induced Netrin is a humoral signaling molecule that reprograms systemic metabolism in Drosophila. EMBO J 2023:e111383. [PMID: 37140455 DOI: 10.15252/embj.2022111383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/01/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Cancer exerts pleiotropic, systemic effects on organisms, leading to health deterioration and eventually to organismal death. How cancer induces systemic effects on remote organs and the organism itself still remains elusive. Here we describe a role for NetrinB (NetB), a protein with a particularly well-characterized role as a tissue-level axon guidance cue, in mediating oncogenic stress-induced organismal, metabolic reprogramming as a systemic humoral factor. In Drosophila, Ras-induced dysplastic cells upregulate and secrete NetB. Inhibition of either NetB from the transformed tissue or its receptor in the fat body suppresses oncogenic stress-induced organismal death. NetB from the dysplastic tissue remotely suppresses carnitine biosynthesis in the fat body, which is critical for acetyl-CoA generation and systemic metabolism. Supplementation of carnitine or acetyl-CoA ameliorates organismal health under oncogenic stress. This is the first identification, to our knowledge, of a role for the Netrin molecule, which has been studied extensively for its role within tissues, in humorally mediating systemic effects of local oncogenic stress on remote organs and organismal metabolism.
Collapse
Affiliation(s)
- Morihiro Okada
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
| | - Tomomi Takano
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
| | - Yuko Ikegawa
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hanna Ciesielski
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
| | - Hiroshi Nishida
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Division of Cell Physiology, Kobe University, Kobe, Japan
| | - Sa Kan Yoo
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
17
|
Fan Y, Chai C, Li P, Zou X, Ferrell JE, Wang B. Ultrafast and long-range coordination of wound responses is essential for whole-body regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532844. [PMID: 36993633 PMCID: PMC10055111 DOI: 10.1101/2023.03.15.532844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Injury induces systemic, global responses whose functions remain elusive. In addition, mechanisms that rapidly synchronize wound responses through long distances across the organismal scale are mostly unknown. Using planarians, which have extreme regenerative ability, we report that injury induces Erk activity to travel in a wave-like manner at an unexpected speed (∼1 mm/h), 10-100 times faster than those measured in other multicellular tissues. This ultrafast signal propagation requires longitudinal body-wall muscles, elongated cells forming dense parallel tracks running the length of the organism. Combining experiments and computational models, we show that the morphological properties of muscles allow them to minimize the number of slow intercellular signaling steps and act as bidirectional superhighways for propagating wound signals and instructing responses in other cell types. Inhibiting Erk propagation prevents cells distant to the wound from responding and blocks regeneration, which can be rescued by a second injury to distal tissues within a narrow time window after the first injury. These results suggest that rapid responses in uninjured tissues far from wounds are essential for regeneration. Our findings provide a mechanism for long-range signal propagation in large and complex tissues to coordinate cellular responses across diverse cell types, and highlights the function of feedback between spatially separated tissues during whole-body regeneration.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Pengyang Li
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - James E. Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Kablau A, Erler S, Eckert JH, Pistorius J, Sharbati S, Einspanier R. Effects of Flupyradifurone and Two Reference Insecticides Commonly Used in Toxicological Studies on the Larval Proteome of the Honey bee Apis mellifera. INSECTS 2023; 14:77. [PMID: 36662005 PMCID: PMC9862931 DOI: 10.3390/insects14010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The western honey bee Apis mellifera is globally distributed due to its beekeeping advantages and plays an important role in the global ecology and economy. In recent decades, several studies have raised concerns about bee decline. Discussed are multiple reasons such as increased pathogen pressure, malnutrition or pesticide use. Insecticides are considered to be one of the major factors. In 2013, the use of three neonicotinoids in the field was prohibited in the EU. Flupyradifurone was introduced as a potential successor; it has a comparable mode of action as the banned neonicotinoids. However, there is a limited number of studies on the effects of sublethal concentrations of flupyradifurone on honey bees. Particularly, the larval physiological response by means of protein expression has not yet been studied. Hence, the larval protein expression was investigated via 2D gel electrophoresis after following a standardised protocol to apply sublethal concentrations of the active substance (flupyradifurone 10 mg/kg diet) to larval food. The treated larvae did not show increased mortality or an aberrant development. Proteome comparisons showed clear differences concerning the larval metabolism, immune response and energy supply. Further field studies are needed to validate the in vitro results at a colony level.
Collapse
Affiliation(s)
- Arne Kablau
- Institute of Veterinary Biochemistry, Freie Universität Berlin, 14163 Berlin, Germany
- LABOKLIN GmbH and Co. KG, 97688 Bad Kissingen, Germany
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Zoological Institute, Technische Universität Braunschweig, 38106 Brauschweig, Germany
| | - Jakob H. Eckert
- Institute for Bee Protection, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Institute for Microbiology, Technische Universität Braunschweig, 38106 Brauschweig, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
19
|
Worley MI, Hariharan IK. Imaginal Disc Regeneration: Something Old, Something New. Cold Spring Harb Perspect Biol 2022; 14:a040733. [PMID: 34872971 PMCID: PMC9620854 DOI: 10.1101/cshperspect.a040733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Imaginal discs are simple epithelial sacs found in Drosophila larvae, which generate adult structures including wings and legs. The first studies of imaginal disc regeneration involved technically challenging transplantation experiments. Yet despite the difficulty, many aspects of regeneration including wound healing, blastema formation, and the repatterning of regenerated tissue were characterized. An important discovery was the phenomenon of transdetermination, where a small group of cells in regenerating tissue collectively switch fate ("collective cell reprogramming"). The development of genetic tissue-ablation systems over the last 12 years has energized this field, by making experiments less technically challenging, more reproducible, and by incorporating additional genetic analysis. Recent progress includes defining mechanistic links between early responses to wounding and the signaling pathways that drive proliferation, uncovering a role for localized silencing of damage-responsive enhancers to limit regenerative capacity as tissues mature, and identifying genes that maintain cellular plasticity within acceptable limits during regeneration.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| |
Collapse
|
20
|
Baonza A, Tur-Gracia S, Pérez-Aguilera M, Estella C. Regulation and coordination of the different DNA damage responses in Drosophila. Front Cell Dev Biol 2022; 10:993257. [PMID: 36147740 PMCID: PMC9486394 DOI: 10.3389/fcell.2022.993257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cells have evolved mechanisms that allow them to respond to DNA damage to preserve genomic integrity and maintain tissue homeostasis. These responses include the activation of the cell cycle checkpoints and the repair mechanisms or the induction of apoptosis that eventually will eliminate damaged cells. These “life” vs. “death” decisions differ depending on the cell type, stages of development, and the proliferation status of the cell. The apoptotic response after DNA damage is of special interest as defects in its induction could contribute to tumorigenesis or the resistance of cancer cells to therapeutic agents such as radiotherapy. Multiples studies have elucidated the molecular mechanisms that mediate the activation of the DNA damage response pathway (DDR) and specifically the role of p53. However, much less is known about how the different cellular responses such as cell proliferation control and apoptosis are coordinated to maintain tissue homeostasis. Another interesting question is how the differential apoptotic response to DNA damage is regulated in distinct cell types. The use of Drosophila melanogaster as a model organism has been fundamental to understand the molecular and cellular mechanisms triggered by genotoxic stress. Here, we review the current knowledge regarding the cellular responses to ionizing radiation as the cause of DNA damage with special attention to apoptosis in Drosophila: how these responses are regulated and coordinated in different cellular contexts and in different tissues. The existence of intrinsic mechanisms that might attenuate the apoptotic pathway in response to this sort of DNA damage may well be informative for the differences in the clinical responsiveness of tumor cells after radiation therapy.
Collapse
|
21
|
de Hoog E, Saba Echezarreta VE, Turgambayeva A, Foran G, Megaly M, Necakov A, Spencer GE. Molluscan RXR Transcriptional Regulation by Retinoids in a Drosophila CNS Organ Culture System. Cells 2022; 11:2493. [PMID: 36010570 PMCID: PMC9406730 DOI: 10.3390/cells11162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Retinoic acid, the active metabolite of Vitamin A, is important for the appropriate development of the nervous system (e.g., neurite outgrowth) as well as for cognition (e.g., memory formation) in the adult brain. We have shown that many of the effects of retinoids are conserved in the CNS of the mollusc, Lymnaea stagnalis. RXRs are predominantly nuclear receptors, but the Lymnaea RXR (LymRXR) exhibits a non-nuclear distribution in the adult CNS, where it is also implicated in non-genomic retinoid functions. As such, we developed a CNS Drosophila organ culture-based system to examine the transcriptional activity and ligand-binding properties of LymRXR, in the context of a live invertebrate nervous system. The novel ligand sensor system was capable of reporting both the expression and transcriptional activity of the sensor. Our results indicate that the LymRXR ligand sensor mediated transcription following activation by both 9-cis RA (the high affinity ligand for vertebrate RXRs) as well as the vertebrate RXR synthetic agonist, SR11237. The LymRXR ligand sensor was also activated by all-trans RA, and to a much lesser extent by the vertebrate RAR synthetic agonist, EC23. This sensor also detected endogenous retinoid-like activity in the CNS of developing Drosophila larvae, primarily during the 3rd instar larval stage. These data indicate that the LymRXR sensor can be utilized not only for characterization of ligand activation for studies related to the Lymnaea CNS, but also for future studies of retinoids and their functions in Drosophila development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
22
|
Worley MI, Everetts NJ, Yasutomi R, Chang RJ, Saretha S, Yosef N, Hariharan IK. Ets21C sustains a pro-regenerative transcriptional program in blastema cells of Drosophila imaginal discs. Curr Biol 2022; 32:3350-3364.e6. [PMID: 35820420 PMCID: PMC9387119 DOI: 10.1016/j.cub.2022.06.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022]
Abstract
An important unanswered question in regenerative biology is to what extent regeneration is accomplished by the reactivation of gene regulatory networks used during development versus the activation of regeneration-specific transcriptional programs. Following damage, Drosophila imaginal discs, the larval precursors of adult structures, can regenerate missing portions by localized proliferation of damage-adjacent tissue. Using single-cell transcriptomics in regenerating wing discs, we have obtained a comprehensive view of the transcriptome of regenerating discs and identified two regeneration-specific cell populations within the blastema, Blastema1 and Blastema2. Collectively, these cells upregulate multiple genes encoding secreted proteins that promote regeneration including Pvf1, upd3, asperous, Mmp1, and the maturation delaying factor Ilp8. Expression of the transcription factor Ets21C is restricted to this regenerative secretory zone; it is not expressed in undamaged discs. Ets21C expression is activated by the JNK/AP-1 pathway, and it can function in a type 1 coherent feedforward loop with AP-1 to sustain expression of downstream genes. Without Ets21C function, the blastema cells fail to maintain the expression of a number of genes, which leads to premature differentiation and severely compromised regeneration. As Ets21C is dispensable for normal development, these observations indicate that Ets21C orchestrates a regeneration-specific gene regulatory network. We have also identified cells resembling both Blastema1 and Blastema2 in scribble tumorous discs. They express the Ets21C-dependent gene regulatory network, and eliminating Ets21C function reduces tumorous growth. Thus, mechanisms that function during regeneration can be co-opted by tumors to promote aberrant growth.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Nicholas J Everetts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Riku Yasutomi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rebecca J Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shrey Saretha
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
23
|
Sadeghi A, Dervey R, Gligorovski V, Labagnara M, Rahi SJ. The optimal strategy balancing risk and speed predicts DNA damage checkpoint override times. NATURE PHYSICS 2022; 18:832-839. [PMID: 36281344 PMCID: PMC7613727 DOI: 10.1038/s41567-022-01601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/29/2022] [Indexed: 05/15/2023]
Abstract
Checkpoints arrest biological processes allowing time for error correction. The phenomenon of checkpoint override (also known as checkpoint adaptation, slippage, or leakage), during cellular self-replication is biologically critical but currently lacks a quantitative, functional, or system-level understanding. To uncover fundamental laws governing error-correction systems, we derived a general theory of optimal checkpoint strategies, balancing the trade-off between risk and self-replication speed. Mathematically, the problem maps onto the optimization of an absorbing boundary for a random walk. We applied the theory to the DNA damage checkpoint (DDC) in budding yeast, an intensively researched model checkpoint. Using novel reporters for double-strand DNA breaks (DSBs), we first quantified the probability distribution of DSB repair in time including rare events and, secondly, the survival probability after override. With these inputs, the optimal theory predicted remarkably accurately override times as a function of DSB numbers, which we measured precisely for the first time. Thus, a first-principles calculation revealed undiscovered patterns underlying highly noisy override processes. Our multi-DSB measurements revise well-known past results and show that override is more general than previously thought.
Collapse
Affiliation(s)
- Ahmad Sadeghi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Roxane Dervey
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vojislav Gligorovski
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marco Labagnara
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sahand Jamal Rahi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
24
|
Li T, Li H, Wu Y, Li S, Yuan G, Xu P. Identification of a Novel Densovirus in Aphid, and Uncovering the Possible Antiviral Process During Its Infection. Front Immunol 2022; 13:905628. [PMID: 35757766 PMCID: PMC9218065 DOI: 10.3389/fimmu.2022.905628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Densoviruses (DVs) are single-stranded DNA viruses and exclusively happen in invertebrates. Most of DVs reported in insects are pathogenic to their native hosts, however, no pathogenic effect of them has been examined in vertebrates. Hence, DVs are the potential agents used in pest managements. Aphids are the primary vectors of plant viruses. In this study, we identified a novel DV in Chinese Sitobion miscanthi population, provisionally named “Sitobion miscanthi densovirus” (SmDV). Taxonomically, SmDV belongs to genus Hemiambidensovirus. In S. miscanthi, SmDV is hosted in diverse cells and can be horizontally transmitted via wheat feeding. Subject to SmDV, aphids activate their intrinsic antiviral autophagy pathway. Grouped with ascorbate and aldarate metabolism, chlorophyll metabolism, p450 related drug metabolism, and retinoid metabolism, aphids form a complex immune network response to the infection of SmDV. Obviously, it works as elder aphids still alive even they contain the highest examined concentration of SmDV. This study provides a foundation for the identifications of novel DVs, and further improves the understanding of the molecular interactions between insects and DVs.
Collapse
Affiliation(s)
- Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haichao Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaojian Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guohui Yuan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
25
|
Yang L, Yao X, Liu B, Han Y, Ji R, Ju J, Zhang X, Wu S, Fang J, Sun Y. Caterpillar-Induced Rice Volatile (E)-β-Farnesene Impairs the Development and Survival of Chilo suppressalis Larvae by Disrupting Insect Hormone Balance. Front Physiol 2022; 13:904482. [PMID: 35711319 PMCID: PMC9196309 DOI: 10.3389/fphys.2022.904482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Significant research progress has recently been made on establishing the roles of tps46 in rice defense. (E)-β-farnesene (Eβf) is a major product of tps46 activity but its physiological functions and potential mechanisms against Chilo suppressalis have not yet been clarified. In the present study, C. suppressalis larvae were artificially fed a diet containing 0.8 g/kg Eβf and the physiological performance of the larvae was evaluated. In response to Eβf treatment, the average 2nd instar duration significantly increased from 4.78 d to 6.31 d while that of the 3rd instar significantly increased from 5.70 d to 8.00 d compared with the control. There were no significant differences between the control and Eβf-fed 4th and 5th instars in terms of their durations. The mortalities of the 2nd and 3rd Eβf-fed instars were 21.00-fold and 6.39-fold higher, respectively, than that of the control. A comparative transcriptome analysis revealed that multiple differentially expressed genes are involved in insect hormone biosynthesis. An insect hormone assay on the 3rd instars disclosed that Eβf disrupted the balance between the juvenile hormone and ecdysteroid levels. Eβf treatment increased the juvenile hormones titers but not those of the ecdysteroids. The qPCR results were consistent with those of the RNA-Seq. The foregoing findings suggested that Eβf impairs development and survival in C. suppressalis larvae by disrupting their hormone balance. Moreover, Eβf altered the pathways associated with carbohydrate and xenobiotic metabolism as well as those related to cofactors and vitamins in C. suppressalis larvae. The discoveries of this study may contribute to the development and implementation of an integrated control system for C. suppressalis infestations in rice.
Collapse
Affiliation(s)
- Lei Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Xiaomin Yao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baosheng Liu
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Yangchun Han
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Rui Ji
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Jiafei Ju
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Xiaona Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jichao Fang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Yang Sun
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China.,Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
26
|
Sun F, Ou J, Shoffner AR, Luan Y, Yang H, Song L, Safi A, Cao J, Yue F, Crawford GE, Poss KD. Enhancer selection dictates gene expression responses in remote organs during tissue regeneration. Nat Cell Biol 2022; 24:685-696. [PMID: 35513710 DOI: 10.1038/s41556-022-00906-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
Acute trauma stimulates local repair mechanisms but can also impact structures distant from the injury, for example through the activity of circulating factors. To study the responses of remote tissues during tissue regeneration, we profiled transcriptomes of zebrafish brains after experimental cardiac damage. We found that the transcription factor gene cebpd was upregulated remotely in brain ependymal cells as well as kidney tubular cells, in addition to its local induction in epicardial cells. cebpd mutations altered both local and distant cardiac injury responses, altering the cycling of epicardial cells as well as exchange between distant fluid compartments. Genome-wide profiling and transgenesis identified a hormone-responsive enhancer near cebpd that exists in a permissive state, enabling rapid gene expression in heart, brain and kidney after cardiac injury. Deletion of this sequence selectively abolished cebpd induction in remote tissues and disrupted fluid regulation after injury, without affecting its local cardiac expression response. Our findings suggest a model to broaden gene function during regeneration in which enhancer regulatory elements define short- and long-range expression responses to injury.
Collapse
Affiliation(s)
- Fei Sun
- Duke Regeneration Center, Duke University, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Adam R Shoffner
- Duke Regeneration Center, Duke University, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, NY, USA.,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kenneth D Poss
- Duke Regeneration Center, Duke University, Durham, NC, USA. .,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
27
|
Li Z, Qian W, Song W, Zhao T, Yang Y, Wang W, Wei L, Zhao D, Li Y, Perrimon N, Xia Q, Cheng D. A salivary gland-secreted peptide regulates insect systemic growth. Cell Rep 2022; 38:110397. [PMID: 35196492 DOI: 10.1016/j.celrep.2022.110397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 11/03/2022] Open
Abstract
Insect salivary glands have been previously shown to function in pupal attachment and food lubrication by secreting factors into the lumen via an exocrine way. Here, we find in Drosophila that a salivary gland-derived secreted factor (Sgsf) peptide regulates systemic growth via an endocrine way. Sgsf is specifically expressed in salivary glands and secreted into the hemolymph. Sgsf knockout or salivary gland-specific Sgsf knockdown decrease the size of both the body and organs, phenocopying the effects of genetic ablation of salivary glands, while salivary gland-specific Sgsf overexpression increases their size. Sgsf promotes systemic growth by modulating the secretion of the insulin-like peptide Dilp2 from the brain insulin-producing cells (IPCs) and affecting mechanistic target of rapamycin (mTOR) signaling in the fat body. Altogether, our study demonstrates that Sgsf mediates the roles of salivary glands in Drosophila systemic growth, establishing an endocrine function of salivary glands.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Wei Song
- Medical Research Institute, Wuhan University, Wuhan 430071, China; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Yan Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Weina Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Yaoyao Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China.
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
28
|
Karanja F, Sahu S, Weintraub S, Bhandari R, Jaszczak R, Sitt J, Halme A. Ecdysone exerts biphasic control of regenerative signaling, coordinating the completion of regeneration with developmental progression. Proc Natl Acad Sci U S A 2022; 119:e2115017119. [PMID: 35086929 PMCID: PMC8812538 DOI: 10.1073/pnas.2115017119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
In Drosophila melanogaster, loss of regenerative capacity in wing imaginal discs coincides with an increase in systemic levels of the steroid hormone ecdysone, a key coordinator of their developmental progression. Regenerating discs release the relaxin hormone Dilp8 (Drosophila insulin-like peptide 8) to limit ecdysone synthesis and extend the regenerative period. Here, we describe how regenerating tissues produce a biphasic response to ecdysone levels: lower concentrations of ecdysone promote local and systemic regenerative signaling, whereas higher concentrations suppress regeneration through the expression of broad splice isoforms. Ecdysone also promotes the expression of wingless during both regeneration and normal development through a distinct regulatory pathway. This dual role for ecdysone explains how regeneration can still be completed successfully in dilp8- mutant larvae: higher ecdysone levels increase the regenerative activity of tissues, allowing regeneration to reach completion in a shorter time. From these observations, we propose that ecdysone hormone signaling functions to coordinate regeneration with developmental progression.
Collapse
Affiliation(s)
- Faith Karanja
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Subhshri Sahu
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Sara Weintraub
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Rajan Bhandari
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Rebecca Jaszczak
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Jason Sitt
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Adrian Halme
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| |
Collapse
|
29
|
Wagle R, Song YH. Sensitive-stage embryo irradiation affects embryonic neuroblasts and adult motor function. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Background
Cranial radiation therapy for treating childhood malignancies in the central nervous system or accidental radiation exposure may result in neurological side effects in surviving adults. As tissue homeostasis is maintained by stem cells, understanding the effect of radiation on neural stem cells will provide clues for managing the neurological effects. Drosophila embryos were used as a model system whose sensitivity to irradiation-induced cell death changes from the sensitive to resistant stage during development.
Objective
Drosophila embryos at the radiation-sensitive stage were irradiated at various doses and the radiation sensitivity was tested regarding the appearance of apoptotic cells in the embryos and the embryonic lethality. Cell fates of the neural stem cells called neuroblasts (NBs) and adult motor function after irradiation were also investigated.
Result
Irradiation of Drosophila embryos at the radiation-sensitive stage resulted in a dose-dependent increase in the number of embryos containing apoptotic cells 75 min after treatment starting at 3 Gy. Embryonic lethality assayed by hatch rate was induced by 1 Gy irradiation, which did not induce cell death. Notably, no apoptosis was detected in NBs up to 2 h after irradiation at doses as high as 40 Gy. At 3 h after irradiation, as low as 3 Gy, the number of NBs marked by Dpn and Klu was decreased by an unidentified mechanism regardless of the cell death status of the embryo. Furthermore, embryonic irradiation at 3 Gy, but not 1 Gy, resulted in locomotor defects in surviving adults.
Conclusion
Embryonic NBs survived irradiation at doses as high as 40 Gy, while cells in other parts of the embryos underwent apoptosis at doses higher than 3 Gy within 2 h after treatment. Three hours after exposure to a minimum dose of 3 Gy, the number of NBs marked by Dpn and Klu decreased, and the surviving adults exhibited defects in locomotor ability.
Collapse
|
30
|
Cao X, Rojas M, Pastor-Pareja JC. Intrinsic and damage-induced JAK/STAT signaling regulate developmental timing by the Drosophila prothoracic gland. Dis Model Mech 2021; 15:273570. [PMID: 34842272 PMCID: PMC8807578 DOI: 10.1242/dmm.049160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Development involves tightly paced, reproducible sequences of events, yet it must adjust to conditions external to it, such as resource availability and organismal damage. A major mediator of damage-induced immune responses in vertebrates and insects is JAK/STAT signaling. At the same time, JAK/STAT activation by the Drosophila Upd cytokines is pleiotropically involved in normal development of multiple organs. Whether inflammatory and developmental JAK/STAT roles intersect is unknown. Here, we show that JAK/STAT is active during development of the prothoracic gland (PG), which controls metamorphosis onset through ecdysone production. Reducing JAK/STAT signaling decreased PG size and advanced metamorphosis. Conversely, JAK/STAT hyperactivation by overexpression of pathway components or SUMOylation loss caused PG hypertrophy and metamorphosis delay. Tissue damage and tumors, known to secrete Upd cytokines, also activated JAK/STAT in the PG and delayed metamorphosis, at least in part by inducing expression of the JAK/STAT target Apontic. JAK/STAT damage signaling, therefore, regulates metamorphosis onset by co-opting its developmental role in the PG. Our findings in Drosophila provide insights on how systemic effects of damage and cancer can interfere with hormonally controlled development and developmental transitions. Summary: Damage signaling from tumors mediated by JAK/STAT-activating Upd cytokines delays the Drosophila larva–pupa transition through co-option of a JAK/STAT developmental role in the prothoracic gland.
Collapse
Affiliation(s)
- Xueya Cao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Marta Rojas
- School of Medicine, Tsinghua University, Beijing, China
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
31
|
Cohen E, Peterson NG, Sawyer JK, Fox DT. Accelerated cell cycles enable organ regeneration under developmental time constraints in the Drosophila hindgut. Dev Cell 2021; 56:2059-2072.e3. [PMID: 34019841 PMCID: PMC8319103 DOI: 10.1016/j.devcel.2021.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022]
Abstract
Individual organ development must be temporally coordinated with development of the rest of the organism. As a result, cell division cycles in a developing organ occur on a relatively fixed timescale. Despite this, many developing organs can regenerate cells lost to injury. How organs regenerate within the time constraints of organism development remains unclear. Here, we show that the developing Drosophila hindgut regenerates by accelerating the mitotic cell cycle. This process is achieved by decreasing G1 length and requires the JAK/STAT ligand unpaired-3. Mitotic capacity is then terminated by the steroid hormone ecdysone receptor and the Sox transcription factor Dichaete. These two factors converge on regulation of a hindgut-specific enhancer of fizzy-related, a negative regulator of mitotic cyclins. Our findings reveal how the cell-cycle machinery and cytokine signaling can be adapted to accomplish developmental organ regeneration.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell Biology, Duke University School of Medicine, Durham, USA
| | - Nora G Peterson
- Department of Cell Biology, Duke University School of Medicine, Durham, USA
| | - Jessica K Sawyer
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
| | - Donald T Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, USA; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA; Regeneration Next Initiative, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
32
|
Racing against the clock: How flies regenerate just in time. Dev Cell 2021; 56:2012-2013. [PMID: 34314696 DOI: 10.1016/j.devcel.2021.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this issue of Developmental Cell, Cohen et al. show that the Drosophila hindgut is a genetically tractable model for studying tissue regeneration. This tissue exhibits different regeneration strategies at different developmental times, demonstrating that the hindgut developmental clock, not tissue type, dictates the mode and capacity for regeneration.
Collapse
|
33
|
Heredia F, Volonté Y, Pereirinha J, Fernandez-Acosta M, Casimiro AP, Belém CG, Viegas F, Tanaka K, Menezes J, Arana M, Cardoso GA, Macedo A, Kotowicz M, Prado Spalm FH, Dibo MJ, Monfardini RD, Torres TT, Mendes CS, Garelli A, Gontijo AM. The steroid-hormone ecdysone coordinates parallel pupariation neuromotor and morphogenetic subprograms via epidermis-to-neuron Dilp8-Lgr3 signal induction. Nat Commun 2021; 12:3328. [PMID: 34099654 PMCID: PMC8184853 DOI: 10.1038/s41467-021-23218-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Innate behaviors consist of a succession of genetically-hardwired motor and physiological subprograms that can be coupled to drastic morphogenetic changes. How these integrative responses are orchestrated is not completely understood. Here, we provide insight into these mechanisms by studying pupariation, a multi-step innate behavior of Drosophila larvae that is critical for survival during metamorphosis. We find that the steroid-hormone ecdysone triggers parallel pupariation neuromotor and morphogenetic subprograms, which include the induction of the relaxin-peptide hormone, Dilp8, in the epidermis. Dilp8 acts on six Lgr3-positive thoracic interneurons to couple both subprograms in time and to instruct neuromotor subprogram switching during behavior. Our work reveals that interorgan feedback gates progression between subunits of an innate behavior and points to an ancestral neuromodulatory function of relaxin signaling.
Collapse
Affiliation(s)
- Fabiana Heredia
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Yanel Volonté
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Joana Pereirinha
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Institute of Molecular Biology, Mainz, Germany
| | - Magdalena Fernandez-Acosta
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andreia P Casimiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cláudia G Belém
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- The Francis Crick Institute, London, UK
| | - Filipe Viegas
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Kohtaro Tanaka
- Instituto Gulbenkian de Ciências, Oeiras, Portugal
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Juliane Menezes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maite Arana
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Gisele A Cardoso
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Laboratório de Genômica e Evolução de Artrópodes, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
- CBMEG, Universidade Estadual de Campinas, Campinas, Brazil
| | - André Macedo
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Malwina Kotowicz
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- DZNE, Helmholtz Association, Bonn, Germany
| | - Facundo H Prado Spalm
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Marcos J Dibo
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Raquel D Monfardini
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Laboratório de Genômica e Evolução de Artrópodes, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Tatiana T Torres
- Laboratório de Genômica e Evolução de Artrópodes, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - César S Mendes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andres Garelli
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina.
| | - Alisson M Gontijo
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Rua do Instituto Bacteriológico 5, 1150-190, Lisbon, Portugal.
| |
Collapse
|
34
|
Dewett D, Lam-Kamath K, Poupault C, Khurana H, Rister J. Mechanisms of vitamin A metabolism and deficiency in the mammalian and fly visual system. Dev Biol 2021; 476:68-78. [PMID: 33774009 DOI: 10.1016/j.ydbio.2021.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Vitamin A deficiency can cause human pathologies that range from blindness to embryonic malformations. This diversity is due to the lack of two major vitamin A metabolites with very different functions: the chromophore 11-cis-retinal (vitamin A aldehyde) is a critical component of the visual pigment that mediates phototransduction, while the signaling molecule all-trans-retinoic acid regulates the development of various tissues and is required for the function of the immune system. Since animals cannot synthesize vitamin A de novo, they must obtain it either as preformed vitamin A from animal products or as carotenoid precursors from plant sources. Due to its essential role in the visual system, acute vitamin A deprivation impairs photoreceptor function and causes night blindness (poor vision under dim light conditions), while chronic deprivation results in retinal dystrophies and photoreceptor cell death. Chronic vitamin A deficiency is the leading cause of preventable childhood blindness according to the World Health Organization. Due to the requirement of vitamin A for retinoic acid signaling in development and in the immune system, vitamin A deficiency also causes increased mortality in children and pregnant women in developing countries. Drosophila melanogaster is an excellent model to study the effects of vitamin A deprivation on the eye because vitamin A is not essential for Drosophila development and chronic deficiency does not cause lethality. Moreover, genetic screens in Drosophila have identified evolutionarily conserved factors that mediate the production of vitamin A and its cellular uptake. Here, we review our current knowledge about the role of vitamin A in the visual system of mammals and Drosophila melanogaster. We compare the molecular mechanisms that mediate the uptake of dietary vitamin A precursors and the metabolism of vitamin A, as well as the consequences of vitamin A deficiency for the structure and function of the eye.
Collapse
Affiliation(s)
- Deepshe Dewett
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Khanh Lam-Kamath
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Clara Poupault
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Heena Khurana
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Jens Rister
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA.
| |
Collapse
|
35
|
DaCrema D, Bhandari R, Karanja F, Yano R, Halme A. Ecdysone regulates the Drosophila imaginal disc epithelial barrier, determining the length of regeneration checkpoint delay. Development 2021; 148:dev.195057. [PMID: 33658221 DOI: 10.1242/dev.195057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Regeneration of Drosophila imaginal discs, larval precursors to adult tissues, activates a regeneration checkpoint that coordinates regenerative growth with developmental progression. This regeneration checkpoint results from the release of the relaxin-family peptide Dilp8 from regenerating imaginal tissues. Secreted Dilp8 protein is detected within the imaginal disc lumen, in which it is separated from its receptor target Lgr3, which is expressed in the brain and prothoracic gland, by the disc epithelial barrier. Here, we demonstrate that following damage the imaginal disc epithelial barrier limits Dilp8 signaling and the duration of regeneration checkpoint delay. We also find that the barrier becomes increasingly impermeable to the transepithelial diffusion of labeled dextran during the second half of the third instar. This change in barrier permeability is driven by the steroid hormone ecdysone and correlates with changes in localization of Coracle, a component of the septate junctions that is required for the late-larval impermeable epithelial barrier. Based on these observations, we propose that the imaginal disc epithelial barrier regulates the duration of the regenerative checkpoint, providing a mechanism by which tissue function can signal the completion of regeneration.
Collapse
Affiliation(s)
- Danielle DaCrema
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Rajan Bhandari
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Faith Karanja
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Ryunosuke Yano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Adrian Halme
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| |
Collapse
|
36
|
Malita A, Rewitz K. Interorgan communication in the control of metamorphosis. CURRENT OPINION IN INSECT SCIENCE 2021; 43:54-62. [PMID: 33214126 DOI: 10.1016/j.cois.2020.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Steroid hormones control major developmental transitions such as metamorphosis in insects and puberty in mammals. The juvenile must attain a sufficient size before it begins maturation in order to give rise to a properly sized and reproductively fit adult. Studies in the insect Drosophila have begun to reveal a remarkable example of the complex interplay between different organs and the neuroendocrine system that controls the production of the steroid ecdysone, which triggers metamorphosis. This review discusses the inter-organ signals mediating this crosstalk, which allows the neuroendocrine system to assess nutrient availability and growth status of internal organs, ensuring that maturation is initiated at the appropriate time. We discuss how the neuroendocrine system integrates signals from different tissues to coordinate growth and maturation. These studies are still unraveling the organ-to-organ signaling networks that control the timing of metamorphosis, defining important principles underlying the logic of growth and maturation coordination in animals.
Collapse
Affiliation(s)
- Alina Malita
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
37
|
Miglioli A, Canesi L, Gomes IDL, Schubert M, Dumollard R. Nuclear Receptors and Development of Marine Invertebrates. Genes (Basel) 2021; 12:genes12010083. [PMID: 33440651 PMCID: PMC7827873 DOI: 10.3390/genes12010083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Laura Canesi
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Isa D. L. Gomes
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Correspondence:
| |
Collapse
|
38
|
Kashio S, Miura M. Kynurenine Metabolism in the Fat Body Non-autonomously Regulates Imaginal Disc Repair in Drosophila. iScience 2020; 23:101738. [PMID: 33376969 PMCID: PMC7756137 DOI: 10.1016/j.isci.2020.101738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/07/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022] Open
Abstract
Tissue interactions are critical for maintaining homeostasis; however, little is known about how remote tissue regulates regeneration. Previously, we established a genetic dual system that induces cell ablation in Drosophila larval imaginal discs and simultaneously manipulates genes in non-damaged tissues. Using humoral metabolome analysis and a genetic damage system, we found that the Tryptophan (Trp)-Kynurenine (Kyn) pathway in the fat body is required for disc repair. Genetic manipulation of Trp-Kyn metabolism in the fat body impaired disc regeneration without affecting wing development. In particular, the fat body-derived humoral kynurenic acid (KynA) was required for disc repair. The impairment of S-adenosylmethionine (SAM) synthesis from methionine (Met) in the fat body hampers the maintenance of KynA levels in hemolymph at the early stage of disc repair, suggesting a connection between Met-SAM and Trp-Kyn metabolisms. Our data indicate KynA from the fat body acts as a permissive metabolite for tissue repair and regeneration. Trp-Kyn pathway in Drosophila larval fat body is remotely required for disc repair The fat body-derived humoral KynA is required for disc repair SAM synthesis in the fat body affects KynA levels in hemolymph during disc repair
Collapse
Affiliation(s)
- Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Lei J, Meng J, Chen IW, Cheng W, Beam AL, Islam MS, Bailey WD, Pillai S, Zhu-Salzman K. Deleterious effects of electron beam irradiation on development and reproduction of tomato/potato psyllids, Bactericera cockerelli. INSECT SCIENCE 2020; 27:1311-1321. [PMID: 31677334 DOI: 10.1111/1744-7917.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
The potato/tomato psyllid Bactericera cockerelli causes serious damage to several solanaceous crops by direct feeding and vectoring Candidatus Liberibacter solanacearum, a bacterial pathogen. Electron beam (eBeam) irradiation is an environmentally friendly, chemical-free alternative method that is increasing in use for disinfestation of insect pests. We hypothesize that this irradiation technology will have detrimental effects on potato psyllid and thus impede its disease vectoring. To this end, we explored the effects of eBeam treatment ranging from 50 to 500 Gy on survival, development and reproduction of this pest. Impact on psyllids was apparently dose-dependent. When irradiated at 350 Gy, eggs could not hatch, 1st instar nymphs failed to emerge, and although a small portion of irradiated 5th instar nymphs survived, the emerged adults were mostly deformed. Abnormality in eclosed adults suggests harmful effects of eBeam on metamorphosis. Reproduction was seriously impaired when female psyllids were exposed to eBeam at the 5th instar nymphal or young adult stage, presumably due to inability to form oocytes. In addition, reciprocal crosses between irradiated and untreated psyllids indicated that female psyllids were more radiosensitive than males to eBeam. Taken together, these findings indicate that eBeam negatively impacted potato psyllid development and reproduction, which would inevitably compromise its disease transmission capacity. A dose of 350 Gy can be considered as a reference dose for effective control of potato psyllids.
Collapse
Affiliation(s)
- Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
| | - Jia Meng
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
| | - Ivy W Chen
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
| | - Weining Cheng
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, China
| | | | | | | | - Suresh Pillai
- National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
40
|
Kablau A, Eckert JH, Pistorius J, Sharbati S, Einspanier R. Effects of selected insecticidal substances on mRNA transcriptome in larvae of Apis mellifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104703. [PMID: 32980071 DOI: 10.1016/j.pestbp.2020.104703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
For the last decade, scientists have reported a loss of honeybee colonies. Multiple factors like parasites, pathogens and pesticides are dealt as possible drivers of honeybee losses. In particular, insecticides are considered as a major factor of pollinator poisoning. We applied sublethal concentrations of four insecticidal substances to honeybee larval food and analyzed the effects on transcriptome. The aim was to identify candidate genes indicating early negative impacts after application of insecticidal substances. Honeybee larvae were kept in-vitro under hive conditions (34-35 °C) and fed with dimethoate, fenoxycarb, chlorantraniliprole and flupyradifurone in sublethal concentrations between day 3-6 after grafting. Larvae at day 4, 6 and 8 were sampled and their transcriptome analyzed. By use of a RT-qPCR array differences in gene expression of selected gene families (immune system, development detoxification) were measured. Targets mainly involved in development, energy metabolism and the immune system were significantly affected by the insecticidal substances tested, selectively inducing genes of the detoxification system, immune response and nutritional stress.
Collapse
Affiliation(s)
- Arne Kablau
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Germany
| | - Jakob H Eckert
- Julius Kühn-Institute, Institute for Bee Protection, Braunschweig, Germany
| | - Jens Pistorius
- Julius Kühn-Institute, Institute for Bee Protection, Braunschweig, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Germany.
| |
Collapse
|
41
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
42
|
Vea IM, Shingleton AW. Network-regulated organ allometry: The developmental regulation of morphological scaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e391. [PMID: 32567243 DOI: 10.1002/wdev.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022]
Abstract
Morphological scaling relationships, or allometries, describe how traits grow coordinately and covary among individuals in a population. The developmental regulation of scaling is essential to generate correctly proportioned adults across a range of body sizes, while the mis-regulation of scaling may result in congenital birth defects. Research over several decades has identified the developmental mechanisms that regulate the size of individual traits. Nevertheless, we still have poor understanding of how these mechanisms work together to generate correlated size variation among traits in response to environmental and genetic variation. Conceptually, morphological scaling can be generated by size-regulatory factors that act directly on multiple growing traits (trait-autonomous scaling), or indirectly via hormones produced by central endocrine organs (systemically regulated scaling), and there are a number of well-established examples of such mechanisms. There is much less evidence, however, that genetic and environmental variation actually acts on these mechanisms to generate morphological scaling in natural populations. More recent studies indicate that growing organs can themselves regulate the growth of other organs in the body. This suggests that covariation in trait size can be generated by network-regulated scaling mechanisms that respond to changes in the growth of individual traits. Testing this hypothesis, and one of the main challenges of understanding morphological scaling, requires connecting mechanisms elucidated in the laboratory with patterns of scaling observed in the natural world. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Isabelle M Vea
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
43
|
Harris RE, Stinchfield MJ, Nystrom SL, McKay DJ, Hariharan IK. Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila. eLife 2020; 9:58305. [PMID: 32490812 PMCID: PMC7299344 DOI: 10.7554/elife.58305] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Like tissues of many organisms, Drosophila imaginal discs lose the ability to regenerate as they mature. This loss of regenerative capacity coincides with reduced damage-responsive expression of multiple genes needed for regeneration. We previously showed that two such genes, wg and Wnt6, are regulated by a single damage-responsive enhancer that becomes progressively inactivated via Polycomb-mediated silencing as discs mature (Harris et al., 2016). Here we explore the generality of this mechanism and identify additional damage-responsive, maturity-silenced (DRMS) enhancers, some near genes known to be required for regeneration such as Mmp1, and others near genes that we now show function in regeneration. Using a novel GAL4-independent ablation system we characterize two DRMS-associated genes, apontic (apt), which curtails regeneration and CG9752/asperous (aspr), which promotes it. This mechanism of suppressing regeneration by silencing damage-responsive enhancers at multiple loci can be partially overcome by reducing activity of the chromatin regulator extra sex combs (esc).
Collapse
Affiliation(s)
| | | | - Spencer L Nystrom
- University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Daniel J McKay
- University of North Carolina at Chapel Hill, Chapel Hill, United States
| | | |
Collapse
|
44
|
Abstract
Drosophila melanogaster has historically been a workhorse model organism for studying developmental biology. In addition, Drosophila is an excellent model for studying how damaged tissues and organs can regenerate. Recently, new precision approaches that enable both highly targeted injury and genetic manipulation have accelerated progress in this field. Here, we highlight these techniques and review examples of recently discovered mechanisms that regulate regeneration in Drosophila larval and adult tissues. We also discuss how, by applying these powerful approaches, studies of Drosophila can continue to guide the future of regeneration research.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Erez Cohen
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Rachel Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
45
|
Delanoue R, Romero NM. Growth and Maturation in Development: A Fly's Perspective. Int J Mol Sci 2020; 21:E1260. [PMID: 32070061 PMCID: PMC7072963 DOI: 10.3390/ijms21041260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
In mammals like humans, adult fitness is improved due to resource allocation, investing energy in the developmental growth process during the juvenile period, and in reproduction at the adult stage. Therefore, the attainment of their target body height/size co-occurs with the acquisition of maturation, implying a need for coordination between mechanisms that regulate organismal growth and maturation timing. Insects like Drosophila melanogaster also define their adult body size by the end of the juvenile larval period. Recent studies in the fly have shown evolutionary conservation of the regulatory pathways controlling growth and maturation, suggesting the existence of common coordinator mechanisms between them. In this review, we will present an overview of the significant advancements in the coordination mechanisms ensuring developmental robustness in Drosophila. We will include (i) the characterization of feedback mechanisms between maturation and growth hormones, (ii) the recognition of a relaxin-like peptide Dilp8 as a central processor coordinating juvenile regeneration and time of maturation, and (iii) the identification of a novel coordinator mechanism involving the AstA/KISS system.
Collapse
Affiliation(s)
- Renald Delanoue
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Nuria M. Romero
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
- Universitey Côte d’Azur, INRA, CNRS, Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| |
Collapse
|
46
|
Wagle R, Song YH. Ionizing radiation reduces larval brain size by inducing premature differentiation of Drosophila neural stem cells. Biochem Biophys Res Commun 2019; 523:555-560. [PMID: 31864707 DOI: 10.1016/j.bbrc.2019.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
DNA damaging agents, such as ionizing radiation (IR), induce cell cycle arrest, senescence, differentiation, or cell death of stem cells, which may affect tissue homeostasis. The specific response of stem cells upon irradiation seems to vary depending on the cell type and their developmental stages. Drosophila larval brain contains neural stem cells called neuroblasts (NBs) and maintaining an appropriate number of NBs is critical to maintain brain size. Irradiation of larvae at early larval stage results in microcephaly, whereas the DNA damage response of NBs that could explain this small brain size is not clearly understood. We observed that the irradiation of larvae in the second instar retarded brain growth, accompanied by fewer NBs. The IR-induced microcephaly does not seem to result from apoptosis since the irradiated larval brain was not stained with activated Caspase nor was the microcephaly affected by the ectopic expression of the apoptosis inhibitor. When analyzed for the percentage of mitotic cells, irradiated NBs recovered their proliferative potential within 6 h post-irradiation after transient cell cycle arrest. However, IR eventually reduced the proliferation of NBs at later time points and induced the premature differentiation of NBs. In summary, IR-induced microcephaly occurs by NB loss due to premature differentiation, rather than apoptotic cell death.
Collapse
Affiliation(s)
- Ram Wagle
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea.
| | - Young-Han Song
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea; Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
47
|
Lin X, Smagghe G. Roles of the insulin signaling pathway in insect development and organ growth. Peptides 2019; 122:169923. [PMID: 29458057 DOI: 10.1016/j.peptides.2018.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
Organismal development is a complex process as it requires coordination of many aspects to grow into fit individuals, such as the control of body size and organ growth. Therefore, the mechanisms of precise control of growth are essential for ensuring the growth of organisms at a correct body size and proper organ proportions during development. The control of the growth rate and the duration of growth (or the cessation of growth) are required in size control. The insulin signaling pathway and the elements involved are essential in the control of growth. On the other hand, the ecdysteroid molting hormone determines the duration of growth. The secretion of these hormones is controlled by environmental factors such as nutrition. Moreover, the target of rapamycin (TOR) pathway is considered as a nutrient sensing pathway. Important cross-talks have been shown to exist among these pathways. In this review, we outline the control of body and organ growth by the insulin/TOR signaling pathway, and also the interaction between nutrition via insulin/TOR signaling and ecdysteroids at the coordination of organismal development and organ growth in insects, mainly focusing on the well-studied fruit fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Xianyu Lin
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
48
|
Rosero MA, Abdon B, Silva NJ, Cisneros Larios B, Zavaleta JA, Makunts T, Chang ES, Bashar SJ, Ramos LS, Moffatt CA, Fuse M. Divergent mechanisms for regulating growth and development after imaginal disc damage in the tobacco hornworm, Manduca sexta. J Exp Biol 2019; 222:jeb200352. [PMID: 31492818 PMCID: PMC6826002 DOI: 10.1242/jeb.200352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/29/2019] [Indexed: 01/28/2023]
Abstract
Holometabolous insects have been able to radiate to vast ecological niches as adults through the evolution of adult-specific structures such as wings, antennae and eyes. These structures arise from imaginal discs that show regenerative capacity when damaged. During imaginal disc regeneration, development has been shown to be delayed in the fruit fly Drosophila melanogaster, but how conserved the delay-inducing mechanisms are across holometabolous insects has not been assessed. The goal of this research was to develop the hornworm Manduca sexta as an alternative model organism to study such damage-induced mechanisms, with the advantage of a larger hemolymph volume enabling access to the hormonal responses to imaginal disc damage. Upon whole-body X-ray exposure, we noted that the imaginal discs were selectively damaged, as assessed by TUNEL and Acridine Orange stains. Moreover, development was delayed, predominantly at the pupal-to-adult transition, with a concomitant delay in the prepupal ecdysteroid peak. The delays to eclosion were dose dependent, with some ability for repair of damaged tissues. We noted a shift in critical weight, as assessed by the point at which starvation no longer impacted developmental timing, without a change in growth rate, which was uncoupled from juvenile hormone clearance in the body. The developmental profile was different from that of D. melanogaster, which suggests species differences may exist in the mechanisms delaying development.
Collapse
Affiliation(s)
- Manuel A Rosero
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Benedict Abdon
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Nicholas J Silva
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Brenda Cisneros Larios
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Jhony A Zavaleta
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Tigran Makunts
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Ernest S Chang
- Bodega Marine Laboratory, University of California, Davis, PO Box 247, Bodega Bay, CA 94923, USA
| | - S Janna Bashar
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Louie S Ramos
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Christopher A Moffatt
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Megumi Fuse
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
49
|
Houtz P, Bonfini A, Bing X, Buchon N. Recruitment of Adult Precursor Cells Underlies Limited Repair of the Infected Larval Midgut in Drosophila. Cell Host Microbe 2019; 26:412-425.e5. [PMID: 31492656 DOI: 10.1016/j.chom.2019.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/11/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
Surviving infection requires immune and repair mechanisms. Developing organisms face the additional challenge of integrating these mechanisms with tightly controlled developmental processes. The larval Drosophila midgut lacks dedicated intestinal stem cells. We show that, upon infection, larvae perform limited repair using adult midgut precursors (AMPs). AMPs differentiate in response to damage to generate new enterocytes, transiently depleting their pool. Developmental delay allows for AMP reconstitution, ensuring the completion of metamorphosis. Notch signaling is required for the differentiation of AMPs into the encasing, niche-like peripheral cells (PCs), but not to differentiate PCs into enterocytes. Dpp (TGF-β) signaling is sufficient, but not necessary, to induce PC differentiation into enterocytes. Infection-induced JAK-STAT pathway is both required and sufficient for differentiation of AMPs and PCs into new enterocytes. Altogether, this work highlights the constraints imposed by development on an organism's response to infection and demonstrates the transient use of adult precursors for tissue repair.
Collapse
Affiliation(s)
- Philip Houtz
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, 129 Garden Ave., Ithaca, NY 14853, USA
| | - Alessandro Bonfini
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, 129 Garden Ave., Ithaca, NY 14853, USA
| | - Xiaoli Bing
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, 129 Garden Ave., Ithaca, NY 14853, USA
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, 129 Garden Ave., Ithaca, NY 14853, USA.
| |
Collapse
|
50
|
Ma Y, McKay DJ, Buttitta L. Changes in chromatin accessibility ensure robust cell cycle exit in terminally differentiated cells. PLoS Biol 2019; 17:e3000378. [PMID: 31479438 PMCID: PMC6743789 DOI: 10.1371/journal.pbio.3000378] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
During terminal differentiation, most cells exit the cell cycle and enter into a prolonged or permanent G0 in which they are refractory to mitogenic signals. Entry into G0 is usually initiated through the repression of cell cycle gene expression by formation of a transcriptional repressor complex called dimerization partner (DP), retinoblastoma (RB)-like, E2F and MuvB (DREAM). However, when DREAM repressive function is compromised during terminal differentiation, additional unknown mechanisms act to stably repress cycling and ensure robust cell cycle exit. Here, we provide evidence that developmentally programmed, temporal changes in chromatin accessibility at a small subset of critical cell cycle genes act to enforce cell cycle exit during terminal differentiation in the Drosophila melanogaster wing. We show that during terminal differentiation, chromatin closes at a set of pupal wing enhancers for the key rate-limiting cell cycle regulators Cyclin E (cycE), E2F transcription factor 1 (e2f1), and string (stg). This closing coincides with wing cells entering a robust postmitotic state that is strongly refractory to cell cycle reactivation, and the regions that close contain known binding sites for effectors of mitogenic signaling pathways such as Yorkie and Notch. When cell cycle exit is genetically disrupted, chromatin accessibility at cell cycle genes remains unaffected, and the closing of distal enhancers at cycE, e2f1, and stg proceeds independent of the cell cycling status. Instead, disruption of cell cycle exit leads to changes in accessibility and expression of a subset of hormone-induced transcription factors involved in the progression of terminal differentiation. Our results uncover a mechanism that acts as a cell cycle–independent timer to limit the response to mitogenic signaling and aberrant cycling in terminally differentiating tissues. In addition, we provide a new molecular description of the cross talk between cell cycle exit and terminal differentiation during metamorphosis. The longer a cell remains in G0, the more refractory it becomes to re-entering the cell cycle. This study shows that in terminally differentiated cells in vivo, regulatory elements at genes encoding just three key cell cycle regulators (cycE, e2f1 and stg) become inaccessible, limiting their aberrant activation and maintaining a prolonged, robust G0.
Collapse
Affiliation(s)
- Yiqin Ma
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel J McKay
- Department of Biology, Department of Genetics, Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Laura Buttitta
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|