1
|
Sriswasdi S, Takashima M, Manabe RI, Ohkuma M, Iwasaki W. Genome and transcriptome evolve separately in recently hybridized Trichosporon fungi. Commun Biol 2019; 2:263. [PMID: 31341962 PMCID: PMC6642101 DOI: 10.1038/s42003-019-0515-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022] Open
Abstract
Genome hybridization is an important evolutionary event that gives rise to species with novel capabilities. However, the merging of distinct genomes also brings together incompatible regulatory networks that must be resolved during the course of evolution. Understanding of the early stages of post-hybridization evolution is particularly important because changes in these stages have long-term evolutionary consequences. Here, via comparative transcriptomic analyses of two closely related, recently hybridized Trichosporon fungi, T. coremiiforme and T. ovoides, and three extant relatives, we show that early post-hybridization evolutionary processes occur separately at the gene sequence and gene expression levels but together contribute to the stabilization of hybrid genome and transcriptome. Our findings also highlight lineage-specific consequences of genome hybridization, revealing that the transcriptional regulatory dynamics in these hybrids responded completely differently to gene loss events: one involving both subgenomes and another that is strictly subgenome-specific.
Collapse
Affiliation(s)
- Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 Japan
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathum Wan, Bangkok 10330 Thailand
- Computational Molecular Biology Group, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathum Wan, Bangkok 10330 Thailand
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba-shi, Ibaraki 305-0074 Japan
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 Japan
| | - Ri-ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba-shi, Ibaraki 305-0074 Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8568 Japan
- Atmosphere and Ocean Research Institute, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan
| |
Collapse
|
2
|
Ng WL, Wu W, Zou P, Zhou R. Comparative transcriptomics sheds light on differential adaptation and species diversification between two Melastoma species and their F 1 hybrid. AOB PLANTS 2019; 11:plz019. [PMID: 31037213 PMCID: PMC6481908 DOI: 10.1093/aobpla/plz019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Variation in gene expression has been shown to promote adaptive divergence, and can lead to speciation. The plant genus Melastoma, thought to have diversified through adaptive radiation, provides an excellent model for the study of gene expressional changes during adaptive differentiation and following interspecific hybridization. In this study, we performed RNA-seq on M. candidum, M. sanguineum and their F1 hybrid, to investigate the role of gene expression in species diversification within the genus. Reference transcriptomes were assembled using combined data from both parental species, resulting in 50 519 and 48 120 transcripts for the leaf and flower petal, after removing redundancy. Differential expression analysis uncovered 3793 and 2116 differentially expressed (DE) transcripts, most of which are between M. candidum and M. sanguineum. Differential expression was observed for genes related to light responses, as well as genes that regulate the development of leaf trichomes, a trait that among others is thought to protect plants against sunlight, suggesting the differential adaptation of the species to sunlight intensity. The analysis of positively selected genes between the two species also revealed possible differential adaptation to other abiotic stresses such as drought and temperature. In the hybrid, almost all possible modes of expression were observed at the DE transcripts, although at most transcripts, the expression levels were similar to that of either parent instead of being intermediate. A small number of transgressively expressed transcripts that matched genes known to promote plant growth and adaptation to stresses in new environments were also found, possibly explaining the vigour observed in the hybrid. The findings in this study provided insights into the role of gene expression in the diversification of Melastoma, which we believe is an important example for more cross-taxa comparisons in the future.
Collapse
Affiliation(s)
- Wei Lun Ng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wei Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peishan Zou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Matos I, Machado MP, Schartl M, Coelho MM. Allele-specific expression variation at different ploidy levels in Squalius alburnoides. Sci Rep 2019; 9:3688. [PMID: 30842567 PMCID: PMC6403402 DOI: 10.1038/s41598-019-40210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/07/2019] [Indexed: 11/09/2022] Open
Abstract
Allopolyploid plants are long known to be subject to a homoeolog expression bias of varying degree. The same phenomenon was only much later suspected to occur also in animals based on studies of single selected genes in an allopolyploid vertebrate, the Iberian fish Squalius alburnoides. Consequently, this species became a good model for understanding the evolution of gene expression regulation in polyploid vertebrates. Here, we analyzed for the first time genome-wide allele-specific expression data from diploid and triploid hybrids of S. alburnoides and compared homoeolog expression profiles of adult livers and of juveniles. Co-expression of alleles from both parental genomic types was observed for the majority of genes, but with marked homoeolog expression bias, suggesting homoeolog specific reshaping of expression level patterns in hybrids. Complete silencing of one allele was also observed irrespective of ploidy level, but not transcriptome wide as previously speculated. Instead, it was found only in a restricted number of genes, particularly ones with functions related to mitochondria and ribosomes. This leads us to hypothesize that allelic silencing may be a way to overcome intergenomic gene expression interaction conflicts, and that homoeolog expression bias may be an important mechanism in the achievement of sustainable genomic interactions, mandatory to the success of allopolyploid systems, as in S. alburnoides.
Collapse
Affiliation(s)
- Isa Matos
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal.,University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany
| | - Miguel P Machado
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal.,University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany.,Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Manfred Schartl
- University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany. .,Comprehensive Cancer Center, University Clinic Würzburg, Josef Schneider Straße 6, 97074, Würzburg, Germany. .,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, USA.
| | - Maria Manuela Coelho
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
4
|
Sun Y, Wu Y, Yang C, Sun S, Lin X, Liu L, Xu C, Wendel JF, Gong L, Liu B. Segmental allotetraploidy generates extensive homoeologous expression rewiring and phenotypic diversity at the population level in rice. Mol Ecol 2017; 26:5451-5466. [PMID: 28802080 DOI: 10.1111/mec.14297] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/04/2017] [Accepted: 07/24/2017] [Indexed: 02/03/2023]
Abstract
Allopolyploidization, that is, concomitant merging and doubling of two or more divergent genomes in a common nucleus/cytoplasm, is known to instantly alter genomewide transcriptome dynamics, a phenomenon referred to as "transcriptomic shock." However, the immediate effects of transcriptomic alteration in generating phenotypic diversity at the population level remain underinvestigated. Here, we employed the MassARRAY-based Sequenom platform to assess and compare orthologous, allelic and homoeologous gene expression status in two tissues (leaf and root) of a set of randomly chosen individuals from populations of parental rice subspecies (indica and japonica), in vitro "hybrids" (parental mixes), reciprocal F1 hybrids and reciprocal tetraploids at the 5th-selfed generation (S5). We show that hybridization and whole genome duplication (WGD) have opposing effects on allelic and homoeologous expression in the F1 hybrids and tetraploids, respectively. Whereas hybridization exerts strong attenuating effects on allelic expression differences in diploid hybrids, WGD augments the intrinsic parental differences and generates extensive and variable homoeolog content which triggers diversification in expression patterning among the tetraploid plants. Coupled with the vast phenotypic diversity observed among the tetraploid individuals, our results provide experimental evidence in support of the notion that allopolyploidy catalyses rapid phenotypic diversification in higher plants. Our data further suggest that largely stochastic homoeolog content reshuffling rather than alteration in total expression level may be an important feature of evolution in young segmental allopolyploids, which underlies rapid expression diversity at the population level.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Shuai Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiuyun Lin
- Jilin Academy of Agriculture, Changchun, China
| | - Lixia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.,Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
5
|
Hao M, Li A, Shi T, Luo J, Zhang L, Zhang X, Ning S, Yuan Z, Zeng D, Kong X, Li X, Zheng H, Lan X, Zhang H, Zheng Y, Mao L, Liu D. The abundance of homoeologue transcripts is disrupted by hybridization and is partially restored by genome doubling in synthetic hexaploid wheat. BMC Genomics 2017; 18:149. [PMID: 28187716 PMCID: PMC5303294 DOI: 10.1186/s12864-017-3558-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background The formation of an allopolyploid is a two step process, comprising an initial wide hybridization event, which is later followed by a whole genome doubling. Both processes can affect the transcription of homoeologues. Here, RNA-Seq was used to obtain the genome-wide leaf transcriptome of two independent Triticum turgidum × Aegilops tauschii allotriploids (F1), along with their spontaneous allohexaploids (S1) and their parental lines. The resulting sequence data were then used to characterize variation in homoeologue transcript abundance. Results The hybridization event strongly down-regulated D-subgenome homoeologues, but this effect was in many cases reversed by whole genome doubling. The suppression of D-subgenome homoeologue transcription resulted in a marked frequency of parental transcription level dominance, especially with respect to genes encoding proteins involved in photosynthesis. Singletons (genes where no homoeologues were present) were frequently transcribed at both the allotriploid and allohexaploid plants. Conclusions The implication is that whole genome doubling helps to overcome the phenotypic weakness of the allotriploid, restoring a more favourable gene dosage in genes experiencing transcription level dominance in hexaploid wheat. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3558-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tongwei Shi
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Jiangtao Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuechuan Zhang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Deying Zeng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xingchen Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaolong Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huaigang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
6
|
Xu C, Bai Y, Lin X, Zhao N, Hu L, Gong Z, Wendel JF, Liu B. Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies. Mol Biol Evol 2014; 31:1066-76. [PMID: 24577842 PMCID: PMC3995341 DOI: 10.1093/molbev/msu085] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hybridization and polyploidization are prominent processes in plant evolution. Hybrids and allopolyploids typically exhibit radically altered gene expression patterns relative to their parents, a phenomenon termed “transcriptomic shock.” To distinguish the effects of hybridization from polyploidization on coregulation of divergent alleles, we analyzed expression of parental copies (homoeologs) of 11,608 genes using RNA-seq-based transcriptome profiling in reciprocal hybrids and tetraploids constructed from subspecies japonica and indica of Asian rice (Oryza sativa L.). The diploid hybrids and their derived allopolyploids differ dramatically in morphology, despite having the same suite of genes and genic proportions. Allelic and homoeolog-specific transcripts were unequivocally diagnosed in the hybrids and tetraploids based on parent-specific SNPs. Compared with the in silico hybrid (parental mix), the range of progenitor expression divergence was significantly reduced in both reciprocally generated F1 hybrids, presumably due to the ameliorating effects of a common trans environment on divergent cis-factors. In contrast, parental expression differences were greatly elaborated at the polyploid level, which we propose is a consequence of stoichiometric disruptions associated with the numerous chromosomal packaging and volumetric changes accompanying nascent polyploidy. We speculate that the emergent property of “whole genome doubling” has repercussions that reverberate throughout the transcriptome and downstream, ultimately generating altered phenotypes. This perspective may yield insight into the nature of adaptation and the origin of evolutionary novelty accompanying polyploidy.
Collapse
Affiliation(s)
- Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Combes MC, Dereeper A, Severac D, Bertrand B, Lashermes P. Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. THE NEW PHYTOLOGIST 2013; 200:251-260. [PMID: 23790161 DOI: 10.1111/nph.12371] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/14/2013] [Indexed: 05/02/2023]
Abstract
Polyploidy has occurred throughout the evolutionary history of plants and led to diversification and plant ecological adaptation. Functional plasticity of duplicate genes is believed to play a major role in the environmental adaptation of polyploids. In this context, we characterized genome-wide homoeologous gene expression in Coffea arabica, a recent allopolyploid combining two subgenomes that derive from two closely related diploid species, and investigated its variation in response to changing environment. The transcriptome of leaves of C. arabica cultivated at different growing temperatures suitable for one or the other parental species was examined using RNA-sequencing. The relative contribution of homoeologs to gene expression was estimated for 9959 and 10,628 genes in warm and cold conditions, respectively. Whatever the growing conditions, 65% of the genes showed equivalent levels of homoeologous gene expression. In 92% of the genes, relative homoeologous gene expression varied < 10% between growing temperatures. The subgenome contributions to the transcriptome appeared to be only marginally altered by the different conditions (involving intertwined regulations of homeologs) suggesting that C. arabica's ability to tolerate a broader range of growing temperatures than its diploid parents does not result from differential use of homoeologs.
Collapse
Affiliation(s)
- Marie-Christine Combes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Alexis Dereeper
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Dany Severac
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cédex 5, France
| | - Benoît Bertrand
- CIRAD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Philippe Lashermes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| |
Collapse
|
8
|
Abstract
Human activity and climate change are increasingly driving species, which were once separate together, leading to the potential for gene flow. Hybridization between diverged species brings together two genomes which have evolved to meet different adaptive requirements. The unique combination of these traits in a hybrid may be beneficial or maladaptive, but either way it results in increased phenotypic variation. A percentage of hybrid individuals may, therefore, find themselves able to exploit environmental niches which their progenitors cannot, leading to invasive hybrid swarms becoming established in new habitats. Previous research into hybrids, most famously that of Loren Rieseberg and co-workers (Rieseberg et al. 1999, 2003) in sunflowers, demonstrated that hybridization can give rise to transgressive segregation of adaptive traits, wherein the combination of favourable alleles from both parents in hybrids can enable them to outperform either. However, the question still remains as to how much of the competitive ability of hybrids is a direct result of admixture and how much is the result of selection after the fact. In this issue of Molecular Ecology, (Czypionka et al. 2012) describe their study of transcriptional changes resulting from hybridization in a fish hybrid termed invasive sculpins (Cottus). Using gene expression microarray assays, they compare gene expression in both wild and lab-reared invasive hybrids to the progenitor species and experimentally produced F(2) hybrids. They demonstrate that whilst hybridization alone does result in higher variance in gene expression (some of which is transgressive), many of the transgressive changes distinguishing the invasives appear to have come about subsequent to the initial natural hybridization event. They speculate that initial success of the hybrids in their new habitat is facilitated by hybridization, but that optimization of the invasive phenotype and removal of maladaptive traits rapidly reduces the variation in gene expression seen in early hybrids.
Collapse
Affiliation(s)
- M J Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK.
| |
Collapse
|