1
|
Sazer S, Schiessel H. The biology and polymer physics underlying large-scale chromosome organization. Traffic 2018; 19:87-104. [PMID: 29105235 PMCID: PMC5846894 DOI: 10.1111/tra.12539] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome.
Collapse
Affiliation(s)
- Shelley Sazer
- Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTexas
| | - Helmut Schiessel
- Institute Lorentz for Theoretical PhysicsLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
2
|
Brault A, Rallis C, Normant V, Garant JM, Bähler J, Labbé S. Php4 Is a Key Player for Iron Economy in Meiotic and Sporulating Cells. G3 (BETHESDA, MD.) 2016; 6:3077-3095. [PMID: 27466270 PMCID: PMC5068932 DOI: 10.1534/g3.116.031898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/24/2016] [Indexed: 11/18/2022]
Abstract
Meiosis is essential for sexually reproducing organisms, including the fission yeast Schizosaccharomyces pombe In meiosis, chromosomes replicate once in a diploid precursor cell (zygote), and then segregate twice to generate four haploid meiotic products, named spores in yeast. In S. pombe, Php4 is responsible for the transcriptional repression capability of the heteromeric CCAAT-binding factor to negatively regulate genes encoding iron-using proteins under low-iron conditions. Here, we show that the CCAAT-regulatory subunit Php4 is required for normal progression of meiosis under iron-limiting conditions. Cells lacking Php4 exhibit a meiotic arrest at metaphase I. Microscopic analyses of cells expressing functional GFP-Php4 show that it colocalizes with chromosomal material at every stage of meiosis under low concentrations of iron. In contrast, GFP-Php4 fluorescence signal is lost when cells undergo meiosis under iron-replete conditions. Global gene expression analysis of meiotic cells using DNA microarrays identified 137 genes that are regulated in an iron- and Php4-dependent manner. Among them, 18 genes are expressed exclusively during meiosis and constitute new putative Php4 target genes, which include hry1+ and mug14+ Further analysis validates that Php4 is required for maximal and timely repression of hry1+ and mug14+ genes. Using a chromatin immunoprecipitation approach, we show that Php4 specifically associates with hry1+ and mug14+ promoters in vivo Taken together, the results reveal that in iron-starved meiotic cells, Php4 is essential for completion of the meiotic program since it participates in global gene expression reprogramming to optimize the use of limited available iron.
Collapse
Affiliation(s)
- Ariane Brault
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Quebec, J1E 4K8, Canada
| | - Charalampos Rallis
- Research Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK
| | - Vincent Normant
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Quebec, J1E 4K8, Canada
| | - Jean-Michel Garant
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Quebec, J1E 4K8, Canada
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Quebec, J1E 4K8, Canada
| |
Collapse
|
3
|
Lucena R, Dephoure N, Gygi SP, Kellogg DR, Tallada VA, Daga RR, Jimenez J. Nucleocytoplasmic transport in the midzone membrane domain controls yeast mitotic spindle disassembly. ACTA ACUST UNITED AC 2015; 209:387-402. [PMID: 25963819 PMCID: PMC4427787 DOI: 10.1083/jcb.201412144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the membrane domain surrounding the mitotic spindle midzone promotes spindle midzone dissolution in fission yeast. During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast.
Collapse
Affiliation(s)
- Rafael Lucena
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Douglas R Kellogg
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| | - Juan Jimenez
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| |
Collapse
|
4
|
Sazer S, Lynch M, Needleman D. Deciphering the evolutionary history of open and closed mitosis. Curr Biol 2014; 24:R1099-103. [PMID: 25458223 DOI: 10.1016/j.cub.2014.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus.
Collapse
Affiliation(s)
- Shelley Sazer
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Daniel Needleman
- School of Engineering and Applied Sciences, and Department of Molecular and Cellular Biology, and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Arnone JT, Walters AD, Cohen-Fix O. The dynamic nature of the nuclear envelope: lessons from closed mitosis. Nucleus 2013; 4:261-6. [PMID: 23873576 PMCID: PMC3810332 DOI: 10.4161/nucl.25341] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In eukaryotes, chromosomes are encased by a dynamic nuclear envelope. In contrast to metazoans, where the nuclear envelope disassembles during mitosis, many fungi including budding yeast undergo “closed mitosis,” where the nuclear envelope remains intact throughout the cell cycle. Consequently, during closed mitosis the nuclear envelope must expand to accommodate chromosome segregation to the two daughter cells. A recent study by Witkin et al. in budding yeast showed that if progression through mitosis is delayed, for example due to checkpoint activation, the nuclear envelope continues to expand despite the block to chromosome segregation. Moreover, this expansion occurs at a specific region of the nuclear envelope- adjacent to the nucleolus- forming an extension referred to as a “flare.” These observations raise questions regarding the regulation of nuclear envelope expansion both in budding yeast and in higher eukaryotes, the mechanisms confining mitotic nuclear envelope expansion to a particular region and the possible consequences of failing to regulate nuclear envelope expansion during the cell cycle.
Collapse
Affiliation(s)
- James T Arnone
- The Laboratory of Cell and Molecular Biology; National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health; Bethesda, MD USA
| | | | | |
Collapse
|
6
|
Fujita I, Nishihara Y, Tanaka M, Tsujii H, Chikashige Y, Watanabe Y, Saito M, Ishikawa F, Hiraoka Y, Kanoh J. Telomere-nuclear envelope dissociation promoted by Rap1 phosphorylation ensures faithful chromosome segregation. Curr Biol 2012; 22:1932-7. [PMID: 22959349 DOI: 10.1016/j.cub.2012.08.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/28/2012] [Accepted: 08/09/2012] [Indexed: 11/19/2022]
Abstract
Efficient chromosomal movements are important for the fidelity of chromosome segregation during mitosis; however, movements are constrained during interphase by tethering of multiple domains to the nuclear envelope (NE). Higher eukaryotes undergo open mitosis accompanied by NE breakdown, enabling chromosomes to be released from the NE, whereas lower eukaryotes undergo closed mitosis, in which NE breakdown does not occur. Although the chromosomal movements in closed mitosis are thought to be restricted compared to open mitosis, the cells overcome this problem by an unknown mechanism that enables accurate chromosome segregation. Here, we report the spatiotemporal regulation of telomeres in Schizosaccharomyces pombe closed mitosis. We found that the telomeres, tethered to the NE during interphase, are transiently dissociated from the NE during mitosis. This dissociation from the NE is essential for accurate chromosome segregation because forced telomere tethering to the NE causes frequent chromosome loss. The phosphorylation of the telomere protein Rap1 during mitosis, primarily by Cdc2, impedes the interaction between Rap1 and Bqt4, a nuclear membrane protein, thereby inducing telomere dissociation from the NE. We propose that the telomere dissociation from the NE promoted by Rap1 phosphorylation is critical for the fidelity of chromosome segregation in closed mitosis.
Collapse
Affiliation(s)
- Ikumi Fujita
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Leo M, Santino D, Tikhonenko I, Magidson V, Khodjakov A, Koonce MP. Rules of engagement: centrosome-nuclear connections in a closed mitotic system. Biol Open 2012; 1:1111-7. [PMID: 23213391 PMCID: PMC3507195 DOI: 10.1242/bio.20122188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/02/2012] [Indexed: 12/14/2022] Open
Abstract
The assembly of a functional mitotic spindle is essential for cell reproduction and requires a precise coordination between the nuclear cycle and the centrosome. This coordination is particularly prominent in organisms that undergo closed mitosis where centrosomes must not only respond to temporal signals, but also to spatial considerations, e.g. switching from the production of cytoplasmic microtubule arrays to the generation of dynamic intra-nuclear microtubules required for spindle assembly. We utilize a gene knockout of Kif9, a Dictyostelium discoideum Kin-I kinesin, to destabilize the physical association between centrosomes and the nuclear envelope. This approach presents a unique opportunity to reveal temporal and spatial components in the regulation of centrosomal activities in a closed-mitosis organism. Here we report that centrosome–nuclear engagement is not required for the entry into mitosis. Although detached centrosomes can duplicate in the cytoplasm, neither they nor nuclei alone can produce spindle-like microtubule arrays. However, the physical association of centrosomes and the nuclear envelope is required to progress through mitosis beyond prometaphase.
Collapse
Affiliation(s)
- Meredith Leo
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health , Albany, NY 12201-0509 , USA
| | | | | | | | | | | |
Collapse
|
8
|
Asakawa H, Hiraoka Y, Haraguchi T. Physical breakdown of the nuclear envelope is not necessary for breaking its barrier function. Nucleus 2011; 2:523-6. [PMID: 22064471 PMCID: PMC3324341 DOI: 10.4161/nucl.2.6.16117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During mitosis in higher eukaryotic cells, nuclear envelope breakdown (NEBD) occurs and leads to the disassembly of the nuclear membrane and nuclear pore complexes (NPC). This brings about a mixing of nuclear and cytoplasmic macromolecules (open mitosis). On the other hand, in many fungi, mitosis occurs without NEBD (closed mitosis). In a recent study, we reported a novel phenomenon in a closed mitosis organism, Schizosaccharomyces pombe: mixing of nuclear and cytoplasmic proteins occurred in meiosis without breakdown of the nuclear membrane or disassembly of nuclear pore complexes. We designated this event virtual nuclear envelope breakdown (V-NEBD). The key event in V-NEBD is nuclear translocation of Rna1, a RanGAP1 homolog in S. pombe. This leads to collapse of the Ran-GTP gradient across the nuclear envelope (NE) and occurs coincidently with V-NEBD. Thus, the barrier function of the NE can be abated without its physical breakdown through modulation of the Ran-GTP gradient.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|