1
|
Walsh ME, King GA, Ünal E. Not just binary: embracing the complexity of nuclear division dynamics. Nucleus 2024; 15:2360601. [PMID: 38842147 PMCID: PMC11164224 DOI: 10.1080/19491034.2024.2360601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Cell division presents a challenge for eukaryotic cells: how can chromosomes effectively segregate within the confines of a membranous nuclear compartment? Different organisms have evolved diverse solutions by modulating the degree of nuclear compartmentalization, ranging from complete nuclear envelope breakdown to complete maintenance of nuclear compartmentalization via nuclear envelope expansion. Many intermediate forms exist between these extremes, suggesting that nuclear dynamics during cell division are surprisingly plastic. In this review, we highlight the evolutionary diversity of nuclear divisions, focusing on two defining characteristics: (1) chromosome compartmentalization and (2) nucleocytoplasmic transport. Further, we highlight recent evidence that nuclear behavior during division can vary within different cellular contexts in the same organism. The variation observed within and between organisms underscores the dynamic evolution of nuclear divisions tailored to specific contexts and cellular requirements. In-depth investigation of diverse nuclear divisions will enhance our understanding of the nucleus, both in physiological and pathological states.
Collapse
Affiliation(s)
- Madison E. Walsh
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA, USA
| | - Grant A. King
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA, USA
| |
Collapse
|
2
|
Hua Y, Zhang J, Yang MY, Ren JY, Suo F, Liang L, Dong MQ, Ye K, Du LL. Structural duality enables a single protein to act as a toxin-antidote pair for meiotic drive. Proc Natl Acad Sci U S A 2024; 121:e2408618121. [PMID: 39485800 PMCID: PMC11551426 DOI: 10.1073/pnas.2408618121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
In sexual reproduction, selfish genetic elements known as killer meiotic drivers (KMDs) bias inheritance by eliminating gametes that do not carry them. The selective killing behavior of most KMDs can be explained by a toxin-antidote model, where a toxin harms all gametes while an antidote provides resistance to the toxin in carriers. This study investigates whether and how the KMD element tdk1 in the fission yeast Schizosaccharomyces pombe deploys this strategy. Intriguingly, tdk1 relies on a single protein product, Tdk1, for both killing and resistance. We show that Tdk1 exists in a nontoxic tetrameric form during vegetative growth and meiosis but transforms into a distinct toxic form in spores. This toxic form acquires the ability to interact with the histone reader Bdf1 and assembles into supramolecular foci that disrupt mitosis in noncarriers after spore germination. In contrast, Tdk1 synthesized during germination of carrier spores is nontoxic and acts as an antidote, dismantling the preformed toxic Tdk1 assemblies. Replacement of the N-terminal region of Tdk1 with a tetramer-forming peptide reveals its dual roles in imposing an autoinhibited tetrameric conformation and facilitating the assembly of supramolecular foci when autoinhibition is released. Moreover, we successfully reconstituted a functional KMD element by combining a construct that exclusively expresses Tdk1 during meiosis ("toxin-only") with another construct that expresses Tdk1 specifically during germination ("antidote-only"). This work uncovers a remarkable example of a single protein employing structural duality to form a toxin-antidote pair, expanding our understanding of the mechanisms underlying toxin-antidote systems.
Collapse
Affiliation(s)
- Yu Hua
- National Institute of Biological Sciences, Beijing102206, China
| | - Jianxiu Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Man-Yun Yang
- National Institute of Biological Sciences, Beijing102206, China
| | - Jing-Yi Ren
- National Institute of Biological Sciences, Beijing102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing102206, China
| | - Lingfei Liang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| |
Collapse
|
3
|
Neiman AM. Membrane and organelle rearrangement during ascospore formation in budding yeast. Microbiol Mol Biol Rev 2024; 88:e0001324. [PMID: 38899894 PMCID: PMC11426023 DOI: 10.1128/mmbr.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
4
|
Yang HJ, Asakawa H, Li FA, Haraguchi T, Shih HM, Hiraoka Y. A nuclear pore complex-associated regulation of SUMOylation in meiosis. Genes Cells 2023; 28:188-201. [PMID: 36562208 DOI: 10.1111/gtc.13003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The nuclear pore complex (NPC) provides a permeable barrier between the nucleoplasm and cytoplasm. In a subset of NPC constituents that regulate meiosis in the fission yeast Schizosaccharomyces pombe, we found that nucleoporin Nup132 (homolog of human Nup133) deficiency resulted in transient leakage of nuclear proteins during meiosis I, as observed in the nup132 gene-deleted mutant. The nuclear protein leakage accompanied the liberation of the small ubiquitin-like modifier (SUMO)-specific ubiquitin-like protease 1 (Ulp1) from the NPC. Ulp1 retention at the nuclear pore prevented nuclear protein leakage and restored normal meiosis in a mutant lacking Nup132. Furthermore, using mass spectrometry analysis, we identified DNA topoisomerase 2 (Top2) and RCC1-related protein (Pim1) as the target proteins for SUMOylation. SUMOylation levels of Top2 and Pim1 were altered in meiotic cells lacking Nup132. HyperSUMOylated Top2 increased the binding affinity at the centromeres of nup132 gene-deleted meiotic cells. The Top2-12KR sumoylation mutant was less localized to the centromeric regions. Our results suggest that SUMOylation of chromatin-binding proteins is regulated by the NPC-bound SUMO-specific protease and is important for the progression of meiosis.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
5
|
King GA, Wettstein R, Varberg JM, Chetlapalli K, Walsh ME, Gillet LC, Hernández-Armenta C, Beltrao P, Aebersold R, Jaspersen SL, Matos J, Ünal E. Meiotic nuclear pore complex remodeling provides key insights into nuclear basket organization. J Cell Biol 2023; 222:e202204039. [PMID: 36515990 PMCID: PMC9754704 DOI: 10.1083/jcb.202204039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/12/2022] [Accepted: 11/05/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear pore complexes (NPCs) are large proteinaceous assemblies that mediate nuclear compartmentalization. NPCs undergo large-scale structural rearrangements during mitosis in metazoans and some fungi. However, our understanding of NPC remodeling beyond mitosis remains limited. Using time-lapse fluorescence microscopy, we discovered that NPCs undergo two mechanistically separable remodeling events during budding yeast meiosis in which parts or all of the nuclear basket transiently dissociate from the NPC core during meiosis I and II, respectively. Meiosis I detachment, observed for Nup60 and Nup2, is driven by Polo kinase-mediated phosphorylation of Nup60 at its interface with the Y-complex. Subsequent reattachment of Nup60-Nup2 to the NPC core is facilitated by a lipid-binding amphipathic helix in Nup60. Preventing Nup60-Nup2 reattachment causes misorganization of the entire nuclear basket in gametes. Strikingly, meiotic nuclear basket remodeling also occurs in the distantly related fission yeast, Schizosaccharomyces pombe. Our study reveals a conserved and developmentally programmed aspect of NPC plasticity, providing key mechanistic insights into the nuclear basket organization.
Collapse
Affiliation(s)
- Grant A. King
- Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Rahel Wettstein
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | | | - Madison E. Walsh
- Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Ludovic C.J. Gillet
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Claudia Hernández-Armenta
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Pedro Beltrao
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Joao Matos
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA
| |
Collapse
|
6
|
Asakawa H, Hirano Y, Shindo T, Haraguchi T, Hiraoka Y. Fission yeast Ish1 and Les1 interact with each other in the lumen of the nuclear envelope. Genes Cells 2022; 27:643-656. [PMID: 36043331 DOI: 10.1111/gtc.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
Nuclear envelope (NE) provides a permeable barrier that separates the eukaryotic genome from the cytoplasm. NE is a double membrane composed of inner and outer nuclear membranes. Ish1 is a stress-responsive NE protein in the fission yeast, Schizosaccharomyces pombe. Les1 is another NE protein that shares several similar domains with Ish1, but the relationship between them remains unknown. In this study, using fluorescence and electron microscopy, we found that most regions of these proteins were localized within the NE lumen. We also found that Ish1 interacted with Les1 via its C-terminal region in the NE lumen and that the NE localization of Ish1 depended on the C-terminal region of Les1. Ish1 and Les1 were co-localized at the NE in interphase cells, but when the nucleus divided at the end of mitosis (closed mitosis), they showed distinguishable localization at the midzone membrane domain. These results suggest the regulated interaction between Ish1 and Les1 in the NE lumen, although this interaction does not appear to be essential for cell survival. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Japan
| | - Tomoko Shindo
- Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Japan
| |
Collapse
|
7
|
Varberg JM, Unruh JR, Bestul AJ, Khan AA, Jaspersen SL. Quantitative analysis of nuclear pore complex organization in Schizosaccharomyces pombe. Life Sci Alliance 2022; 5:e202201423. [PMID: 35354597 PMCID: PMC8967992 DOI: 10.26508/lsa.202201423] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/06/2023] Open
Abstract
The number, distribution, and composition of nuclear pore complexes (NPCs) in the nuclear envelope varies between cell types and changes during cellular differentiation and in disease. To understand how NPC density and organization are controlled, we analyzed the NPC number and distribution in the fission yeast Schizosaccharomyces pombe using structured illumination microscopy. The small size of yeast nuclei, genetic features of fungi, and our robust image analysis pipeline allowed us to study NPCs in intact nuclei under multiple conditions. Our data revealed that NPC density is maintained across a wide range of nuclear sizes. Regions of reduced NPC density are observed over the nucleolus and surrounding the spindle pole body (SPB). Lem2-mediated tethering of the centromeres to the SPB is required to maintain NPC exclusion near SPBs. These findings provide a quantitative understanding of NPC number and distribution in S. pombe and show that interactions between the centromere and the nuclear envelope influences local NPC distribution.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrew J Bestul
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Azqa A Khan
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Ohtsuka H, Imada K, Shimasaki T, Aiba H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. Microbiologyopen 2022; 11:e1303. [PMID: 35765188 PMCID: PMC9214231 DOI: 10.1002/mbo3.1303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistryNational Institute of Technology (KOSEN), Suzuka CollegeSuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversitySumiyoshi‐kuOsakaJapan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| |
Collapse
|
9
|
Dultz E, Wojtynek M, Medalia O, Onischenko E. The Nuclear Pore Complex: Birth, Life, and Death of a Cellular Behemoth. Cells 2022; 11:1456. [PMID: 35563762 PMCID: PMC9100368 DOI: 10.3390/cells11091456] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the only transport channels that cross the nuclear envelope. Constructed from ~500-1000 nucleoporin proteins each, they are among the largest macromolecular assemblies in eukaryotic cells. Thanks to advances in structural analysis approaches, the construction principles and architecture of the NPC have recently been revealed at submolecular resolution. Although the overall structure and inventory of nucleoporins are conserved, NPCs exhibit significant compositional and functional plasticity even within single cells and surprising variability in their assembly pathways. Once assembled, NPCs remain seemingly unexchangeable in post-mitotic cells. There are a number of as yet unresolved questions about how the versatility of NPC assembly and composition is established, how cells monitor the functional state of NPCs or how they could be renewed. Here, we review current progress in our understanding of the key aspects of NPC architecture and lifecycle.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Evgeny Onischenko
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
10
|
Hernández-Sánchez F, Peraza-Reyes L. Spatiotemporal Dynamic Regulation of Organelles During Meiotic Development, Insights From Fungi. Front Cell Dev Biol 2022; 10:886710. [PMID: 35547805 PMCID: PMC9081346 DOI: 10.3389/fcell.2022.886710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic cell development involves precise regulation of organelle activity and dynamics, which adapt the cell architecture and metabolism to the changing developmental requirements. Research in various fungal model organisms has disclosed that meiotic development involves precise spatiotemporal regulation of the formation and dynamics of distinct intracellular membrane compartments, including peroxisomes, mitochondria and distinct domains of the endoplasmic reticulum, comprising its peripheral domains and the nuclear envelope. This developmental regulation implicates changes in the constitution and dynamics of these organelles, which modulate their structure, abundance and distribution. Furthermore, selective degradation systems allow timely organelle removal at defined meiotic stages, and regulated interactions between membrane compartments support meiotic-regulated organelle dynamics. This dynamic organelle remodeling is implicated in conducting organelle segregation during meiotic differentiation, and defines quality control regulatory systems safeguarding the inheritance of functional membrane compartments, promoting meiotic cell rejuvenation. Moreover, organelle remodeling is important for proper activity of the cytoskeletal system conducting meiotic nucleus segregation, as well as for meiotic differentiation. The orchestrated regulation of organelle dynamics has a determinant contribution in the formation of the renewed genetically-diverse offspring of meiosis.
Collapse
|
11
|
Haraguchi T, Osakada H, Iwamoto M. Live CLEM Imaging of Tetrahymena to Analyze the Dynamic Behavior of the Nuclear Pore Complex. Methods Mol Biol 2022; 2502:473-492. [PMID: 35412257 DOI: 10.1007/978-1-0716-2337-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tetrahymena is a fascinating organism for studying the nuclear pore complex because it has two structurally and functionally distinct nuclei (macronucleus and micronucleus) within a cell, and there are two compositionally distinct nuclear pore complexes (NPCs) with different functions in each nucleus. Therefore, it is possible to link the function of a specific constituent protein with the nuclear function of the macronucleus and micronucleus. Additionally, these NPCs undergo dynamic changes in their structures and compositions during nuclear differentiation. Live CLEM imaging, a method of correlative light and electron microscopy (CLEM) combined with live cell imaging, is a powerful tool for visualizing these dynamic changes of specific molecules/structures of interest at high resolution. Here, we describe Live CLEM that can be applied to the study of the dynamic behavior of NPCs in Tetrahymena cells undergoing nuclear differentiation.
Collapse
Affiliation(s)
- Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Hiroko Osakada
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Iwamoto
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| |
Collapse
|
12
|
Spindle Dynamics during Meiotic Development of the Fungus Podospora anserina Requires the Endoplasmic Reticulum-Shaping Protein RTN1. mBio 2021; 12:e0161521. [PMID: 34607459 PMCID: PMC8546617 DOI: 10.1128/mbio.01615-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is an elaborate organelle composed of distinct structural and functional domains. ER structure and dynamics involve membrane-shaping proteins of the reticulon and Yop1/DP1 families, which promote membrane curvature and regulate ER shaping and remodeling. Here, we analyzed the function of the reticulon (RTN1) and Yop1 proteins (YOP1 and YOP2) of the model fungus Podospora anserina and their contribution to sexual development. We found that RTN1 and YOP2 localize to the peripheral ER and are enriched in the dynamic apical ER domains of the polarized growing hyphal region. We discovered that the formation of these domains is diminished in the absence of RTN1 or YOP2 and abolished in the absence of YOP1 and that hyphal growth is moderately reduced when YOP1 is deleted in combination with RTN1 and/or YOP2. In addition, we found that RTN1 associates with the Spitzenkörper. Moreover, RTN1 localization is regulated during meiotic development, where it accumulates at the apex of growing asci (meiocytes) during their differentiation and at their middle region during the subsequent meiotic progression. Furthermore, we discovered that loss of RTN1 affects ascospore (meiotic spore) formation, in a process that does not involve YOP1 or YOP2. Finally, we show that the defects in ascospore formation of rtn1 mutants are associated with defective nuclear segregation and spindle dynamics throughout meiotic development. Our results show that sexual development in P. anserina involves a developmental remodeling of the ER that implicates the reticulon RTN1, which is required for meiotic nucleus segregation.
Collapse
|
13
|
Koch BA, Staley E, Jin H, Yu HG. The ESCRT-III complex is required for nuclear pore complex sequestration and regulates gamete replicative lifespan in budding yeast meiosis. Nucleus 2021; 11:219-236. [PMID: 32893723 PMCID: PMC7529410 DOI: 10.1080/19491034.2020.1812872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular aging occurs as a cell loses its ability to maintain homeostasis. Aging cells eliminate damaged cellular compartments and other senescence factors via self-renewal. The mechanism that regulates cellular rejuvenation remains to be further elucidated. Using budding yeast gametogenesis as a model, we show here that the endosomal sorting complex required for transport (ESCRT) III regulates nuclear envelope organization. During gametogenesis, the nuclear pore complex (NPC) and other senescence factors are sequestered away from the prospore nuclei. We show that the LEM-domain protein Heh1 (Src1) facilitates the nuclear recruitment of ESCRT-III, which is required for meiotic NPC sequestration and nuclear envelope remodeling. Furthermore, ESCRT-III-mediated nuclear reorganization appears to be critical for gamete rejuvenation, as hindering this process curtails either directly or indirectly the replicative lifespan in gametes. Our findings demonstrate the importance of ESCRT-III in nuclear envelope remodeling and its potential role in eliminating senescence factors during gametogenesis.
Collapse
Affiliation(s)
- Bailey A Koch
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| | - Elizabeth Staley
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| | - Hui Jin
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| | - Hong-Guo Yu
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| |
Collapse
|
14
|
Sato M, Kakui Y, Toya M. Tell the Difference Between Mitosis and Meiosis: Interplay Between Chromosomes, Cytoskeleton, and Cell Cycle Regulation. Front Cell Dev Biol 2021; 9:660322. [PMID: 33898463 PMCID: PMC8060462 DOI: 10.3389/fcell.2021.660322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
Meiosis is a specialized style of cell division conserved in eukaryotes, particularly designed for the production of gametes. A huge number of studies to date have demonstrated how chromosomes behave and how meiotic events are controlled. Yeast substantially contributed to the understanding of the molecular mechanisms of meiosis in the past decades. Recently, evidence began to accumulate to draw a perspective landscape showing that chromosomes and microtubules are mutually influenced: microtubules regulate chromosomes, whereas chromosomes also regulate microtubule behaviors. Here we focus on lessons from recent advancement in genetical and cytological studies of the fission yeast Schizosaccharomyces pombe, revealing how chromosomes, cytoskeleton, and cell cycle progression are organized and particularly how these are differentiated in mitosis and meiosis. These studies illuminate that meiosis is strategically designed to fulfill two missions: faithful segregation of genetic materials and production of genetic diversity in descendants through elaboration by meiosis-specific factors in collaboration with general factors.
Collapse
Affiliation(s)
- Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Institute for Medical-Oriented Structural Biology, Waseda University, Tokyo, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
15
|
Koch-Bojalad BA, Carson L, Yu HG. Forever young: the key to rejuvenation during gametogenesis. Curr Genet 2020; 67:231-235. [PMID: 33247310 DOI: 10.1007/s00294-020-01133-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022]
Abstract
Cell aging is the result of deteriorating competence in maintaining cellular homeostasis and quality control. Certain cell types are able to rejuvenate through asymmetric cell division by excluding aging factors, including damaged cellular compartments and extrachromosomal rDNA circles, from entering the daughter cell. Recent findings from the budding yeast S. cerevisiae have shown that gametogenesis represents another type of cellular rejuvenation. Gametes, whether produced by an old or a young mother cell, are granted a renewed replicative lifespan through the formation of a fifth nuclear compartment that sequesters the harmful senescence factors accumulated by the mother. Here, we describe the importance and mechanism of cellular remodeling at the nuclear envelope mediated by ESCRT-III and the LEM-domain proteins, with a focus on nuclear pore biogenesis and chromatin interaction during gamete rejuvenation.
Collapse
Affiliation(s)
- Bailey A Koch-Bojalad
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren Carson
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Hong-Guo Yu
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
16
|
Yang HJ, Asakawa H, Ohtsuki C, Haraguchi T, Hiraoka Y. Transient Breakage of the Nucleocytoplasmic Barrier Controls Spore Maturation via Mobilizing the Proteasome Subunit Rpn11 in the Fission Yeast Schizosaccharomyces pombe. J Fungi (Basel) 2020; 6:jof6040242. [PMID: 33113963 PMCID: PMC7712896 DOI: 10.3390/jof6040242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Forespore membrane (FSM) closure is a process of specialized cytokinesis in yeast meiosis. FSM closure begins with the contraction of the FSM opening and finishes with the disassembly of the leading-edge proteins (LEPs) from the FSM opening. Here, we show that the FSM opening starts to contract when the event of virtual nuclear envelope breakdown (vNEBD) occurs in anaphase II of the fission yeast Schizosaccharomyces pombe. The occurrence of vNEBD controls the redistribution of the proteasomal subunit Rpn11 from the nucleus to the cytosol. To investigate the importance of Rpn11 re-localization during vNEBD, Rpn11 was sequestered at the inner nuclear membrane by fusion with the transmembrane region of Bqt4 (Rpn11-GFP-INM). Remarkably, in the absence of endogenous rpn11+, the cells carrying Rpn11-GFP-INM had abnormal or no spore formation. Live-cell imaging analysis further reveals that the FSM opening failed to contract when vNEBD occurred, and the LEP Meu14 was persistently present at the FSM in the rpn11-gfp-INM cells. The results suggest that the dynamic localization of Rpn11 during vNEBD is essential for spore development.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence:
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Chizuru Ohtsuki
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| |
Collapse
|
17
|
Mori R, Oliferenko S. Cell Biology: An Open Solution for Closed Mitosis. Curr Biol 2020; 30:R942-R944. [PMID: 32810455 DOI: 10.1016/j.cub.2020.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
At the end of mitosis, cells must remodel their nuclear envelope to produce two identical daughter nuclei. Two new studies using Schizosaccharomyces pombe provide insight into how compartmentalized nuclear pore complex disassembly allows cells that undergo closed mitosis to achieve nuclear division.
Collapse
Affiliation(s)
- Risa Mori
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
18
|
Hirano Y, Kinugasa Y, Osakada H, Shindo T, Kubota Y, Shibata S, Haraguchi T, Hiraoka Y. Lem2 and Lnp1 maintain the membrane boundary between the nuclear envelope and endoplasmic reticulum. Commun Biol 2020; 3:276. [PMID: 32483293 PMCID: PMC7264229 DOI: 10.1038/s42003-020-0999-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 05/11/2020] [Indexed: 01/09/2023] Open
Abstract
The nuclear envelope (NE) continues to the endoplasmic reticulum (ER). Proper partitioning of NE and ER is crucial for cellular activity, but the key factors maintaining the boundary between NE and ER remain to be elucidated. Here we show that the conserved membrane proteins Lem2 and Lnp1 cooperatively play a crucial role in maintaining the NE-ER membrane boundary in fission yeast Schizosaccharomyces pombe. Cells lacking both Lem2 and Lnp1 caused severe growth defects associated with aberrant expansion of the NE/ER membranes, abnormal leakage of nuclear proteins, and abnormal formation of vacuolar-like structures in the nucleus. Overexpression of the ER membrane protein Apq12 rescued the growth defect associated with membrane disorder caused by the loss of Lem2 and Lnp1. Genetic analysis showed that Apq12 had overlapping functions with Lnp1. We propose that a membrane protein network with Lem2 and Lnp1 acts as a critical factor to maintain the NE-ER boundary.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshino Kubota
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan.
| |
Collapse
|
19
|
King GA, Ünal E. The dynamic nuclear periphery as a facilitator of gamete health and rejuvenation. Curr Genet 2020; 66:487-493. [PMID: 31915924 PMCID: PMC7202962 DOI: 10.1007/s00294-019-01050-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/26/2022]
Abstract
The nuclear periphery is a hotspot for the accumulation of age-induced damage in eukaryotic cells. The types of damage that occur at the periphery and their phenotypic consequences have begun to be characterized; however, the mechanisms by which cells repair or eliminate nuclear damage remain poorly understood. Using budding yeast meiosis as a natural system to study cellular rejuvenation, we recently discovered a novel nuclear quality control event, in which age-induced damage is sequestered away from dividing chromosomes to a discarded nuclear compartment that we term the GUNC (for "Gametogenesis Uninherited Nuclear Compartment"). Interestingly, extensive nuclear remodeling occurs even in young cells, including a surprising modularity of the nuclear pore complex, suggesting a general contribution to gamete fitness. In this review, we discuss these findings in the context of recent evidence that the nuclear periphery is a highly dynamic region critical for cellular health.
Collapse
Affiliation(s)
- Grant A King
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720, USA.
| |
Collapse
|
20
|
Berthezene J, Reyes C, Li T, Coulon S, Bernard P, Gachet Y, Tournier S. Aurora B and condensin are dispensable for chromosome arm and telomere separation during meiosis II. Mol Biol Cell 2020; 31:889-905. [PMID: 32101485 PMCID: PMC7185977 DOI: 10.1091/mbc.e20-01-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In mitosis, while the importance of kinetochore (KT)-microtubule (MT) attachment has been known for many years, increasing evidence suggests that telomere dysfunctions also perturb chromosome segregation by contributing to the formation of chromatin bridges at anaphase. Recent evidence suggests that Aurora B kinase ensures proper chromosome segregation during mitosis not only by controlling KT-MT attachment but also by regulating telomere and chromosome arm separation. However, whether and how Aurora B governs telomere separation during meiosis has remained unknown. Here, we show that fission yeast Aurora B localizes at telomeres during meiosis I and promotes telomere separation independently of the meiotic cohesin Rec8. In meiosis II, Aurora B controls KT-MT attachment but appears dispensable for telomere and chromosome arm separation. Likewise, condensin activity is nonessential in meiosis II for telomere and chromosome arm separation. Thus, in meiosis, the requirements for Aurora B are distinct at centromeres and telomeres, illustrating the critical differences in the control of chromosome segregation between mitosis and meiosis II.
Collapse
Affiliation(s)
- Julien Berthezene
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Céline Reyes
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Tong Li
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, 13273 Marseille, France
| | - Pascal Bernard
- CNRS-Laboratory of Biology and Modelling of the Cell, UMR 5239, 69364 Lyon, France.,ENS de Lyon, Université Lyon, F-69007 Lyon, France
| | - Yannick Gachet
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Sylvie Tournier
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
21
|
Salas-Pino S, Daga RR. Spatiotemporal control of spindle disassembly in fission yeast. Cell Mol Life Sci 2019; 76:3543-3551. [PMID: 31129857 PMCID: PMC11105212 DOI: 10.1007/s00018-019-03139-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Maintenance of genomic stability during cell division is one of the most important cellular tasks, and it critically depends on the faithful replication of the genetic material and its equal partitioning into daughter cells, gametes, or spores in the case of yeasts. Defective mitotic spindle assembly and disassembly both result in changes in cellular ploidy that ultimately impinge proliferation fitness and might increase tumor malignancy. Although a great progress has been made in understanding how spindles are assembled to orchestrate chromosome segregation, much less is known about how they are disassembled once completed their function. Here, we review two recently uncovered mechanisms of spindle disassembly that operate at different stages of the fission yeast life cycle.
Collapse
Affiliation(s)
- Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| |
Collapse
|
22
|
Varberg JM, Jaspersen SL. To Make a Long Spindle Short: Nuclear Envelope Breakdown during Meiosis. Cell Rep 2019; 23:931-932. [PMID: 29694899 DOI: 10.1016/j.celrep.2018.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In fission yeast, the nuclear envelope (NE) remains intact during mitosis and meiosis I but is compromised during meiosis II. In this issue of Cell Reports, Flor-Parra et al. (2018) demonstrate that this NE alteration regulates meiosis II spindle disassembly and the ploidy of meiotic products.
Collapse
Affiliation(s)
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
23
|
Kinugasa Y, Hirano Y, Sawai M, Ohno Y, Shindo T, Asakawa H, Chikashige Y, Shibata S, Kihara A, Haraguchi T, Hiraoka Y. The very-long-chain fatty acid elongase Elo2 rescues lethal defects associated with loss of the nuclear barrier function in fission yeast cells. J Cell Sci 2019; 132:jcs.229021. [PMID: 30975915 DOI: 10.1242/jcs.229021] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022] Open
Abstract
In eukaryotic cells, chromosomes are confined to the nucleus, which is compartmentalized by the nuclear membranes; these are continuous with the endoplasmic reticulum membranes. Maintaining the homeostasis of these membranes is an important cellular activity performed by lipid metabolic enzymes. However, how lipid metabolic enzymes affect nuclear membrane functions remains to be elucidated. We found that the very-long-chain fatty acid elongase Elo2 is located in the nuclear membrane and prevents lethal defects associated with nuclear membrane ruptures in mutants of the nuclear membrane proteins Lem2 and Bqt4 in the fission yeast Schizosaccharomyces pombe. Lipid composition analysis shows that t20:0/24:0 phytoceramide (a conjugate of C20:0 phytosphingosine and C24:0 fatty acid) is a major ceramide species in S. pombe The quantity of this ceramide is reduced in the absence of Lem2, and restored by increased expression of Elo2. Furthermore, loss of S. pombe Elo2 can be rescued by its human orthologs. These results suggest that the conserved very-long-chain fatty acid elongase producing the ceramide component is essential for nuclear membrane integrity and cell viability in eukaryotes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Megumi Sawai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yusuke Ohno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan .,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| |
Collapse
|
24
|
Kurokawa K, Osakada H, Kojidani T, Waga M, Suda Y, Asakawa H, Haraguchi T, Nakano A. Visualization of secretory cargo transport within the Golgi apparatus. J Cell Biol 2019; 218:1602-1618. [PMID: 30858192 PMCID: PMC6504898 DOI: 10.1083/jcb.201807194] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/31/2018] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Kurokawa et al. visualize the transport of secretory cargo in the Golgi apparatus in living yeast cells. Cargo stays in the cisterna, whose property changes from cis to trans and further to the trans-Golgi network, but shows a dynamic behavior between the early and the late zones within the maturing cisterna. To describe trafficking of secretory cargo within the Golgi apparatus, the cisternal maturation model predicts that Golgi cisternae change their properties from cis to trans while cargo remains in the cisternae. Cisternal change has been demonstrated in living yeast Saccharomyces cerevisiae; however, the behavior of cargo has yet to be examined directly. In this study, we conducted simultaneous three-color and four-dimensional visualization of secretory transmembrane cargo together with early and late Golgi resident proteins. We show that cargo stays in a Golgi cisterna during maturation from cis-Golgi to trans-Golgi and further to the trans-Golgi network (TGN), which involves dynamic mixing and segregation of two zones of the earlier and later Golgi resident proteins. The location of cargo changes from the early to the late zone within the cisterna during the progression of maturation. In addition, cargo shows an interesting behavior during the maturation to the TGN. After most cargo has reached the TGN zone, a small amount of cargo frequently reappears in the earlier zone.
Collapse
Affiliation(s)
- Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tomoko Kojidani
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Miho Waga
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Laboratory of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| |
Collapse
|
25
|
Asakawa H, Hiraoka Y, Haraguchi T. Estimation of GFP-Nucleoporin Amount Based on Fluorescence Microscopy. Methods Mol Biol 2018; 1721:105-115. [PMID: 29423851 DOI: 10.1007/978-1-4939-7546-4_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cellular structures and biomolecular complexes are not simply assemblies of proteins, but are organized with defined numbers of protein molecules in precise locations. Thus, evaluating the spatial localization and numbers of protein molecules is of fundamental importance in understanding cellular structures and functions. The amounts of proteins of interest have conventionally been determined by biochemical methods. However, biochemical measurements based on the population average have limitations: it is sometimes difficult to determine the amounts of insoluble proteins or low expression proteins localized in small portions of the cell. In contrast, microphotometric measurements using fluorescence microscopes enable us to detect the amounts of such proteins in situ in a particular subcellular region. Here, we describe a method to measure the amounts of fluorescently tagged proteins by fluorescence microscopy, and present an example of an application to nuclear pore proteins in the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan. .,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.
| |
Collapse
|
26
|
Oliferenko S. Understanding eukaryotic chromosome segregation from a comparative biology perspective. J Cell Sci 2018; 131:131/14/jcs203653. [PMID: 30030298 DOI: 10.1242/jcs.203653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A long-appreciated variation in fundamental cell biological processes between different species is becoming increasingly tractable due to recent breakthroughs in whole-genome analyses and genome editing techniques. However, the bulk of our mechanistic understanding in cell biology continues to come from just a few well-established models. In this Review, I use the highly diverse strategies of chromosome segregation in eukaryotes as an instrument for a more general discussion on phenotypic variation, possible rules underlying its emergence and its utility in understanding conserved functional relationships underlying this process. Such a comparative approach, supported by modern molecular biology tools, might provide a wider, holistic view of biology that is difficult to achieve when concentrating on a single experimental system.
Collapse
Affiliation(s)
- Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK .,Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| |
Collapse
|
27
|
Flor-Parra I, Iglesias-Romero AB, Salas-Pino S, Lucena R, Jimenez J, Daga RR. Importin α and vNEBD Control Meiotic Spindle Disassembly in Fission Yeast. Cell Rep 2018; 23:933-941. [DOI: 10.1016/j.celrep.2018.03.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/13/2018] [Accepted: 03/16/2018] [Indexed: 11/15/2022] Open
|
28
|
Schizosaccharomyces japonicus: A Distinct Dimorphic Yeast among the Fission Yeasts. Cold Spring Harb Protoc 2017; 2017:pdb.top082651. [PMID: 28733412 DOI: 10.1101/pdb.top082651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genomic sequencing data and morphological properties demonstrate evolutionary relationships among groups of the fission yeast, Schizosaccharomyces Phylogenetically, S. japonicus is the furthest removed from other species of fission yeast. The basic characteristics of cell proliferation are shared among all fission yeast, including the process of binary fission during vegetative growth, conjugation and karyogamy with horsetail movement, mating-type switching, and sporulation. However, S. japonicus also exhibits characteristics that are unique to filamentous fungi. S. japonicus is a nonpathogenic yeast that exhibits dimorphism. Depending on the environmental conditions, S. japonicus transforms from yeast cells into filamentous cells (hyphae), and blue light triggers synchronous septation of hyphal cells. A rough version of the whole-genome sequence is now available, facilitating genetic manipulation of S. japonicus. Furthermore, the extensive genetic knowledge available for S. pombe is aiding the development of genetic tools for analyzing S. japonicus. S. japonicus will help shed light on the evolutionary relationships among the fission yeast.
Collapse
|
29
|
Chikashige Y, Yamane M, Okamasa K, Osakada H, Tsutsumi C, Nagahama Y, Fukuta N, Haraguchi T, Hiraoka Y. Fission yeast APC/C activators Slp1 and Fzr1 sequentially trigger two consecutive nuclear divisions during meiosis. FEBS Lett 2017; 591:1029-1040. [PMID: 28245054 DOI: 10.1002/1873-3468.12612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 01/05/2023]
Abstract
In meiosis, two rounds of nuclear division occur consecutively without DNA replication between the divisions. We isolated a fission yeast mutant in which the nucleus divides only once to generate two spores, as opposed to four, in meiosis. In this mutant, we found that the initiation codon of the slp1+ gene is converted to ATA, producing a reduced amount of Slp1. As a member of the Fizzy family of anaphase-promoting complex/cyclosome (APC/C) activators, Slp1 is essential for vegetative growth; however, the mutant allele shows a phenotype only in meiosis. Slp1 insufficiency delays degradation of maturation-promoting factor at the first meiotic division, and another APC/C activator, Fzr1, which acts late in meiosis, terminates meiosis immediately after the delayed first division to produce two viable spores.
Collapse
Affiliation(s)
- Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Miho Yamane
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Kasumi Okamasa
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chihiro Tsutsumi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yuki Nagahama
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Noriko Fukuta
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
30
|
Yang HJ, Osakada H, Kojidani T, Haraguchi T, Hiraoka Y. Lipid droplet dynamics during Schizosaccharomyces pombe sporulation and their role in spore survival. Biol Open 2017; 6:217-222. [PMID: 28011631 PMCID: PMC5312105 DOI: 10.1242/bio.022384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Upon nitrogen starvation, the fission yeast Schizosaccharomyces pombe forms dormant spores; however, the mechanisms by which a spore sustains life without access to exogenous nutrients remain unclear. Lipid droplets are reservoirs of neutral lipids that act as important cellular energy resources. Using live-cell imaging analysis, we found that the lipid droplets of mother cells redistribute to their nascent spores. Notably, this process was actin polymerization-dependent and facilitated by the leading edge proteins of the forespore membrane. Spores lacking triacylglycerol synthesis, which is essential for lipid droplet formation, failed to germinate. Our results suggest that the lipid droplets are important for the sustenance of life in spores. Summary: Lipid droplets of yeast mother cells are shown to redistribute to their nascent spores by live-cell imaging analysis, suggesting that the lipid droplets are important for yeast spore survival.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hiroko Osakada
- Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tomoko Kojidani
- Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Japan Women's University, Tokyo, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan .,Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
31
|
Brault A, Rallis C, Normant V, Garant JM, Bähler J, Labbé S. Php4 Is a Key Player for Iron Economy in Meiotic and Sporulating Cells. G3 (BETHESDA, MD.) 2016; 6:3077-3095. [PMID: 27466270 PMCID: PMC5068932 DOI: 10.1534/g3.116.031898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/24/2016] [Indexed: 11/18/2022]
Abstract
Meiosis is essential for sexually reproducing organisms, including the fission yeast Schizosaccharomyces pombe In meiosis, chromosomes replicate once in a diploid precursor cell (zygote), and then segregate twice to generate four haploid meiotic products, named spores in yeast. In S. pombe, Php4 is responsible for the transcriptional repression capability of the heteromeric CCAAT-binding factor to negatively regulate genes encoding iron-using proteins under low-iron conditions. Here, we show that the CCAAT-regulatory subunit Php4 is required for normal progression of meiosis under iron-limiting conditions. Cells lacking Php4 exhibit a meiotic arrest at metaphase I. Microscopic analyses of cells expressing functional GFP-Php4 show that it colocalizes with chromosomal material at every stage of meiosis under low concentrations of iron. In contrast, GFP-Php4 fluorescence signal is lost when cells undergo meiosis under iron-replete conditions. Global gene expression analysis of meiotic cells using DNA microarrays identified 137 genes that are regulated in an iron- and Php4-dependent manner. Among them, 18 genes are expressed exclusively during meiosis and constitute new putative Php4 target genes, which include hry1+ and mug14+ Further analysis validates that Php4 is required for maximal and timely repression of hry1+ and mug14+ genes. Using a chromatin immunoprecipitation approach, we show that Php4 specifically associates with hry1+ and mug14+ promoters in vivo Taken together, the results reveal that in iron-starved meiotic cells, Php4 is essential for completion of the meiotic program since it participates in global gene expression reprogramming to optimize the use of limited available iron.
Collapse
Affiliation(s)
- Ariane Brault
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Quebec, J1E 4K8, Canada
| | - Charalampos Rallis
- Research Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK
| | - Vincent Normant
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Quebec, J1E 4K8, Canada
| | - Jean-Michel Garant
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Quebec, J1E 4K8, Canada
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Quebec, J1E 4K8, Canada
| |
Collapse
|
32
|
Kobayashi S, Iwamoto M, Haraguchi T. Live correlative light-electron microscopy to observe molecular dynamics in high resolution. Microscopy (Oxf) 2016; 65:296-308. [DOI: 10.1093/jmicro/dfw024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022] Open
|
33
|
Gómez-Saldivar G, Fernandez A, Hirano Y, Mauro M, Lai A, Ayuso C, Haraguchi T, Hiraoka Y, Piano F, Askjaer P. Identification of Conserved MEL-28/ELYS Domains with Essential Roles in Nuclear Assembly and Chromosome Segregation. PLoS Genet 2016; 12:e1006131. [PMID: 27341616 PMCID: PMC4920428 DOI: 10.1371/journal.pgen.1006131] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022] Open
Abstract
Nucleoporins are the constituents of nuclear pore complexes (NPCs) and are essential regulators of nucleocytoplasmic transport, gene expression and genome stability. The nucleoporin MEL-28/ELYS plays a critical role in post-mitotic NPC reassembly through recruitment of the NUP107-160 subcomplex, and is required for correct segregation of mitotic chromosomes. Here we present a systematic functional and structural analysis of MEL-28 in C. elegans early development and human ELYS in cultured cells. We have identified functional domains responsible for nuclear envelope and kinetochore localization, chromatin binding, mitotic spindle matrix association and chromosome segregation. Surprisingly, we found that perturbations to MEL-28’s conserved AT-hook domain do not affect MEL-28 localization although they disrupt MEL-28 function and delay cell cycle progression in a DNA damage checkpoint-dependent manner. Our analyses also uncover a novel meiotic role of MEL-28. Together, these results show that MEL-28 has conserved structural domains that are essential for its fundamental roles in NPC assembly and chromosome segregation. Most animal cells have a nucleus that contains the genetic material: the chromosomes. The nucleus is enclosed by the nuclear envelope, which provides a physical barrier between the chromosomes and the surrounding cytoplasm, and enables precisely controlled transport of proteins into and out of the nucleus. Transport occurs through nuclear pore complexes, which consist of multiple copies of ~30 different proteins called nucleoporins. Although the composition of nuclear pore complexes is known, the mechanisms of their assembly and function are still unclear. We have analyzed the nucleoporin MEL-28/ELYS through a systematic dissection of functional domains both in the nematode Caenorhabditis elegans and in human cells. Interestingly, MEL-28/ELYS localizes not only to nuclear pore complexes, but is also associated with chromosomal structures known as kinetochores during cell division. Our studies have revealed that even small perturbations in MEL-28/ELYS can have dramatic consequences on nuclear pore complex assembly as well as on separation of chromosomes during cell division. Surprisingly, inhibition of MEL-28/ELYS causes cell-cycle delay, suggesting activation of a cellular surveillance system for chromosomal damages. Finally, we conclude that the structural domains of MEL-28/ELYS are conserved from nematodes to humans.
Collapse
Affiliation(s)
- Georgina Gómez-Saldivar
- Andalusian Center for Developmental Biology (CABD), CSIC/Junta de Andalucia/Universidad Pablo de Olavide, Seville, Spain
| | - Anita Fernandez
- Biology Department, Fairfield University, Fairfield, Connecticut, United States of America
- * E-mail: (AF); (PA)
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Michael Mauro
- Biology Department, Fairfield University, Fairfield, Connecticut, United States of America
| | - Allison Lai
- Biology Department, Fairfield University, Fairfield, Connecticut, United States of America
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), CSIC/Junta de Andalucia/Universidad Pablo de Olavide, Seville, Spain
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Fabio Piano
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- New York University, Abu Dhabi, United Arab Emirates
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/Junta de Andalucia/Universidad Pablo de Olavide, Seville, Spain
- * E-mail: (AF); (PA)
| |
Collapse
|
34
|
Asakawa H, Yang HJ, Hiraoka Y, Haraguchi T. Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis. Front Cell Dev Biol 2016; 4:5. [PMID: 26870731 PMCID: PMC4735346 DOI: 10.3389/fcell.2016.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/15/2016] [Indexed: 11/24/2022] Open
Abstract
Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE) formation. After NE breakdown (NEBD) during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which chromosomes are segregated subsequent to NEBD is called “open mitosis.” In contrast, many fungi undergo a process termed “closed mitosis” in which chromosome segregation and spindle formation occur without NEBD. Although the fission yeast Schizosaccharomyces pombe undergoes a closed mitosis, it exhibits a short period during meiosis (anaphase of the second meiosis; called “anaphase II”) when nuclear and cytoplasmic proteins are mixed in the presence of intact NE and nuclear pore complexes (NPC). This “virtual” nuclear envelope breakdown (vNEBD) involves changes in the localization of RanGAP1, an activator of Ran-GTP hydrolysis. Recently, Nup132, a component of the structural core Nup107-160 subcomplex of the NPC, has been shown to be involved in the maintenance of the nuclear cytoplasmic barrier in yeast meiosis. In this review, we highlight the possible roles of RanGAP1 and Nup132 in vNEBD and discuss the biological significance of vNEBD in S. pombe meiosis.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University Suita, Japan
| | - Hui-Ju Yang
- Graduate School of Frontier Biosciences, Osaka University Suita, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; Cell Biology Group, Advanced ICT Research Institute Kobe, National Institute of Information and Communications TechnologyKobe, Japan; Graduate School of Science, Department of Biology, Osaka UniversityToyonaka, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; Cell Biology Group, Advanced ICT Research Institute Kobe, National Institute of Information and Communications TechnologyKobe, Japan; Graduate School of Science, Department of Biology, Osaka UniversityToyonaka, Japan
| |
Collapse
|
35
|
Yang HJ, Asakawa H, Haraguchi T, Hiraoka Y. Nup132 modulates meiotic spindle attachment in fission yeast by regulating kinetochore assembly. J Cell Biol 2015; 211:295-308. [PMID: 26483559 PMCID: PMC4621824 DOI: 10.1083/jcb.201501035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023] Open
Abstract
The fission yeast nucleoporin Nup132 is required for timely assembly of outer kinetochore proteins during meiotic prophase and its depletion activates the spindle assembly checkpoint in meiosis I, suggesting a role in establishing monopolar spindle attachment through outer kinetochore reorganization at meiotic prophase. During meiosis, the kinetochore undergoes substantial reorganization to establish monopolar spindle attachment. In the fission yeast Schizosaccharomyces pombe, the KNL1–Spc7-Mis12-Nuf2 (KMN) complex, which constitutes the outer kinetochore, is disassembled during meiotic prophase and is reassembled before meiosis I. Here, we show that the nucleoporin Nup132 is required for timely assembly of the KMN proteins: In the absence of Nup132, Mis12 and Spc7 are precociously assembled at the centromeres during meiotic prophase. In contrast, Nuf2 shows timely dissociation and reappearance at the meiotic centromeres. We further demonstrate that depletion of Nup132 activates the spindle assembly checkpoint in meiosis I, possibly because of the increased incidence of erroneous spindle attachment at sister chromatids. These results suggest that precocious assembly of the kinetochores leads to the meiosis I defects observed in the nup132-disrupted mutant. Thus, we propose that Nup132 plays an important role in establishing monopolar spindle attachment at meiosis I through outer kinetochore reorganization at meiotic prophase.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| |
Collapse
|
36
|
Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization. Cells 2015; 4:406-26. [PMID: 26308057 PMCID: PMC4588043 DOI: 10.3390/cells4030406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells.
Collapse
|
37
|
Haraguchi T, Osakada H, Koujin T. Live CLEM imaging to analyze nuclear structures at high resolution. Methods Mol Biol 2015; 1262:89-103. [PMID: 25555577 DOI: 10.1007/978-1-4939-2253-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.
Collapse
Affiliation(s)
- Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan,
| | | | | |
Collapse
|
38
|
Ruan K, Yamamoto TG, Asakawa H, Chikashige Y, Masukata H, Haraguchi T, Hiraoka Y. Meiotic nuclear movements in fission yeast are regulated by the transcription factor Mei4 downstream of a Cds1-dependent replication checkpoint pathway. Genes Cells 2014; 20:160-72. [PMID: 25492408 PMCID: PMC4359684 DOI: 10.1111/gtc.12207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/29/2014] [Indexed: 12/30/2022]
Abstract
In meiosis, the fission yeast nucleus displays an elongated morphology, moving back and forth within the cell; these nuclear movements continue for approximately 2 h before meiotic nuclear divisions. Meiotic DNA replication occurs in an early phase of the nuclear movements and is followed by meiotic prophase. Here we report that in mutants deficient in meiotic DNA replication, the duration of nuclear movements is strikingly prolonged to four to 5 h. We found that this prolongation was caused by the Cds1-dependent replication checkpoint, which represses expression of the mei4+ gene encoding a meiosis-specific transcription factor. In the absence of Mei4, nuclear movements persisted for more than 8 h. In contrast, overproduction of Mei4 accelerated termination of nuclear movements to approximately 30 min. These results show that Mei4 is involved in the termination of nuclear movements and that Mei4-mediated regulatory pathways link a DNA replication checkpoint to the termination of nuclear movements.
Collapse
Affiliation(s)
- Kun Ruan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Sazer S, Lynch M, Needleman D. Deciphering the evolutionary history of open and closed mitosis. Curr Biol 2014; 24:R1099-103. [PMID: 25458223 DOI: 10.1016/j.cub.2014.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus.
Collapse
Affiliation(s)
- Shelley Sazer
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Daniel Needleman
- School of Engineering and Applied Sciences, and Department of Molecular and Cellular Biology, and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
40
|
Abstract
A general view is that Schizosaccharomyces pombe undergoes symmetric cell division with two daughter cells inheriting equal shares of the content from the mother cell. Here we show that CTP synthase, a metabolic enzyme responsible for the de novo synthesis of the nucleotide CTP, can form filamentous cytoophidia in the cytoplasm and nucleus of S. pombe cells. Surprisingly, we observe that both cytoplasmic and nuclear cytoophidia are asymmetrically inherited during cell division. Our time-lapse studies suggest that cytoophidia are dynamic. Once the mother cell divides, the cytoplasmic and nuclear cytoophidia independently partition into one of the two daughter cells. Although the two daughter cells differ from one another morphologically, they possess similar chances of inheriting the cytoplasmic cytoophidium from the mother cell, suggesting that the partition of cytoophidium is a stochastic process. Our findings on asymmetric inheritance of cytoophidia in S. pombe offer an exciting opportunity to study the inheritance of metabolic enzymes in a well-studied model system.
Collapse
Affiliation(s)
- Jing Zhang
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Lydia Hulme
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
41
|
Abstract
The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the mechanisms that protect the cell against ectopic centromeres (neocentromeres) remain poorly understood. Centromere protein-A (CENP-A), a centromere-specific histone 3 (H3) variant, is found in all centromeres and is indispensable for centromere function. Here we report that the overexpression of CENP-A(Cnp1) in fission yeast results in the assembly of CENP-A(Cnp1) at noncentromeric chromatin during mitosis and meiosis. The noncentromeric CENP-A preferentially assembles near heterochromatin and is capable of recruiting kinetochore components. Consistent with this, cells overexpressing CENP-A(Cnp1) exhibit severe chromosome missegregation and spindle microtubule disorganization. In addition, pulse induction of CENP-A(Cnp1) overexpression reveals that ectopic CENP-A chromatin can persist for multiple generations. Intriguingly, ectopic assembly of CENP-A(cnp1) is suppressed by overexpression of histone H3 or H4. Finally, we demonstrate that deletion of the N-terminal domain of CENP-A(cnp1) results in an increase in the number of ectopic CENP-A sites and provide evidence that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis. These studies expand our current understanding of how noncentromeric chromatin is protected from mistakenly assembling CENP-A.
Collapse
|
42
|
Takaine M, Imada K, Numata O, Nakamura T, Nakano K. The meiosis-specific nuclear passenger protein is required for proper assembly of forespore membrane in fission yeast. J Cell Sci 2014; 127:4429-42. [PMID: 25146394 DOI: 10.1242/jcs.151738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sporulation, gametogenesis in yeast, consists of meiotic nuclear division and spore morphogenesis. In the fission yeast Schizosaccharomyces pombe, the four haploid nuclei produced after meiosis II are encapsulated by the forespore membrane (FSM), which is newly synthesized from spindle pole bodies (SPBs) in the cytoplasm of the mother cell as spore precursors. Although the coordination between meiosis and FSM assembly is vital for proper sporulation, the underlying mechanism remains unclear. In the present study, we identified a new meiosis-specific protein Npg1, and found that it was involved in the efficient formation of spores and spore viability. The accumulation and organization of the FSM was compromised in npg1-null cells, leading to the error-prone envelopment of nuclei. Npg1 was first seen as internuclear dots and translocated to the SPBs before the FSM assembled. Genetic analysis revealed that Npg1 worked in conjunction with the FSM proteins Spo3 and Meu14. These results suggest a possible signaling link from the nucleus to the meiotic SPBs in order to associate the onset of FSM assembly with meiosis II, which ensures the successful partitioning of gametic nuclei.
Collapse
Affiliation(s)
- Masak Takaine
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuki Imada
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Osamu Numata
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kentaro Nakano
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
43
|
Asakawa H, Yang HJ, Yamamoto TG, Ohtsuki C, Chikashige Y, Sakata-Sogawa K, Tokunaga M, Iwamoto M, Hiraoka Y, Haraguchi T. Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe. Nucleus 2014; 5:149-62. [PMID: 24637836 PMCID: PMC4049921 DOI: 10.4161/nucl.28487] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nuclear pore complex (NPC) is an enormous proteinaceous complex composed of multiple copies of about 30 different proteins called nucleoporins. In this study, we analyzed the composition of the NPC in the model organism Schizosaccharomyces pombe using strains in which individual nucleoporins were tagged with GFP. We identified 31 proteins as nucleoporins by their localization to the nuclear periphery. Gene disruption analysis in previous studies coupled with gene disruption analysis in the present study indicates that 15 of these nucleoporins are essential for vegetative cell growth and the other 16 nucleoporins are non-essential. Among the 16 non-essential nucleoporins, 11 are required for normal progression through meiosis and their disruption caused abnormal spore formation or poor spore viability. Based on fluorescence measurements of GFP-fused nucleoporins, we estimated the composition of the NPC in S. pombe and found that the organization of the S. pombe NPC is largely similar to that of other organisms; a single NPC was estimated as being 45.8–47.8 MDa in size. We also used fluorescence measurements of single NPCs and quantitative western blotting to analyze the composition of the Nup107-Nup160 subcomplex, which plays an indispensable role in NPC organization and function. Our analysis revealed low amounts of Nup107 and Nup131 and high amounts of Nup132 in the Nup107-Nup160 subcomplex, suggesting that the composition of this complex in S. pombe may differ from that in S. cerevisiae and humans. Comparative analysis of NPCs in various organisms will lead to a comprehensive understanding of the functional architecture of the NPC.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan
| | - Hui-Ju Yang
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan
| | - Takaharu G Yamamoto
- Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Kobe, Japan
| | - Chizuru Ohtsuki
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Kobe, Japan; Graduate School of Science; Osaka University; Toyonaka, Japan
| | - Kumiko Sakata-Sogawa
- Department of Biological Information; Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Yokohama, Japan; RIKEN Center for Integrative Medical Sciences (IMS-RCAI); Yokohama, Japan
| | - Makio Tokunaga
- Department of Biological Information; Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Yokohama, Japan; RIKEN Center for Integrative Medical Sciences (IMS-RCAI); Yokohama, Japan
| | - Masaaki Iwamoto
- Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan; Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Kobe, Japan; Graduate School of Science; Osaka University; Toyonaka, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan; Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Kobe, Japan; Graduate School of Science; Osaka University; Toyonaka, Japan
| |
Collapse
|
44
|
Asakawa H, Hiraoka Y, Haraguchi T. A method of correlative light and electron microscopy for yeast cells. Micron 2014; 61:53-61. [PMID: 24792447 DOI: 10.1016/j.micron.2014.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
Abstract
Correlative light and electron microscopy (CLEM) is a method of imaging in which the same specimen is observed by both light microscopy and electron microscopy. Specifically, CLEM compares images obtained by light and electron microscopy and makes a correlation between them. After the advent of fluorescent proteins, CLEM was extended by combining electron microscopy with fluorescence microscopy to enable molecular-specific imaging of subcellular structures with a resolution at the nanometer level. This method is a powerful tool that is used to determine the localization of specific molecules of interest in the context of subcellular structures. Knowledge of the localization of target proteins coupled with the functions of the structures to which they are localized yields valuable information about the molecular functions of these proteins. However, this method has been mostly applied to adherent cells due to technical difficulties in immobilizing non-adherent target cells, such as yeasts, during sample preparation. We have developed a method of CLEM applicable to yeast cells. In this report, we detail this method and present its extension to Live CLEM. The Live CLEM method enabled us to link the dynamic properties of molecules of interest to cellular ultrastructures in the yeast cell. Since yeasts are premier organisms in molecular genetics, combining CLEM with yeast genetics promises to provide important new findings for understanding the molecular basis of the function of cellular structures.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
| |
Collapse
|
45
|
Iwamoto M, Asakawa H, Ohtsuki C, Osakada H, Koujin T, Hiraoka Y, Haraguchi T. Monoclonal antibodies recognize gly-leu-phe-gly repeat of nucleoporin nup98 of tetrahymena, yeasts, and humans. Monoclon Antib Immunodiagn Immunother 2013; 32:81-90. [PMID: 23607342 DOI: 10.1089/mab.2012.0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nucleoporin Nup98, an essential component of the nuclear pore complex, has multifunctional roles in nuclear functions including transcriptional regulation and nucleocytoplasmic transport. These functions mostly depend on a Gly-Leu-Phe-Gly (GLFG) sequence appearing repetitively in the N-terminal region of Nup98. As the GLFG sequence is well conserved among Nup98s from a wide variety of species including humans, yeasts, and ciliates such as Tetrahymena thermophila, a specific antibody that recognizes the GLFG sequence is expected to detect various Nup98s from a wide-range of species. To generate monoclonal antibodies specific to the GLFG repeat of Nup98, we used two synthetic polypeptides derived from the macronuclear Nup98 of T. thermophila as an antigen. We obtained two monoclonal antibodies (MAbs), 13C2 and 21A10, that recognize Nup98s in indirect immunofluorescence staining and Western blot analysis of T. thermophila. Peptide array analysis of these monoclonal antibodies located the position of their epitopes at or near GLFG residues: the epitope recognized by the 13C2 MAb is FGxxN (x being any amino acid), and the epitope recognized by the 21A10 MAb is GLF. As expected by their epitopes, these monoclonal antibodies also recognize Nup98 homologs expressed by human cells and the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, indicating that 13C2 and 21A10 MAbs recognize Nup98 epitopes common to phylogenetically distinct organisms. Thus, these MAbs are useful in studying a wide variety of biological phenomena that involve Nup98, ranging from ciliate nuclear dimorphism to NUP98-related human leukemia.
Collapse
Affiliation(s)
- Masaaki Iwamoto
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Mizuguchi-Hata C, Ogawa Y, Oka M, Yoneda Y. Quantitative regulation of nuclear pore complex proteins by O-GlcNAcylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2682-2689. [PMID: 23777819 DOI: 10.1016/j.bbamcr.2013.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/21/2013] [Accepted: 06/07/2013] [Indexed: 01/03/2023]
Abstract
The nuclear pore complex (NPC) is a macromolecular assembly consisting of approximately 30 different proteins called nucleoporins. Several nucleoporins are O-GlcNAcylated, which is a post-translational modification in which the monosaccharide β-N-acetylglucosamine (GlcNAc) is attached to serine or threonine residues within proteins. However, the biological significance of this modification on nucleoporins remains obscure. Here we found that Nup62 and Nup88 protein levels were significantly decreased upon knockdown of O-GlcNAc transferase (OGT), which catalyzes the O-GlcNAcylation of intracellular proteins. Although Nup88, unlike Nup62, was not recognized by an anti-O-GlcNAc antibody or WGA-HRP, knockdown of Nup62 caused a reduction in Nup88 protein levels, suggesting that the observed decrease in Nup88 in OGT knocked-down cells is due to a decrease in Nup62. Furthermore, we found that Nup88 was preferentially associated with O-GlcNAcylated Nup62 compared with non-O-GlcNAcylated Nup62. These results indicate that Nup62 protein levels are primarily maintained by O-GlcNAcylation and that Nup88 is quantitatively regulated through its interaction with O-GlcNAcylated Nup62.
Collapse
Affiliation(s)
- Chiaki Mizuguchi-Hata
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yutaka Ogawa
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masahiro Oka
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; CREST, JST, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Yoneda
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; CREST, JST, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Arnone JT, Walters AD, Cohen-Fix O. The dynamic nature of the nuclear envelope: lessons from closed mitosis. Nucleus 2013; 4:261-6. [PMID: 23873576 PMCID: PMC3810332 DOI: 10.4161/nucl.25341] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In eukaryotes, chromosomes are encased by a dynamic nuclear envelope. In contrast to metazoans, where the nuclear envelope disassembles during mitosis, many fungi including budding yeast undergo “closed mitosis,” where the nuclear envelope remains intact throughout the cell cycle. Consequently, during closed mitosis the nuclear envelope must expand to accommodate chromosome segregation to the two daughter cells. A recent study by Witkin et al. in budding yeast showed that if progression through mitosis is delayed, for example due to checkpoint activation, the nuclear envelope continues to expand despite the block to chromosome segregation. Moreover, this expansion occurs at a specific region of the nuclear envelope- adjacent to the nucleolus- forming an extension referred to as a “flare.” These observations raise questions regarding the regulation of nuclear envelope expansion both in budding yeast and in higher eukaryotes, the mechanisms confining mitotic nuclear envelope expansion to a particular region and the possible consequences of failing to regulate nuclear envelope expansion during the cell cycle.
Collapse
Affiliation(s)
- James T Arnone
- The Laboratory of Cell and Molecular Biology; National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health; Bethesda, MD USA
| | | | | |
Collapse
|
48
|
Aoi Y, Arai K, Miyamoto M, Katsuta Y, Yamashita A, Sato M, Yamamoto M. Cuf2 boosts the transcription of APC/C activator Fzr1 to terminate the meiotic division cycle. EMBO Rep 2013; 14:553-60. [PMID: 23628763 DOI: 10.1038/embor.2013.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 12/18/2022] Open
Abstract
The number of nuclear divisions in meiosis is strictly limited to two. Although the precise mechanism remains unknown, this seems to be achieved by adjusting the anaphase-promoting complex/cyclosome (APC/C) activity to degrade cyclin. Here, we describe a fission yeast cuf2 mutant that enters into a third nuclear division cycle, represented by ectopic spindle assembly and abnormal chromosome segregation. Cuf2 is a meiotic transcription factor, and its critical target is fzr1(+)/mfr1(+), which encodes a meiotic APC/C activator. fzr1Δ also enters a third nuclear division. Thus, Cuf2 ensures termination of the M-phase cycle by boosting Fzr1 expression to generate functional gametes.
Collapse
Affiliation(s)
- Yuki Aoi
- Laboratory of Gene Function, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Roy B, Varshney N, Yadav V, Sanyal K. The process of kinetochore assembly in yeasts. FEMS Microbiol Lett 2012; 338:107-17. [PMID: 23039831 DOI: 10.1111/1574-6968.12019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 09/29/2012] [Accepted: 10/01/2012] [Indexed: 12/14/2022] Open
Abstract
High fidelity chromosome segregation is essential for efficient transfer of the genetic material from the mother to daughter cells. The kinetochore (KT), which connects the centromere DNA to the spindle apparatus, plays a pivotal role in this process. In spite of considerable divergence in the centromere DNA sequence, basic architecture of a KT is evolutionarily conserved from yeast to humans. However, the identification of a large number of KT proteins paved the way of understanding conserved and diverged regulatory steps that lead to the formation of a multiprotein KT super-complex on the centromere DNA in different organisms. Because it is a daunting task to summarize the entire spectrum of information in a minireview, we focus here on the recent understanding in the process of KT assembly in three yeasts: Saccharomyces cerevisiae, Schizosaccharomyces pombe and Candida albicans. Studies in these unicellular organisms suggest that although the basic process of KT assembly remains the same, the dependence of a conserved protein for its KT localization may vary in these organisms.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | |
Collapse
|
50
|
Abstract
The aim of mitosis is to produce two daughter nuclei, each containing a chromosome complement identical to that of the mother nucleus. This can be accomplished through a variety of strategies, with "open" and "closed" modes of mitosis positioned at the opposite ends of the spectrum and a range of intermediate patterns in between. In the "closed" mitosis, the nuclear envelope remains intact throughout the nuclear division. In the "open" division type, the envelope of the original nucleus breaks down early in mitosis and reassembles around the segregated daughter genomes. In any case, the nuclear membrane has to remodel to accommodate the mitotic spindle assembly, chromosome segregation and formation of the daughter nuclei. We have recently shown that within the fission yeast clade, the mitotic control of the nuclear surface area may determine the choice between the nuclear envelope breakdown and a fully "closed" division. Here we discuss our data and argue that comparative cell biology studies using two fission yeast species, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, could provide unprecedented insights into physiology and evolution of mitosis.
Collapse
Affiliation(s)
- Ying Gu
- Temasek Life Sciences Laboratory, Singapore
| | | | | |
Collapse
|