1
|
Wu J, Tian Z, Wang B, Liu J, Bi R, Zhan N, Song D, He C, Zhao W. Exploring resveratrol against Alzheimer's disease and Parkinson's disease through integrating network pharmacology, bioinformatics, and experimental validation strategy in vitro. Heliyon 2024; 10:e37908. [PMID: 39328512 PMCID: PMC11425098 DOI: 10.1016/j.heliyon.2024.e37908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Background The study aims to investigate the pharmacological basis and molecular mechanisms of resveratrol in the treatment of Alzheimer's disease (AD) and Parkinson's disease (PD) through the approach of treating different diseases with the same method, guided by traditional Chinese medicine theory. Utilizing network pharmacology and bioinformatics methods, this research aims to provide modern medical evidence for the theory of treating different diseases with the same method in traditional Chinese medicine. Methods Omnibus from Swiss Target Prediction, TCMSP, SuperPred, SEA, HIT, CTD, TCMIP and Gene Expression Disease datasets for resveratrol related genes, Alzheimer's disease, and Parkinson's disease were obtained from the GEO database. Core targets were identified by weighted gene coexpression network analysis (WGCNA) and minimum absolute contraction and selection operator (LASSO). The expression of core targets was verified in AD and PD cell models. The immune characteristics of AD and PD were analyzed by CIBERSORT algorithm. Finally, the potential mechanism of resveratrol intervention on the core target was studied by molecular docking technique. Results The results of network pharmacological analysis showed that resveratrol acted on 85 common targets such as STAT3 and CASP3, affected AGE-RAGE signaling pathway and PI3K-Akt signaling pathway, and showed the effect of "same disease and different treatment" for AD and PD. Three core targets associated with AD and PD (PLK4, FCGRT, and PRKAR2A) were finally identified through comprehensive transcriptome analysis, and experimentally verified in cell models of AD and PD. At the same time, the analysis of immune cell infiltration suggested that AD and PD had dysregulation of inflammation, and the core target was significantly related to M2 macrophages. Conclusion Resveratrol may play a potential mechanism of "treating the same disease with different diseases" and target three core targets (PLK4, FCGRT and PRKAR2A) to improve the disease process of AD and PD by participating in the regulation of immune and inflammatory pathways. These findings have potential implications for clinical practice and future research.
Collapse
Affiliation(s)
- Jinpu Wu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Ziyue Tian
- Hainan General Hospital, Haikou, 570311 China
| | - Boxue Wang
- First Hospital of Jilin University, Jilin, 130061, China
| | - Jian Liu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Ran Bi
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Naixin Zhan
- Changchun University of Chinese Medicine, Jilin, 130117, China
| | - Daixuan Song
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Chengcheng He
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Weimin Zhao
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| |
Collapse
|
2
|
Arora S, Rana M, Sachdev A, D’Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023. [DOI: 10.1007/s12038-023-00326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
3
|
Arora S, Rana M, Sachdev A, D'Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023; 48:8. [PMID: 36924208 PMCID: PMC10005925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The past few decades have seen a rise in research on vertebrate cilia and ciliopathy, with interesting collaborations between basic and clinical scientists. This work includes studies on ciliary architecture, composition, evolution, and organelle generation and its biological role. The human body has cells that harbour any of the following four types of cilia: 9+0 motile, 9+0 immotile, 9+2 motile, and 9+2 immotile. Depending on the type, cilia play an important role in cell/fluid movement, mating, sensory perception, and development. Defects in cilia are associated with a wide range of human diseases afflicting the brain, heart, kidneys, respiratory tract, and reproductive system. These are commonly known as ciliopathies and affect millions of people worldwide. Due to their complex genetic etiology, diagnosis and therapy have remained elusive. Although model organisms like Chlamydomonas reinhardtii have been a useful source for ciliary research, reports of a fascinating and rewarding translation of this research into mammalian systems, especially humans, are seen. The current review peeks into one of the complex features of this organelle, namely its birth, the common denominators across the formation of both 9+0 and 9+2 ciliary types, the molecules involved in ciliogenesis, and the steps that go towards regulating their assembly and disassembly.
Collapse
Affiliation(s)
- Shashank Arora
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai 400098, India
| | | | | | | |
Collapse
|
4
|
PLK4 Is a Potential Biomarker for Abnormal Tumor Proliferation, Immune Infiltration, and Prognosis in ccRCC. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6302234. [PMID: 36176741 PMCID: PMC9514917 DOI: 10.1155/2022/6302234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022]
Abstract
Background PLK4 is highly expressed and associated with poor prognosis in various malignancies. However, the role of PLK4 in clear cell renal cell carcinoma (ccRCC) is still unclear. This study is aimed at analyzing the expression, the potential regulating mechanism, and the role of PLK4 in the ccRCC by bioinformatics. Methods PLK4 mRNA expression data and methylation levels in ccRCC were examined using TIMER, UALCAN, MethSurv, NCBI-GEO, and UCSC databases. Quantitative real-time PCR verifies the regulatory relationship between PLK4 and has-miR-214-3p. The GEPIA2 and STRING databases were used to find similar genes of PLK4 and then enriched with R language to analyze their similar genes. Correlations between PLK4 and tumor-infiltrating immune cells and cytokines exerting immunosuppression were analyzed using the TIMER database and the TISIDB databases. Results PLK4 mRNA expression levels were significantly higher in ccRCC tissues than in paracancerous tissues. ccRCC tissues had lower DNA methylation levels of PLK4 than normal tissues. Importantly, the high PLK4 expression was associated with poor prognosis in ccRCC patients. The has-miR-214-3p negatively regulates the expression of PLK4. GO and KEGG pathway analysis showed that PLK4 coexpressed genes were mainly associated with multiple immune-related pathways, including cytokinesis, sister chromatid adhesions, and mitotic nuclear division. Our data suggest that the PLK4 expression is closely related to the level of immune infiltration and the cytokines that exert immune suppression, and IPS was significantly higher in the PLK4 low expression group. Conclusion The PLK4 expression is associated with the prognosis of ccRCC patients and affects the immune microenvironment of ccRCC, and PLK4 is expected to be a new target for the diagnosis and treatment of ccRCC.
Collapse
|
5
|
Transmission ratio distortion of mutations in the master regulator of centriole biogenesis PLK4. Hum Genet 2022; 141:1785-1794. [PMID: 35536377 PMCID: PMC9556372 DOI: 10.1007/s00439-022-02461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
Abstract
The evolutionary conserved Polo-like kinase 4 (PLK4) is essential for centriole duplication, spindle assembly, and de novo centriole formation. In man, homozygous mutations in PLK4 lead to primary microcephaly, altered PLK4 expression is associated with aneuploidy in human embryos. Here, we report on a consanguineous four-generation family with 8 affected individuals compound heterozygous for a novel missense variant, c.881 T > G, and a deletion of the PLK4 gene. The clinical phenotype of the adult patients is mild compared to individuals with previously described PLK4 mutations. One individual was homozygous for the variant c.881G and phenotypically unaffected. The deletion was inherited by 14 of 16 offspring and thus exhibits transmission ratio distortion (TRD). Moreover, based on the already published families with PLK4 mutations, it could be shown that due to the preferential transmission of the mutant alleles, the number of affected offspring is significantly increased. It is assumed that reduced expression of PLK4 decreases the intrinsically high error rate of the first cell divisions after fertilization, increases the number of viable embryos and thus leads to preferential transmission of the deleted/mutated alleles.
Collapse
|
6
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
7
|
Zhang Z, Wang Z, Huang K, Liu Y, Wei C, Zhou J, Zhang W, Wang Q, Liang H, Zhang A, Wang G, Zhen Y, Han L. PLK4 is a determinant of temozolomide sensitivity through phosphorylation of IKBKE in glioblastoma. Cancer Lett 2019; 443:91-107. [DOI: 10.1016/j.canlet.2018.11.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/11/2023]
|
8
|
Abstract
Centrosome amplification is a feature of multiple tumour types and has been postulated to contribute to both tumour initiation and tumour progression. This chapter focuses on the mechanisms by which an increase in centrosome number might lead to an increase or decrease in tumour progression and the role of proteins that regulate centrosome number in driving tumorigenesis.
Collapse
Affiliation(s)
- Arunabha Bose
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sorab N Dalal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
9
|
Montenegro Gouveia S, Zitouni S, Kong D, Duarte P, Ferreira Gomes B, Sousa AL, Tranfield EM, Hyman A, Loncarek J, Bettencourt-Dias M. PLK4 is a microtubule-associated protein that self-assembles promoting de novo MTOC formation. J Cell Sci 2018; 132:jcs.219501. [PMID: 30237222 PMCID: PMC6398482 DOI: 10.1242/jcs.219501] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023] Open
Abstract
The centrosome is an important microtubule-organising centre (MTOC) in animal cells. It consists of two barrel-shaped structures, the centrioles, surrounded by the pericentriolar material (PCM), which nucleates microtubules. Centrosomes can form close to an existing structure (canonical duplication) or de novo. How centrosomes form de novo is not known. The master driver of centrosome biogenesis, PLK4, is critical for the recruitment of several centriole components. Here, we investigate the beginning of centrosome biogenesis, taking advantage of Xenopus egg extracts, where PLK4 can induce de novo MTOC formation (
Eckerdt et al., 2011; Zitouni et al., 2016). Surprisingly, we observe that in vitro, PLK4 can self-assemble into condensates that recruit α- and β-tubulins. In Xenopus extracts, PLK4 assemblies additionally recruit STIL, a substrate of PLK4, and the microtubule nucleator γ-tubulin, forming acentriolar MTOCs de novo. The assembly of these robust microtubule asters is independent of dynein, similar to what is found for centrosomes. We suggest a new mechanism of action for PLK4, where it forms a self-organising catalytic scaffold that recruits centriole components, PCM factors and α- and β-tubulins, leading to MTOC formation. This article has an associated First Person interview with the first author of the paper. Summary: PLK4 binds to microtubules and self-assembles into condensates that recruit tubulin and trigger de novo microtubule-organising centre formation in vitro.
Collapse
Affiliation(s)
- Susana Montenegro Gouveia
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Sihem Zitouni
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Dong Kong
- Laboratory of Protein Dynamics and Signalling, National Institutes of Health/National Cancer Institute/Center for Cancer Research, Frederick, MD 21702, USA
| | - Paulo Duarte
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Beatriz Ferreira Gomes
- Max Planck Institute of Molecular Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ana Laura Sousa
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Erin M Tranfield
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Anthony Hyman
- Max Planck Institute of Molecular Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signalling, National Institutes of Health/National Cancer Institute/Center for Cancer Research, Frederick, MD 21702, USA
| | - Monica Bettencourt-Dias
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| |
Collapse
|
10
|
Animal Female Meiosis: The Challenges of Eliminating Centrosomes. Cells 2018; 7:cells7070073. [PMID: 29996518 PMCID: PMC6071224 DOI: 10.3390/cells7070073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/02/2023] Open
Abstract
Sexual reproduction requires the generation of gametes, which are highly specialised for fertilisation. Female reproductive cells, oocytes, grow up to large sizes when they accumulate energy stocks and store proteins as well as mRNAs to enable rapid cell divisions after fertilisation. At the same time, metazoan oocytes eliminate their centrosomes, i.e., major microtubule-organizing centres (MTOCs), during or right after the long growth phases. Centrosome elimination poses two key questions: first, how can the centrosome be re-established after fertilisation? In general, metazoan oocytes exploit sperm components, i.e., the basal body of the sperm flagellum, as a platform to reinitiate centrosome production. Second, how do most metazoan oocytes manage to build up meiotic spindles without centrosomes? Oocytes have evolved mechanisms to assemble bipolar spindles solely around their chromosomes without the guidance of pre-formed MTOCs. Female animal meiosis involves microtubule nucleation and organisation into bipolar microtubule arrays in regulated self-assembly under the control of the Ran system and nuclear transport receptors. This review summarises our current understanding of the molecular mechanism underlying self-assembly of meiotic spindles, its spatio-temporal regulation, and the key players governing this process in animal oocytes.
Collapse
|
11
|
Inoue D, Wittbrodt J, Gruss OJ. Loss and Rebirth of the Animal Microtubule Organizing Center: How Maternal Expression of Centrosomal Proteins Cooperates with the Sperm Centriole in Zygotic Centrosome Reformation. Bioessays 2018. [PMID: 29522658 DOI: 10.1002/bies.201700135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Centrosomes are the main microtubule organizing centers in animal cells. In particular during embryogenesis, they ensure faithful spindle formation and proper cell divisions. As metazoan centrosomes are eliminated during oogenesis, they have to be reassembled upon fertilization. Most metazoans use the sperm centrioles as templates for new centrosome biogenesis while the egg's cytoplasm re-prepares all components for on-going centrosome duplication in rapidly dividing embryonic cells. We discuss our knowledge and the experimental challenges to analyze zygotic centrosome reformation, which requires genetic experiments to enable scrutinizing respective male and female contributions. Male and female knockout animals and mRNA injection to mimic maternal expression of centrosomal proteins could point a way to the systematic molecular dissection of the process. The most recent data suggest that timely expression of centrosome components in oocytes is the key to zygotic centrosome reformation that uses male sperm as coordinators for de novo centrosome production.
Collapse
Affiliation(s)
- Daigo Inoue
- Dr. D. Inoue, Prof. Dr. J. Wittbrodt, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Joachim Wittbrodt
- Dr. D. Inoue, Prof. Dr. J. Wittbrodt, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Oliver J Gruss
- Prof. Dr. O. J. Gruss, Institute of Genetics, University of Bonn, Karlrobert-Kreiten-Str.13, 53115 Bonn, Germany
| |
Collapse
|
12
|
Sato A, Sarentonglaga B, Ogata K, Yamaguchi M, Hara A, Atchalalt K, Sugane N, Fukumori R, Nagao Y. Effects of insulin-like growth factor-1 on the in vitro maturation of canine oocytes. J Reprod Dev 2017; 64:83-88. [PMID: 29212962 PMCID: PMC5830362 DOI: 10.1262/jrd.2017-145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The maturation rate of canine oocytes during in vitro maturation (IVM) needs to be improved. The present study was designed to evaluate the effects of insulin-like growth factor-1 (IGF-1) on the IVM of canine oocytes. Ovaries were obtained by ovariohysterectomy and were sliced to release cumulus-oocyte complexes (COCs). In Experiment 1, the effects of different concentrations of IGF-1 on the nuclear maturation of oocytes was investigated. The COCs were cultured in a modified medium (mTCM199) with IGF-1 (0, 0.5, 5, 10, and 50 µg/ml). At the end of the 48 h culture, oocytes were fixed and stained to evaluate their nuclear stage. Supplementation with 50 µg/ml IGF-1 induced a significantly higher metaphase II (MII) rate (P < 0.05) compared to the 0 and 0.5 μg/ml IGF-1 groups. In Experiment 2, the expression levels of insulin receptor (INSR), IGF-1 receptor (IGF-1R), and IGF-2 receptor (IGF-2R) genes, localized to canine oocytes and cumulus cells, were investigated before and after IVM. The expression level of IGF-1R in cumulus cells after IVM was higher than that before IVM (P < 0.05). In Experiment 3, it was investigated whether an inhibitor of PTEN (phosphatase and tensin homolog), bpV, affects the nuclear maturation of oocytes. Regardless of bpV supplementation at a concentration of 0.2 to 200 µmol/l, there was no significant difference in the proportion of oocytes that reached the MII stage. These results indicated that IGF-1 has a favorable effect on the IVM of canine oocytes, possibly through the stimulation of the Ras/MAPK pathway via IGF-1R expressed in cumulus cells.
Collapse
Affiliation(s)
- Akane Sato
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan.,Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan
| | | | - Kazuko Ogata
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan.,Present: National Livestock Breeding Center, Fukushima 961-8061, Japan
| | - Mio Yamaguchi
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan.,Present: Local Independent Administrative Agency Hokkaido Research Organization, Hokkaido 081-0038, Japan
| | - Asuka Hara
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan.,Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan
| | - Khurchabiling Atchalalt
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan.,Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan
| | - Naoko Sugane
- East Japan Guide Dog Association, Tochigi 321-0342, Japan
| | - Rika Fukumori
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan.,Present: Rakuno Gakuen University, Hokkaido 069-0836, Japan
| | - Yoshikazu Nagao
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan.,Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan
| |
Collapse
|
13
|
Toombs JA, Sytnikova YA, Chirn GW, Ang I, Lau NC, Blower MD. Xenopus Piwi proteins interact with a broad proportion of the oocyte transcriptome. RNA (NEW YORK, N.Y.) 2017; 23:504-520. [PMID: 28031481 PMCID: PMC5340914 DOI: 10.1261/rna.058859.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Piwi proteins utilize small RNAs (piRNAs) to recognize target transcripts such as transposable elements (TE). However, extensive piRNA sequence diversity also suggests that Piwi/piRNA complexes interact with many transcripts beyond TEs. To determine Piwi target RNAs, we used ribonucleoprotein-immunoprecipitation (RIP) and cross-linking and immunoprecipitation (CLIP) to identify thousands of transcripts associated with the Piwi proteins XIWI and XILI (Piwi-protein-associated transcripts, PATs) from early stage oocytes of X. laevis and X. tropicalis Most PATs associate with both XIWI and XILI and include transcripts of developmentally important proteins in oogenesis and embryogenesis. Only a minor fraction of PATs in both frog species displayed near perfect matches to piRNAs. Since predicting imperfect pairing between all piRNAs and target RNAs remains intractable, we instead determined that PAT read counts correlate well with the lengths and expression levels of transcripts, features that have also been observed for oocyte mRNAs associated with Drosophila Piwi proteins. We used an in vitro assay with exogenous RNA to confirm that XIWI associates with RNAs in a length- and concentration-dependent manner. In this assay, noncoding transcripts with many perfectly matched antisense piRNAs were unstable, whereas coding transcripts with matching piRNAs were stable, consistent with emerging evidence that Piwi proteins both promote the turnover of TEs and other RNAs, and may also regulate mRNA localization and translation. Our study suggests that Piwi proteins play multiple roles in germ cells and establishes a tractable vertebrate system to study the role of Piwi proteins in transcript regulation.
Collapse
Affiliation(s)
- James A Toombs
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yuliya A Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Ignatius Ang
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Zitouni S, Francia ME, Leal F, Montenegro Gouveia S, Nabais C, Duarte P, Gilberto S, Brito D, Moyer T, Kandels-Lewis S, Ohta M, Kitagawa D, Holland AJ, Karsenti E, Lorca T, Lince-Faria M, Bettencourt-Dias M. CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis. Curr Biol 2016; 26:1127-37. [PMID: 27112295 DOI: 10.1016/j.cub.2016.03.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 12/24/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation.
Collapse
Affiliation(s)
- Sihem Zitouni
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal.
| | - Maria E Francia
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal.
| | - Filipe Leal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | | | - Catarina Nabais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - Samuel Gilberto
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - Daniela Brito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - Tyler Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Steffi Kandels-Lewis
- Directors' Research, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany; Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Midori Ohta
- Center for Frontier Research, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Daiju Kitagawa
- Center for Frontier Research, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Eric Karsenti
- Directors' Research, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany; Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, and CNRS UMR 8197, 46 Rue d'Ulm, Paris 75005, France
| | - Thierry Lorca
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 Route de Mende, Montpellier 34293, France
| | - Mariana Lince-Faria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | | |
Collapse
|
15
|
Endicott SJ, Basu B, Khokha M, Brueckner M. The NIMA-like kinase Nek2 is a key switch balancing cilia biogenesis and resorption in the development of left-right asymmetry. Development 2015; 142:4068-79. [PMID: 26493400 PMCID: PMC4712839 DOI: 10.1242/dev.126953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/11/2015] [Indexed: 01/06/2023]
Abstract
Vertebrate left-right (LR) asymmetry originates at a transient left-right organizer (LRO), a ciliated structure where cilia play a crucial role in breaking symmetry. However, much remains unknown about the choreography of cilia biogenesis and resorption at this organ. We recently identified a mutation affecting NEK2, a member of the NIMA-like serine-threonine kinase family, in a patient with congenital heart disease associated with abnormal LR development. Here, we report how Nek2 acts through cilia to influence LR patterning. Both overexpression and knockdown of nek2 in Xenopus result in abnormal LR development and reduction of LRO cilia count and motility, phenotypes that are modified by interaction with the Hippo signaling pathway. nek2 knockdown leads to a centriole defect at the LRO, consistent with the known role of Nek2 in centriole separation. Nek2 overexpression results in premature ciliary resorption in cultured cells dependent on function of the tubulin deacetylase Hdac6. Finally, we provide evidence that the known interaction between Nek2 and Nup98, a nucleoporin that localizes to the ciliary base, is important for regulating cilium resorption. Together, these data show that Nek2 is a switch balancing ciliogenesis and resorption in the development of LR asymmetry.
Collapse
Affiliation(s)
- S Joseph Endicott
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, Fitkin 426, New Haven, CT 06520, USA
| | - Basudha Basu
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, Fitkin 426, New Haven, CT 06520, USA
| | - Mustafa Khokha
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, Fitkin 426, New Haven, CT 06520, USA Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, Fitkin 426, New Haven, CT 06520, USA
| | - Martina Brueckner
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, Fitkin 426, New Haven, CT 06520, USA Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, Fitkin 426, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Liang S, Zhao MH, Guo J, Choi JW, Kim NH, Cui XS. Polo-like kinase 4 regulates spindle and actin assembly in meiosis and influence of early embryonic development in bovine oocytes. Theriogenology 2015; 85:754-61.e1. [PMID: 26549124 DOI: 10.1016/j.theriogenology.2015.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/08/2015] [Accepted: 10/11/2015] [Indexed: 01/21/2023]
Abstract
PLK4, a polo-like kinase (PLK) family member that accumulates in the cytoplasm, has been identified as a crucial regulator of centriole formation. PLK4 also controls several essential cellular functions, including cytokinesis and gene expression. In this study, we investigated the expression and function of PLK4 during bovine oocyte meiotic maturation and subsequent embryo development. The PLK4 mRNA was detected in bovine oocytes at all developmental stages during meiotic maturation. Immunofluorescence staining showed that PLK4 protein exhibited a dynamic localization pattern in the oocyte cytoplasm during meiotic maturation, and fluorescence immunostaining markedly increased in metaphase II. When an interfering double-stranded RNA targeting PLK4 was injected into germinal vesicle-stage oocytes, PLK4 transcript levels decreased significantly in metaphase II oocytes (P < 0.05). The PLK4 knockdown caused spindle defects and chromosome misalignment and considerably reduced the amount of cortical and cytoplasmic actin. PLK4 was localized in the cytoplasm of early embryos, and PLK4 knockdown in germinal vesicle-stage oocytes led to failure in the early development of in vitro fertilized embryos (P < 0.05). Taken together, these results indicated that PLK4 plays crucial roles in bovine oocyte meiotic maturation and subsequent early embryo development.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ming-Hui Zhao
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jing Guo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jeong-woo Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
17
|
Lambrus BG, Uetake Y, Clutario KM, Daggubati V, Snyder M, Sluder G, Holland AJ. p53 protects against genome instability following centriole duplication failure. J Cell Biol 2015; 210:63-77. [PMID: 26150389 PMCID: PMC4494000 DOI: 10.1083/jcb.201502089] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Centriole function has been difficult to study because of a lack of specific tools that allow persistent and reversible centriole depletion. Here we combined gene targeting with an auxin-inducible degradation system to achieve rapid, titratable, and reversible control of Polo-like kinase 4 (Plk4), a master regulator of centriole biogenesis. Depletion of Plk4 led to a failure of centriole duplication that produced an irreversible cell cycle arrest within a few divisions. This arrest was not a result of a prolonged mitosis, chromosome segregation errors, or cytokinesis failure. Depleting p53 allowed cells that fail centriole duplication to proliferate indefinitely. Washout of auxin and restoration of endogenous Plk4 levels in cells that lack centrioles led to the penetrant formation of de novo centrioles that gained the ability to organize microtubules and duplicate. In summary, we uncover a p53-dependent surveillance mechanism that protects against genome instability by preventing cell growth after centriole duplication failure.
Collapse
Affiliation(s)
- Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yumi Uetake
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Kevin M Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Vikas Daggubati
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael Snyder
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Greenfield Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
18
|
Kazazian K, Brashavitskaya O, Zih FSW, Berger-Richardson D, Xu RSZ, Pacholczyk K, Macmillan J, Swallow CJ. Polo-Like Kinases in Colorectal Cancer: Potential for Targeted Therapy. CURRENT COLORECTAL CANCER REPORTS 2015. [DOI: 10.1007/s11888-015-0275-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Rapchak CE, Patel N, Hudson J, Crawford M. Developmental role of plk4 in Xenopus laevis and Danio rerio: implications for Seckel Syndrome. Biochem Cell Biol 2015; 93:396-404. [PMID: 26150138 DOI: 10.1139/bcb-2015-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The polo-like kinases are a family of conserved serine/threonine kinases that play multiple roles in regulation of the cell cycle. Unlike its four other family members, the role of Plk4 in embryonic development has not been well characterized. In mice, Plk4(-)(/)(-) embryos arrest at E7.5, just prior to the initiation of somitogenesis. This has led to the hypothesis that Plk4 expression may be essential to somitogenesis. Recently characterized human mutations lead to Seckel Syndrome. Riboprobe in situ hybridization revealed that plk4 is ubiquitously expressed during early stages of development of Xenopus and Danio; in later stages, expression in frogs restricts to somites as well as eye, otic vesicle, and branchial arch, and brain. Expression patterns in fish remain ubiquitous. Both somite and eye development require planar cell polarity, and disruption of plk4 function in frog by means of morpholino-mediated translational knockdown yields orientational disorganization of both these structures. These results provide the first steps in defining a new role for plk4 in organogenesis and implies a role in planar cell polarity, segmentation, and in recently described PLK4 mutations in human.
Collapse
Affiliation(s)
- Candace Elaine Rapchak
- a Dept. Biological Sciences, University of Windsor, 401 Sunset Ave, Windsor Ontario N9B 3P4, Canada
| | - Neeraj Patel
- b Western Centre for Public Health and Family Medicine, The University of Western Ontario, London, ON N6A 2B7, Canada
| | - John Hudson
- a Dept. Biological Sciences, University of Windsor, 401 Sunset Ave, Windsor Ontario N9B 3P4, Canada
| | - Michael Crawford
- a Dept. Biological Sciences, University of Windsor, 401 Sunset Ave, Windsor Ontario N9B 3P4, Canada
| |
Collapse
|
20
|
Fırat-Karalar EN, Stearns T. The centriole duplication cycle. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0460. [PMID: 25047614 DOI: 10.1098/rstb.2013.0460] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole 'origin of duplication' that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells.
Collapse
Affiliation(s)
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| |
Collapse
|
21
|
Shaheen R, Al Tala S, Almoisheer A, Alkuraya FS. Mutation in PLK4, encoding a master regulator of centriole formation, defines a novel locus for primordial dwarfism. J Med Genet 2014; 51:814-6. [PMID: 25320347 DOI: 10.1136/jmedgenet-2014-102790] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Primordial dwarfism (PD) is a heterogeneous clinical entity characterised by severe prenatal and postnatal growth deficiency. Despite the recent wave of disease gene discovery, the causal mutations in many PD patients remain unknown. OBJECTIVE To describe a PD family that maps to a novel locus. METHODS Clinical, imaging and laboratory phenotyping of a new family with PD followed by autozygosity mapping, linkage analysis and candidate gene sequencing. RESULTS We describe a multiplex consanguineous Saudi family in which two full siblings and one half-sibling presented with classical features of Seckel syndrome in addition to optic nerve hypoplasia. We were able to map the phenotype to a single novel locus on 4q25-q28.2, in which we identified a five base-pair deletion in PLK4, which encodes a master regulator of centriole duplication. CONCLUSIONS Our discovery further confirms the role of genes involved in centriole biology in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatrics, Armed Forces Hospitals Programme-Southern Region, Khamis Mushayt, Saudi Arabia
| | - Agaadir Almoisheer
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014; 15:433-52. [PMID: 24954208 DOI: 10.1038/nrm3819] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.
Collapse
Affiliation(s)
- Sihem Zitouni
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Adán Guerrero
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal. [2] Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico (UNAM), Avenida Universidad 2001, Col. Chamilpa, C.P. 62210 Cuernavaca Mor., Mexico
| | | |
Collapse
|
23
|
Donthamsetty S, Brahmbhatt M, Pannu V, Rida PCG, Ramarathinam S, Ogden A, Cheng A, Singh KK, Aneja R. Mitochondrial genome regulates mitotic fidelity by maintaining centrosomal homeostasis. Cell Cycle 2014; 13:2056-63. [PMID: 24799670 DOI: 10.4161/cc.29061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centrosomes direct spindle morphogenesis to assemble a bipolar mitotic apparatus to enable error-free chromosome segregation and preclude chromosomal instability (CIN). Amplified centrosomes, a hallmark of cancer cells, set the stage for CIN, which underlies malignant transformation and evolution of aggressive phenotypes. Several studies report CIN and a tumorigenic and/or aggressive transformation in mitochondrial DNA (mtDNA)-depleted cells. Although several nuclear-encoded proteins are implicated in centrosome duplication and spindle organization, the involvement of mtDNA encoded proteins in centrosome amplification (CA) remains elusive. Here we show that disruption of mitochondrial function by depletion of mtDNA induces robust CA and mitotic aberrations in osteosarcoma cells. We found that overexpression of Aurora A, Polo-like kinase 4 (PLK4), and Cyclin E was associated with emergence of amplified centrosomes. Supernumerary centrosomes in rho0 (mtDNA-depleted) cells resulted in multipolar mitoses bearing "real" centrosomes with paired centrioles at the multiple poles. This abnormal phenotype was recapitulated by inhibition of respiratory complex I in parental cells, suggesting a role for electron transport chain (ETC) in maintaining numeral centrosomal homeostasis. Furthermore, rho0 cells displayed a decreased proliferative capacity owing to a G 2/M arrest. Downregulation of nuclear-encoded p53 in rho0 cells underscores the importance of mitochondrial and nuclear genome crosstalk and may perhaps underlie the observed mitotic aberrations. By contrast, repletion of wild-type mtDNA in rho0 cells (cybrid) demonstrated a much lesser extent of CA and spindle multipolarity, suggesting partial restoration of centrosomal homeostasis. Our study provides compelling evidence to implicate the role of mitochondria in regulation of centrosome duplication, spindle architecture, and spindle pole integrity.
Collapse
Affiliation(s)
| | - Meera Brahmbhatt
- Department of Biology; Georgia State University; Atlanta, GA USA
| | - Vaishali Pannu
- Department of Biology; Georgia State University; Atlanta, GA USA
| | | | | | - Angela Ogden
- Department of Biology; Georgia State University; Atlanta, GA USA
| | - Alice Cheng
- Department of Biology; Georgia State University; Atlanta, GA USA
| | - Keshav K Singh
- Departments of Genetics, Pathology, and Environmental Health and Center for Free Radical Biology, Center for Aging, and UAB Comprehensive Cancer Center; University of Alabama at Birmingham; Birmingham, AL USA and Birmingham Veterans Affairs Medical Center; Birmingham, AL USA
| | - Ritu Aneja
- Department of Biology; Georgia State University; Atlanta, GA USA
| |
Collapse
|
24
|
Eckerdt F, Perez-Neut M, Colamonici OR. LIN-9 phosphorylation on threonine-96 is required for transcriptional activation of LIN-9 target genes and promotes cell cycle progression. PLoS One 2014; 9:e87620. [PMID: 24475316 PMCID: PMC3903767 DOI: 10.1371/journal.pone.0087620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/27/2013] [Indexed: 02/03/2023] Open
Abstract
Cell cycle transitions are governed by the timely expression of cyclins, the activating subunits of Cyclin-dependent kinases (Cdks), which are responsible for the inactivation of the pocket proteins. Overexpression of cyclins promotes cell proliferation and cancer. Therefore, it is important to understand the mechanisms by which cyclins regulate the expression of cell cycle promoting genes including subsequent cyclins. LIN-9 and the pocket proteins p107 and p130 are members of the DREAM complex that in G0 represses cell cycle genes. Interestingly, little is know about the regulation and function of LIN-9 after phosphorylation of p107,p130 by Cyclin D/Cdk4 disassembles the DREAM complex in early G1. In this report, we demonstrate that cyclin E1/Cdk3 phosphorylates LIN-9 on Thr-96. Mutating Thr-96 to alanine inhibits activation of cyclins A2 and B1 promoters, whereas a phosphomimetic Asp mutant strongly activates their promoters and triggers accelerated entry into G2/M phase in 293T cells. Taken together, our data suggest a novel role for cyclin E1 beyond G1/S and into S/G2 phase, most likely by inducing the expression of subsequent cyclins A2 and B1 through LIN-9.
Collapse
Affiliation(s)
- Frank Eckerdt
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Mathew Perez-Neut
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Oscar R Colamonici
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Xu Q, Zhang Y, Xiong X, Huang Y, Salisbury JL, Hu J, Ling K. PIPKIγ targets to the centrosome and restrains centriole duplication. J Cell Sci 2014; 127:1293-305. [PMID: 24434581 DOI: 10.1242/jcs.141465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Centriole biogenesis depends on the polo-like kinase (PLK4) and a small group of structural proteins. The spatiotemporal regulation of these proteins at pre-existing centrioles is essential to ensure that centriole duplication occurs once per cell cycle. Here, we report that phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C, hereafter referred to as PIPKIγ) plays an important role in centriole fidelity. PIPKIγ localized in a ring-like pattern in the intermediate pericentriolar materials around the proximal end of the centriole in G1, S and G2 phases, but not in M phase. This localization was dependent upon an association with centrosomal protein of 152 KDa (CEP152). Without detaining cells in S or M phase, the depletion of PIPKIγ led to centriole amplification in a manner that was dependent upon PLK4 and spindle assembly abnormal protein 6 homolog (SAS6). The expression of exogenous PIPKIγ reduced centriole amplification that occurred as a result of endogenous PIPKIγ depletion, hydroxyurea treatment or PLK4 overexpression, suggesting that PIPKIγ is likely to function at the PLK4 level to restrain centriole duplication. Importantly, we found that PIPKIγ bound to the cryptic polo-box domain of PLK4 and that this binding reduced the kinase activity of PLK4. Together, our findings suggest that PIPKIγ is a novel negative regulator of centriole duplication, which acts by modulating the homeostasis of PLK4 activity.
Collapse
Affiliation(s)
- Qingwen Xu
- Department of Biochemistry and Molecular Biology, and Division of Hypertension and Nephrology, Mayo Clinic, 200 First Street SW, Rochester, MN 55902, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles. Dev Cell 2013; 27:586-97. [PMID: 24268700 PMCID: PMC3898710 DOI: 10.1016/j.devcel.2013.09.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Accepted: 09/30/2013] [Indexed: 12/16/2022]
Abstract
During the first five rounds of cell division in the mouse embryo, spindles assemble in the absence of centrioles. Spindle formation initiates around chromosomes, but the microtubule nucleating process remains unclear. Here we demonstrate that Plk4, a protein kinase known as a master regulator of centriole formation, is also essential for spindle assembly in the absence of centrioles. Depletion of maternal Plk4 prevents nucleation and growth of microtubules and results in monopolar spindle formation. This leads to cytokinesis failure and, consequently, developmental arrest. We show that Plk4 function depends on its kinase activity and its partner protein, Cep152. Moreover, tethering Cep152 to cellular membranes sequesters Plk4 and is sufficient to trigger spindle assembly from ectopic membranous sites. Thus, the Plk4-Cep152 complex has an unexpected role in promoting microtubule nucleation in the vicinity of chromosomes to mediate bipolar spindle formation in the absence of centrioles. Plk4 is at acentriolar MTOCs and spindle poles in mouse embryos Plk4 is essential for acentriolar spindle assembly Depletion of maternal Plk4 prevents normal nucleation and growth of microtubules Plk4 MT-nucleating function depends on its kinase activity and its partner, Cep152
Collapse
|
27
|
Bärenz F, Inoue D, Yokoyama H, Tegha-Dunghu J, Freiss S, Draeger S, Mayilo D, Cado I, Merker S, Klinger M, Hoeckendorf B, Pilz S, Hupfeld K, Steinbeisser H, Lorenz H, Ruppert T, Wittbrodt J, Gruss OJ. The centriolar satellite protein SSX2IP promotes centrosome maturation. ACTA ACUST UNITED AC 2013; 202:81-95. [PMID: 23816619 PMCID: PMC3704989 DOI: 10.1083/jcb.201302122] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SSX2IP promotes centrosome maturation and maintenance at the onset of vertebrate development, preserving centrosome integrity and mitosis during rapid cleavage divisions and in somatic cells. Meiotic maturation in vertebrate oocytes is an excellent model system for microtubule reorganization during M-phase spindle assembly. Here, we surveyed changes in the pattern of microtubule-interacting proteins upon Xenopus laevis oocyte maturation by quantitative proteomics. We identified the synovial sarcoma X breakpoint protein (SSX2IP) as a novel spindle protein. Using X. laevis egg extracts, we show that SSX2IP accumulated at spindle poles in a Dynein-dependent manner and interacted with the γ-tubulin ring complex (γ-TuRC) and the centriolar satellite protein PCM-1. Immunodepletion of SSX2IP impeded γ-TuRC loading onto centrosomes. This led to reduced microtubule nucleation and spindle assembly failure. In rapidly dividing blastomeres of medaka (Oryzias latipes) and in somatic cells, SSX2IP knockdown caused fragmentation of pericentriolar material and chromosome segregation errors. We characterize SSX2IP as a novel centrosome maturation and maintenance factor that is expressed at the onset of vertebrate development. It preserves centrosome integrity and faithful mitosis during the rapid cleavage division of blastomeres and in somatic cells.
Collapse
Affiliation(s)
- Felix Bärenz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Slevin LK, Nye J, Pinkerton DC, Buster DW, Rogers GC, Slep KC. The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure 2012; 20:1905-17. [PMID: 23000383 DOI: 10.1016/j.str.2012.08.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/26/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022]
Abstract
Centrioles are key microtubule polarity determinants. Centriole duplication is tightly controlled to prevent cells from developing multipolar spindles, a situation that promotes chromosomal instability. A conserved component in the duplication pathway is Plk4, a polo kinase family member that localizes to centrioles in M/G1. To limit centriole duplication, Plk4 levels are controlled through trans-autophosphorylation that primes ubiquitination. In contrast to Plks 1-3, Plk4 possesses a unique central region called the "cryptic polo box." Here, we present the crystal structure of this region at 2.3 Å resolution. Surprisingly, the structure reveals two tandem homodimerized polo boxes, PB1-PB2, that form a unique winged architecture. The full PB1-PB2 cassette is required for binding the centriolar protein Asterless as well as robust centriole targeting. Thus, with its C-terminal polo box (PB3), Plk4 has a triple polo box architecture that facilitates oligomerization, targeting, and promotes trans-autophosphorylation, limiting centriole duplication to once per cell cycle.
Collapse
Affiliation(s)
- Lauren K Slevin
- Department of Biology, CB 3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
29
|
Liu L, Zhang CZ, Cai M, Fu J, Chen GG, Yun J. Downregulation of polo-like kinase 4 in hepatocellular carcinoma associates with poor prognosis. PLoS One 2012; 7:e41293. [PMID: 22829937 PMCID: PMC3400587 DOI: 10.1371/journal.pone.0041293] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023] Open
Abstract
Polo-like kinase 4 (PLK4), belonging to serine/threonine kinase family, is critical for centriole replication and cell cycle progression. PLK4 has been proposed as a tumor suppressor in hepatocellular carcinoma (HCC). However, its expression and significance in HCC have not been well studied. In the present study, we found that PLK4 was markedly downregulated in both HCC cell lines and fresh cancer tissues, using quantitative real-time-PCR and western blot. Immunohistochemistry data also revealed that decreased expression of PLK4 was present in 72.4% (178/246) of HCC tissues, compared with the corresponding adjacent nontumorous tissues. Furthermore, PLK4 expression significantly correlated with clinicopathological parameters, including clinical stage (P=0.034), serum α-fetoprotein (AFP) (P=0.019) and tumor size (P=0.032). Moreover, HCC patients with low PLK4 expression survived shorter than those with high PLK4 expression, as indicated by overall survival (P=0.002) and disease-free survival (P=0.012) assessed by the Kaplan-Meier method. In addition, multivariate analysis suggested PLK4 as an independent predictor of overall survival (HR, 0.556; 95%CI, 0.376-0.822; P=0.003) and disease-free survival (HR, 0.547; 95%CI, 0.382-0.783; P=0.001). Collectively, our study demonstrated that PLK4 was remarkably downregulated in HCC and could be served as a potential prognostic marker for patients with this deadly disease.
Collapse
Affiliation(s)
- Lili Liu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chris Zhiyi Zhang
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Muyan Cai
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jia Fu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - George Gong Chen
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Jingping Yun
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- * E-mail:
| |
Collapse
|
30
|
Long T, Vanderstraete M, Cailliau K, Morel M, Lescuyer A, Gouignard N, Grevelding CG, Browaeys E, Dissous C. SmSak, the second Polo-like kinase of the helminth parasite Schistosoma mansoni: conserved and unexpected roles in meiosis. PLoS One 2012; 7:e40045. [PMID: 22768216 PMCID: PMC3386946 DOI: 10.1371/journal.pone.0040045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/31/2012] [Indexed: 11/18/2022] Open
Abstract
Polo-like kinases (Plks) are a family of conserved regulators of a variety of events throughout the cell cycle, expanded from one Plk in yeast to five Plks in mammals (Plk1-5). Plk1 is the best characterized member of the Plk family, homolog to the founding member Polo of Drosophila, and plays a major role in cell cycle progression by triggering G2/M transition. Plk4/Sak (for Snk (Serum-inducible kinase) akin kinase) is a unique member of the family, structurally distinct from other Plk members, with essential functions in centriole duplication. The genome of the trematode parasite Schistosoma mansoni contains only two Plk genes encoding SmPlk1 and SmSak. SmPlk1 has been shown already to be required for gametogenesis and parasite reproduction. In this work, in situ hybridization indicated that the structurally conserved Plk4 protein, SmSak, was largely expressed in schistosome female ovary and vitellarium. Expression of SmSak in Xenopus oocytes confirmed its Plk4 conserved function in centriole amplification. Moreover, analysis of the function of SmSak in meiosis progression of G2-blocked Xenopus oocytes indicated that, in contrast to SmPlk1, SmSak cannot induce G2/M transition in the absence of endogenous Plk1 (Plx1). Unexpectedly, meiosis progression was spontaneously observed in Plx1-depleted oocytes co-expressing SmSak and SmPlk1. Molecular interaction between SmSak and SmPlk1 was confirmed by co-immunoprecipitation of both proteins. These data indicate that Plk1 and Plk4 proteins have the potential to interact and cross-activate in cells, thus attributing for the first time a potential role of Plk4 proteins in meiosis/mitosis entry. This unexpected role of SmSak in meiosis could be relevant to further consider the function of this novel Plk in schistosome reproduction.
Collapse
Affiliation(s)
- Thavy Long
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Mathieu Vanderstraete
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Katia Cailliau
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, Villeneuve d’Ascq, France
| | - Marion Morel
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Arlette Lescuyer
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, Villeneuve d’Ascq, France
| | - Nadege Gouignard
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | | | - Edith Browaeys
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, Villeneuve d’Ascq, France
| | - Colette Dissous
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
31
|
Kyrkou A, Soufi M, Bahtz R, Ferguson C, Bai M, Parton RG, Hoffmann I, Zerial M, Fotsis T, Murphy C. RhoD participates in the regulation of cell-cycle progression and centrosome duplication. Oncogene 2012; 32:1831-42. [PMID: 22665057 DOI: 10.1038/onc.2012.195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously identified a Rho protein, RhoD, which localizes to the plasma membrane and the early endocytic compartment. Here, we show that a GTPase-deficient mutant of RhoD, RhoDG26V, causes hyperplasia and perturbed differentiation of the epidermis, when targeted to the skin of transgenic mice. In vitro, gain-of-function and loss-of-function approaches revealed that RhoD is involved in the regulation of G1/S-phase progression and causes overduplication of centrosomes. Centriole overduplication assays in aphidicolin-arrested p53-deficient U2OS cells, in which the cell and the centrosome cycles are uncoupled, revealed that the effects of RhoD and its mutants on centrosome duplication and cell cycle are independent. Enhancement of G1/S-phase progression was mediated via Diaph1, a novel effector of RhoD, which we have identified using a two-hybrid screen. These results indicate that RhoD participates in the regulation of cell-cycle progression and centrosome duplication.
Collapse
Affiliation(s)
- A Kyrkou
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- James L Maller
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| |
Collapse
|
33
|
Centriolar satellites: busy orbits around the centrosome. Eur J Cell Biol 2011; 90:983-9. [PMID: 21945726 DOI: 10.1016/j.ejcb.2011.07.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/20/2011] [Accepted: 07/20/2011] [Indexed: 01/26/2023] Open
Abstract
Since its first description by Theodor Boveri in 1888, the centrosome has been studied intensely, and it revealed detailed information about its structure, molecular composition and its various functions. The centrosome consists of two centrioles, which generally appear in electron microscopy as barrel-shaped structures usually composed of nine microtubule triplets. An amorphous mass of pericentriolar material surrounds the centrioles and accumulates many proteins important for the integrity and function of centrosomes, such as the γ-tubulin ring complex (γ-TuRC) that mediates microtubule nucleation and capping. In animal somatic cells, the centrosome generally accounts for the major microtubule organizing center, and the duplicated pair of centrosomes determines the poles of the microtubule-based mitotic spindle. Despite detailed insights into the centrosome's structure and function, it has been a complete mystery until a few years ago how centrosomes duplicate and assemble. Moreover, it is still largely unclear if and how centrosomal proteins or protein complexes are exchanged, replaced or qualitatively altered. Previously identified cytoplasmic granules, named "pericentriolar" or "centriolar satellites", might fulfil such functions in protein targeting and exchange, and communication between the centrosomes and the cytoplasm. In this review, we summarize current knowledge about the structure, molecular composition and possible roles of the satellites that seem to surround the core of the centrosome in most animal cells.
Collapse
|