Biswas U, Wetzker C, Lange J, Christodoulou EG, Seifert M, Beyer A, Jessberger R. Meiotic cohesin SMC1β provides prophase I centromeric cohesion and is required for multiple synapsis-associated functions.
PLoS Genet 2013;
9:e1003985. [PMID:
24385917 PMCID:
PMC3873225 DOI:
10.1371/journal.pgen.1003985]
[Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/14/2013] [Indexed: 01/09/2023] Open
Abstract
Cohesin subunit SMC1β is specific and essential for meiosis. Previous studies showed functions of SMC1β in determining the axis-loop structure of synaptonemal complexes (SCs), in providing sister chromatid cohesion (SCC) in metaphase I and thereafter, in protecting telomere structure, and in synapsis. However, several central questions remained unanswered and concern roles of SMC1β in SCC and synapsis and processes related to these two processes. Here we show that SMC1β substantially supports prophase I SCC at centromeres but not along chromosome arms. Arm cohesion and some of centromeric cohesion in prophase I are provided by non-phosphorylated SMC1α. Besides supporting synapsis of autosomes, SMC1β is also required for synapsis and silencing of sex chromosomes. In absence of SMC1β, the silencing factor γH2AX remains associated with asynapsed autosomes and fails to localize to sex chromosomes. Microarray expression studies revealed up-regulated sex chromosome genes and many down-regulated autosomal genes. SMC1β is further required for non-homologous chromosome associations observed in absence of SPO11 and thus of programmed double-strand breaks. These breaks are properly generated in Smc1β−/− spermatocytes, but their repair is delayed on asynapsed chromosomes. SMC1α alone cannot support non-homologous associations. Together with previous knowledge, three main functions of SMC1β have emerged, which have multiple consequences for spermatocyte biology: generation of the loop-axis architecture of SCs, homologous and non-homologous synapsis, and SCC starting in early prophase I.
The generation of mammalian gametes through meiosis comprises two subsequent cell divisions. The first division, meiosis I, features highly specific chromosome structures, and behavior, and requires distinct sets of chromosome-associated proteins. Cohesin proteins, of which some are meiosis-specific, are essential for meiosis, but their particular roles in meiosis are incompletely understood. We show here that SMC1β, a meiosis-specific cohesin, serves key functions already in prophase of meiosis I: SMC1β contributes to keeping sister chromatids in cohesion at their centromeres and supports synapsis of the four sister chromatids present in these cells. SMC1β is required for the synapsis of the X and Y sex chromosomes. The failure of autosomes to properly synapse in absence of SMC1β causes extensive alterations in gene expression. This leads to expression of sex chromosome-linked genes, which are lethal at this stage, explaining the death of spermatocytes in mid-prophase I. Together with the analyses of other cohesin proteins and of phosphorylated forms of SMC3 and SMC1α, this paper describes hitherto undescribed properties and functions of meiotic cohesin in sister chromatid cohesion and synapsis.
Collapse