1
|
Collett T, Graham P, Heinze S. The neuroethology of ant navigation. Curr Biol 2025; 35:R110-R124. [PMID: 39904309 DOI: 10.1016/j.cub.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Unlike any other group of animals, all ant species are social: individual ants share the food they gather with their nestmates and as a consequence they must repeatedly leave their nest to find food and then return home with it. These back-and-forth foraging trips have been studied for about a century and much of our growing understanding of the strategies underlying animal navigation has come from these studies. One important strategy that ants use to keep track of where they are on a foraging trip is 'path integration', in which they continuously update a 'home vector' that gives their estimated distance and direction from the nest. As path integration accumulates errors, it cannot be relied on to bring ants precisely home: such precision is accomplished by using views of the nest acquired before they start foraging. Further learning is scaffolded by home vectors or remembered food vectors, which guide a route and help in learning useful views experienced on the way. Many species rely on olfaction as well as vision for route guidance and the full details of their foraging paths have revealed how ants use a mix of innate and learnt multisensory cues. Wood ants, a species on which we focus in this review, take an oscillating path along a pheromone trail to sample odours, but acquire visual information only at the peaks and troughs of the oscillations. To provide a working model of the neural basis of the multimodal navigational strategies of ants, we outline the anatomy and functioning of major central brain areas and neural circuits - the central complex, mushroom bodies and lateral accessory lobes - that are involved in the coordination of navigational behaviour and the learning of visual and olfactory patterns. Because ant brains have not yet been well-studied, we rely on the work that has been done with other species - notably, Drosophila, silkworm moths and bees - to derive plausible neural circuitry that can deliver the ants' navigational strategies.
Collapse
Affiliation(s)
- Thomas Collett
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Stanley Heinze
- Lund University, Department of Biology, Lund Vision Group, Lund, Sweden
| |
Collapse
|
2
|
Zeil J. Coming home: how visually navigating ants (Myrmecia spp.) pinpoint their nest. J Exp Biol 2025; 228:JEB249499. [PMID: 39866147 PMCID: PMC11832129 DOI: 10.1242/jeb.249499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025]
Abstract
Visually navigating Myrmecia foragers approach their nest from distances up to 25 m along well-directed paths, even from locations they have never been before ( Narendra et al., 2013). However, close to the nest, they often spend some time pinpointing the nest entrance, sometimes missing it by centimetres. Here, I investigated what guides homing ants in their attempt to pinpoint the nest entrance. As the ants approach the nest, their behaviour changes. At approximately 1 m from the nest, the ants slow down, their scanning amplitude becomes larger and their path direction changes more frequently. This change in scanning behaviour is not triggered by local olfactory, tactile or visual cues because ants tethered on a trackball 30-50 cm above ground also exhibit it at 0.6 m compared with 1.6 m distance from the nest. Moreover, the ants are able to pinpoint the nest when such local cues are removed by covering the ground around the nest or the nest entrance itself. Myrmecia ants thus rely on information from the global panorama when pinpointing the nest. During learning walks, these ants appear to systematically collect views directed toward and away from the nest ( Jayatilaka et al., 2018). Homing ants indeed change gaze and body axis direction appropriately with a delay when encountering views to the left or to the right of the nest. However, image analysis shows that close to the nest, opponent views with the same orientation become too similar, explaining the growing uncertainty reflected in the ants' increased scanning behaviour during homing.
Collapse
Affiliation(s)
- Jochen Zeil
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra ACT2601, Australia
| |
Collapse
|
3
|
Schwarz S, Clement L, Haalck L, Risse B, Wystrach A. Compensation to visual impairments and behavioral plasticity in navigating ants. Proc Natl Acad Sci U S A 2024; 121:e2410908121. [PMID: 39560639 PMCID: PMC11621845 DOI: 10.1073/pnas.2410908121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Desert ants are known to rely heavily on vision while venturing for food and returning to the nest. During these foraging trips, ants memorize and recognize their visual surroundings, which enables them to recapitulate individually learned routes in a fast and effective manner. The compound eyes are crucial for such visual navigation; however, it remains unclear how information from both eyes are integrated and how ants cope with visual impairment. Here, we manipulated the ants' visual system by covering one of the two compound eyes and analyzed their ability to recognize familiar views. Monocular ants showed an immediate disruption of their ability to recapitulate their familiar route. However, they were able to compensate for this nonnatural impairment in a few hours by engaging in an extensive route-relearning ontogeny, composed of more learning walks than what naïve ants typically do. This relearning process with one eye forms novel memories, without erasing the previous memories acquired with two eyes. Additionally, ants having learned a route with one eye only are unable to recognize it with two eyes, even though more information is available. Together, this shows that visual memories are encoded and recalled in an egocentric and fundamentally binocular way, where the visual input as a whole must be matched to enable recognition. We show how this kind of visual processing fits with their neural circuitry.
Collapse
Affiliation(s)
- Sebastian Schwarz
- Centre de Biologie Integrative, Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, Université Paul Sabatier, Toulouse31062 cedex 09, France
- Department of Biology, Division of Zoology, University of Graz, 8010Graz, Austria
| | - Leo Clement
- Centre de Biologie Integrative, Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, Université Paul Sabatier, Toulouse31062 cedex 09, France
| | - Lars Haalck
- Centre de Biologie Integrative, Institute for Informatics, Computer Vision and Machine Learning Systems, University of Münster, 48149Münster, Germany
| | - Benjamin Risse
- Centre de Biologie Integrative, Institute for Informatics, Computer Vision and Machine Learning Systems, University of Münster, 48149Münster, Germany
| | - Antoine Wystrach
- Centre de Biologie Integrative, Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, Université Paul Sabatier, Toulouse31062 cedex 09, France
| |
Collapse
|
4
|
Barrie R, Haalck L, Risse B, Nowotny T, Graham P, Buehlmann C. Trail using ants follow idiosyncratic routes in complex landscapes. Learn Behav 2024; 52:105-113. [PMID: 37993707 PMCID: PMC10924020 DOI: 10.3758/s13420-023-00615-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
A large volume of research on individually navigating ants has shown how path integration and visually guided navigation form a major part of the ant navigation toolkit for many species and are sufficient mechanisms for successful navigation. One of the behavioural markers of the interaction of these mechanisms is that experienced foragers develop idiosyncratic routes that require that individual ants have personal and unique visual memories that they use to guide habitual routes between the nest and feeding sites. The majority of ants, however, inhabit complex cluttered environments and social pheromone trails are often part of the collective recruitment, organisation and navigation of these foragers. We do not know how individual navigation interacts with collective behaviour along shared trails in complex natural environments. We thus asked here if wood ants that forage through densely cluttered woodlands where they travel along shared trails repeatedly follow the same routes or if they choose a spread of paths within the shared trail. We recorded three long homing trajectories of 20 individual wood ants in their natural woodland habitat. We found that wood ants follow idiosyncratic routes when navigating along shared trails through highly complex visual landscapes. This shows that ants rely on individual memories for habitual route guidance even in cluttered environments when chemical trail information is available. We argue that visual cues are likely to be the dominant sensory modality for the idiosyncratic routes. These experiments shed new light on how ants, or insects in general, navigate through complex multimodal environments.
Collapse
Affiliation(s)
- Robert Barrie
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Lars Haalck
- Institute for Geoinformatics and Institute for Computer Science, University of Münster, Heisenbergstraße 2, 48149, Münster, Germany
| | - Benjamin Risse
- Institute for Geoinformatics and Institute for Computer Science, University of Münster, Heisenbergstraße 2, 48149, Münster, Germany
| | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton, BN1 9QJ, UK
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | | |
Collapse
|
5
|
Konnerth MM, Foster JJ, El Jundi B, Spaethe J, Beetz MJ. Monarch butterflies memorize the spatial location of a food source. Proc Biol Sci 2023; 290:20231574. [PMID: 38113939 PMCID: PMC10730289 DOI: 10.1098/rspb.2023.1574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Spatial memory helps animals to navigate familiar environments. In insects, spatial memory has extensively been studied in central place foragers such as ants and bees. However, if butterflies memorize a spatial location remains unclear. Here, we conducted behavioural experiments to test whether monarch butterflies (Danaus plexippus) can remember and retrieve the spatial location of a food source. We placed several visually identical feeders in a flight cage, with only one feeder providing sucrose solution. Across multiple days, individual butterflies predominantly visited the rewarding feeder. Next, we displaced a salient landmark close to the feeders to test which visual cue the butterflies used to relocate the rewarding feeder. While occasional landmark displacements were ignored by the butterflies and did not affect their decisions, systematic displacement of both the landmark and the rewarding feeder demonstrated that the butterflies associated the salient landmark with the feeder's position. Altogether, we show that butterflies consolidate and retrieve spatial memory in the context of foraging.
Collapse
Affiliation(s)
- M Marcel Konnerth
- Zoology II, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Bayern, Germany
| | - James J Foster
- Department of Biology, University of Konstanz, 78464 Konstanz, Baden-Württemberg, Germany
| | - Basil El Jundi
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Johannes Spaethe
- Zoology II, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Bayern, Germany
| | - M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Bayern, Germany
| |
Collapse
|
6
|
Buehlmann C. Animal homing: Ants build their own landmarks when they need them. Curr Biol 2023; 33:R721-R724. [PMID: 37433274 DOI: 10.1016/j.cub.2023.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Visual landmarks are extremely useful for successful navigation in many species, including ants. So much so that a new study shows that desert ants actually build their own landmarks when they need them.
Collapse
Affiliation(s)
- Cornelia Buehlmann
- University of Sussex, School of Life Sciences, Brighton, Sussex BN1 9QG, UK.
| |
Collapse
|
7
|
Freire M, Bollig A, Knaden M. Absence of visual cues motivates desert ants to build their own landmarks. Curr Biol 2023; 33:2802-2805.e2. [PMID: 37263269 DOI: 10.1016/j.cub.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
The desert ants Cataglyphis fortis inhabit the harsh salt pans of Tunisia. The individually foraging ants rely on path integration to navigate back to their nest.1,2,3,4 However, as path integration accumulates errors5 at a rate that increases with distance traveled,6,7 it is supplemented by visual and olfactory cues.8,9,10,11,12,13 We show that despite their impressive homing accuracy, ants returning from long foraging journeys face a mortality rate of up to 20%. To facilitate homing, colonies inhabiting the featureless center of the salt pan build tall nest hills as visual cues. Removing these hills triggers rebuilding, but visual artificial landmarks placed near the nest entrance are sufficient to suppress the ants' rebuilding activity. Our data suggest that the desert ant builds its own landmark on purpose in a featureless environment to increase its chances of successful homing and survival. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Marilia Freire
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Antonio Bollig
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse 8, 07745 Jena, Germany.
| |
Collapse
|
8
|
Cormons MJ, Zeil J. Digger wasps Microbembex monodonta SAY (Hymenoptera, Crabronidae) rely exclusively on visual cues when pinpointing their nest entrances. PLoS One 2023; 18:e0282144. [PMID: 36989296 PMCID: PMC10058119 DOI: 10.1371/journal.pone.0282144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2023] [Indexed: 03/30/2023] Open
Abstract
The ability of insects to navigate and home is crucial to fundamental tasks, such as pollination, parental care, procuring food, and finding mates. Despite recent advances in our understanding of visual homing in insects, it remains unclear exactly how ground-nesting Hymenoptera are able to precisely locate their often inconspicuous or hidden reproductive burrow entrances. Here we show that the ground-nesting wasp Microbembex monodonta locates her hidden burrow entrance with the help of local landmarks, but only if their view of the wider panorama is not blocked. Moreover, the wasps are able to pinpoint the burrow location to within a few centimeters when potential olfactory, tactile and auditory cues are locally masked. We conclude that M. monodonta locate their hidden burrows relying exclusively on local visual cues in the context of the wider panorama. We discuss these results in the light of the older and more recent literature on nest recognition and homing in insects.
Collapse
Affiliation(s)
| | - Jochen Zeil
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
9
|
Visual navigation: properties, acquisition and use of views. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01599-2. [PMID: 36515743 DOI: 10.1007/s00359-022-01599-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Panoramic views offer information on heading direction and on location to visually navigating animals. This review covers the properties of panoramic views and the information they provide to navigating animals, irrespective of image representation. Heading direction can be retrieved by alignment matching between memorized and currently experienced views, and a gradient descent in image differences can lead back to the location at which a view was memorized (positional image matching). Central place foraging insects, such as ants, bees and wasps, conduct distinctly choreographed learning walks and learning flights upon first leaving their nest that are likely to be designed to systematically collect scene memories tagged with information provided by path integration on the direction of and the distance to the nest. Equally, traveling along routes, ants have been shown to engage in scanning movements, in particular when routes are unfamiliar, again suggesting a systematic process of acquiring and comparing views. The review discusses what we know and do not know about how view memories are represented in the brain of insects, how they are acquired and how they are subsequently used for traveling along routes and for pinpointing places.
Collapse
|
10
|
Rössler W, Grob R, Fleischmann PN. The role of learning-walk related multisensory experience in rewiring visual circuits in the desert ant brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01600-y. [DOI: 10.1007/s00359-022-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
AbstractEfficient spatial orientation in the natural environment is crucial for the survival of most animal species. Cataglyphis desert ants possess excellent navigational skills. After far-ranging foraging excursions, the ants return to their inconspicuous nest entrance using celestial and panoramic cues. This review focuses on the question about how naïve ants acquire the necessary spatial information and adjust their visual compass systems. Naïve ants perform structured learning walks during their transition from the dark nest interior to foraging under bright sunlight. During initial learning walks, the ants perform rotational movements with nest-directed views using the earth’s magnetic field as an earthbound compass reference. Experimental manipulations demonstrate that specific sky compass cues trigger structural neuronal plasticity in visual circuits to integration centers in the central complex and mushroom bodies. During learning walks, rotation of the sky-polarization pattern is required for an increase in volume and synaptic complexes in both integration centers. In contrast, passive light exposure triggers light-spectrum (especially UV light) dependent changes in synaptic complexes upstream of the central complex. We discuss a multisensory circuit model in the ant brain for pathways mediating structural neuroplasticity at different levels following passive light exposure and multisensory experience during the performance of learning walks.
Collapse
|
11
|
Notomi Y, Kazawa T, Maezawa S, Kanzaki R, Haupt SS. Use of Visual Information by Ant Species Occurring in Similar Urban Anthropogenic Environments. Zoolog Sci 2022; 39:529-544. [PMID: 36495488 DOI: 10.2108/zs220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Many insects, including ants, are known to respond visually to conspicuous objects. In this study, we compared orientation in an arena containing only a black target beacon as local information in six species of ants of widely varying degree of phylogenic relatedness, foraging strategy, and eye morphology (Aphaenogaster, Brachyponera, Camponotus, Formica, and two Lasius spp.), often found associated in similar urban anthropogenic habitats. Four species of ants displayed orientation toward the beacon, with two orienting toward it directly, while the other two approached it via convoluted paths. The two remaining species did not show any orientation with respect to the beacon. The results did not correlate with morphological parameters of the visual systems and could not be fully interpreted in terms of the species' ecology, although convoluted paths are linked to higher significance of chemical signals. Beacon aiming was shown to be an innate behavior in visually naive Formica workers, which, however, were less strongly attracted to the beacon than older foragers. Thus, despite sharing the same habitats and supposedly having similar neural circuits, even a very simple stimulus-related behavior in the absence of other information can differ widely in ants but is likely an ancestral trait retained especially in species with smaller eyes. The comparative analysis of nervous systems opens the possibility of determining general features of circuits responsible for innate and possibly learned attraction toward particular stimuli.
Collapse
Affiliation(s)
- Yusuke Notomi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Tomoki Kazawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Stephan Shuichi Haupt
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan,
| |
Collapse
|
12
|
Trautenberg LC, Brankatschk M, Shevchenko A, Wigby S, Reinhardt K. Ecological lipidology. eLife 2022; 11:79288. [PMID: 36069772 PMCID: PMC9451535 DOI: 10.7554/elife.79288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary lipids (DLs), particularly sterols and fatty acids, are precursors for endogenous lipids that, unusually for macronutrients, shape cellular and organismal function long after ingestion. These functions – cell membrane structure, intracellular signalling, and hormonal activity – vary with the identity of DLs, and scale up to influence health, survival, and reproductive fitness, thereby affecting evolutionary change. Our Ecological Lipidology approach integrates biochemical mechanisms and molecular cell biology into evolution and nutritional ecology. It exposes our need to understand environmental impacts on lipidomes, the lipid specificity of cell functions, and predicts the evolution of lipid-based diet choices. Broad interdisciplinary implications of Ecological Lipidology include food web alterations, species responses to environmental change, as well as sex differences and lifestyle impacts on human nutrition, and opportunities for DL-based therapies.
Collapse
Affiliation(s)
| | - Marko Brankatschk
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Wigby
- Applied Zoology, Technische Universität Dresden, Dresden, Germany.,Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Klaus Reinhardt
- Applied Zoology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Matheson AMM, Lanz AJ, Medina AM, Licata AM, Currier TA, Syed MH, Nagel KI. A neural circuit for wind-guided olfactory navigation. Nat Commun 2022; 13:4613. [PMID: 35941114 PMCID: PMC9360402 DOI: 10.1038/s41467-022-32247-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
To navigate towards a food source, animals frequently combine odor cues about source identity with wind direction cues about source location. Where and how these two cues are integrated to support navigation is unclear. Here we describe a pathway to the Drosophila fan-shaped body that encodes attractive odor and promotes upwind navigation. We show that neurons throughout this pathway encode odor, but not wind direction. Using connectomics, we identify fan-shaped body local neurons called h∆C that receive input from this odor pathway and a previously described wind pathway. We show that h∆C neurons exhibit odor-gated, wind direction-tuned activity, that sparse activation of h∆C neurons promotes navigation in a reproducible direction, and that h∆C activity is required for persistent upwind orientation during odor. Based on connectome data, we develop a computational model showing how h∆C activity can promote navigation towards a goal such as an upwind odor source. Our results suggest that odor and wind cues are processed by separate pathways and integrated within the fan-shaped body to support goal-directed navigation.
Collapse
Affiliation(s)
- Andrew M M Matheson
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
- Department of Biological Sciences, Columbia University, 600 Sherman Fairchild Center, New York, NY, 10027, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
| | - Ashley M Medina
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
| | - Al M Licata
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
| | - Timothy A Currier
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
- Center for Neural Science, NYU, New York, NY, 4 Washington Place, New York, NY, 10003, USA
- Department of Neurobiology, Stanford University, 299W. Campus Drive, Stanford, CA, 94305, USA
| | - Mubarak H Syed
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
14
|
Sun X, Yue S, Mangan M. How the insect central complex could coordinate multimodal navigation. eLife 2021; 10:e73077. [PMID: 34882094 PMCID: PMC8741217 DOI: 10.7554/elife.73077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
The central complex of the insect midbrain is thought to coordinate insect guidance strategies. Computational models can account for specific behaviours, but their applicability across sensory and task domains remains untested. Here, we assess the capacity of our previous model (Sun et al. 2020) of visual navigation to generalise to olfactory navigation and its coordination with other guidance in flies and ants. We show that fundamental to this capacity is the use of a biologically plausible neural copy-and-shift mechanism that ensures sensory information is presented in a format compatible with the insect steering circuit regardless of its source. Moreover, the same mechanism is shown to allow the transfer cues from unstable/egocentric to stable/geocentric frames of reference, providing a first account of the mechanism by which foraging insects robustly recover from environmental disturbances. We propose that these circuits can be flexibly repurposed by different insect navigators to address their unique ecological needs.
Collapse
Affiliation(s)
- Xuelong Sun
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou UniversityGuangzhouChina
- Computational Intelligence Lab and L-CAS, School of Computer Science, University of LincolnLincolnUnited Kingdom
| | - Shigang Yue
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou UniversityGuangzhouChina
- Computational Intelligence Lab and L-CAS, School of Computer Science, University of LincolnLincolnUnited Kingdom
| | - Michael Mangan
- Sheffield Robotics, Department of Computer Science, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
15
|
Role of the pheromone for navigation in the group foraging ant, Veromessor pergandei. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:353-367. [PMID: 33677697 DOI: 10.1007/s00359-021-01471-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
Navigation is comprised of a variety of strategies which rely on multiple external cues to shape a navigator's behavioral output. Here, we explored in the ant Veromessor pergandei, the interactions between the information provided by the pheromone trail and the home vector guided by the celestial compass. We found that a cross sensory interaction between the pheromone cue and the path integrator underlies correct orientation during the inbound journey. The celestial compass provides directional information, while the presence of the trail pheromone acts as a critical context cue, triggering distinct behaviors (vector orientation, search, and backtracking). While exposed to the pheromone, foragers orient to the vector direction regardless of vector state, while in the pheromone's absence, the current remaining vector determines the forager's navigational behavior. This interaction also occurs in foragers with no remaining path integrator, relying on the activation of a celestial compass-based memory of the previous trip. Such cue interactions maximize the foragers' return to the nest and inhibit movement off the pheromone trail. Finally, our manipulations continuously rotated foragers away from their desired heading, yet foragers were proficient at counteracting these changes, steering to maintain a correct compass heading even at rotational speeds of ~ 40°/s.
Collapse
|
16
|
Doussot C, Bertrand OJN, Egelhaaf M. The Critical Role of Head Movements for Spatial Representation During Bumblebees Learning Flight. Front Behav Neurosci 2021; 14:606590. [PMID: 33542681 PMCID: PMC7852487 DOI: 10.3389/fnbeh.2020.606590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Bumblebees perform complex flight maneuvers around the barely visible entrance of their nest upon their first departures. During these flights bees learn visual information about the surroundings, possibly including its spatial layout. They rely on this information to return home. Depth information can be derived from the apparent motion of the scenery on the bees' retina. This motion is shaped by the animal's flight and orientation: Bees employ a saccadic flight and gaze strategy, where rapid turns of the head (saccades) alternate with flight segments of apparently constant gaze direction (intersaccades). When during intersaccades the gaze direction is kept relatively constant, the apparent motion contains information about the distance of the animal to environmental objects, and thus, in an egocentric reference frame. Alternatively, when the gaze direction rotates around a fixed point in space, the animal perceives the depth structure relative to this pivot point, i.e., in an allocentric reference frame. If the pivot point is at the nest-hole, the information is nest-centric. Here, we investigate in which reference frames bumblebees perceive depth information during their learning flights. By precisely tracking the head orientation, we found that half of the time, the head appears to pivot actively. However, only few of the corresponding pivot points are close to the nest entrance. Our results indicate that bumblebees perceive visual information in several reference frames when they learn about the surroundings of a behaviorally relevant location.
Collapse
Affiliation(s)
- Charlotte Doussot
- Department of Neurobiology, University of Bielefeld, Bielefeld, Germany
| | | | | |
Collapse
|
17
|
Doussot C, Bertrand OJN, Egelhaaf M. Visually guided homing of bumblebees in ambiguous situations: A behavioural and modelling study. PLoS Comput Biol 2020; 16:e1008272. [PMID: 33048938 PMCID: PMC7553325 DOI: 10.1371/journal.pcbi.1008272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/19/2020] [Indexed: 11/19/2022] Open
Abstract
Returning home is a crucial task accomplished daily by many animals, including humans. Because of their tiny brains, insects, like bees or ants, are good study models for efficient navigation strategies. Bees and ants are known to rely mainly on learned visual information about the nest surroundings to pinpoint their barely visible nest-entrance. During the return, when the actual sight of the insect matches the learned information, the insect is easily guided home. Occasionally, modifications to the visual environment may take place while the insect is on a foraging trip. Here, we addressed the ecologically relevant question of how bumblebees’ homing is affected by such a situation. In an artificial setting, we habituated bees to be guided to their nest by two constellations of visual cues. After habituation, these cues were displaced during foraging trips into a conflict situation. We recorded bumblebees’ return flights in such circumstances and investigated where they search for their nest entrance following the degree of displacement between the two visually relevant cues. Bumblebees mostly searched at the fictive nest location as indicated by either cue constellation, but never at a compromise location between them. We compared these experimental results to the predictions of different types of homing models. We found that models guiding an agent by a single holistic view of the nest surroundings could not account for the bumblebees’ search behaviour in cue-conflict situations. Instead, homing models relying on multiple views were sufficient. We could further show that homing models required fewer views and got more robust to height changes if optic flow-based spatial information was encoded and learned, rather than just brightness information. Returning home sounds trivial, but to a concealed underground location like a burrow, is less easy. For the buff-tailed bumblebees, this task is a routine. After collecting pollen in gardens or flowered meadows, bees must return to their underground nest to feed the queen’s larvae. The nest entrance is almost invisible for a returning bee; therefore, it guides its flight by information about the surrounding visual environment. Since the seminal work of Timbergern, many experiments have focused on how visual information is guiding foraging insects back home. In these experiments, returning foragers were confronted with a coherent displacement of the entire nest surroundings, hence, leading the bees to a unique new location. But in nature, the objects constituting the visual environment maybe unorderly displaced, as some are differently inclined to the action of different factors, e.g. wind. In our study, we moved objects in a tricky way to create two fictitious nest entrances. The bees searched at the fictitious nest entrances, but never in-between. The distance between the fictitious nests affected the bees’ search. Finally, we could predict the search location by using bio-inspired homing models potentially interesting for implementing in autonomous robots.
Collapse
Affiliation(s)
- Charlotte Doussot
- Neurobiology, Faculty of Biology, Universität Bielefeld, Germany
- * E-mail:
| | | | - Martin Egelhaaf
- Neurobiology, Faculty of Biology, Universität Bielefeld, Germany
| |
Collapse
|
18
|
Multimodal influences on learning walks in desert ants (Cataglyphis fortis). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:701-709. [PMID: 32537664 PMCID: PMC7392947 DOI: 10.1007/s00359-020-01431-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023]
Abstract
Ants are excellent navigators using multimodal information for navigation. To accurately localise the nest at the end of a foraging journey, visual cues, wind direction and also olfactory cues need to be learnt. Learning walks are performed at the start of an ant’s foraging career or when the appearance of the nest surrounding has changed. We investigated here whether the structure of such learning walks in the desert ant Cataglyphis fortis takes into account wind direction in conjunction with the learning of new visual information. Ants learnt to travel back and forth between their nest and a feeder, and we then introduced a black cylinder near their nest to induce learning walks in regular foragers. By doing this across days with different wind directions, we were able to probe how ants balance different sensory modalities. We found that (1) the ants’ outwards headings are influenced by the wind direction with their routes deflected such that they will arrive downwind of their target, (2) a novel object along the route induces learning walks in experienced ants and (3) the structure of learning walks is shaped by the wind direction rather than the position of the visual cue.
Collapse
|
19
|
Multimodal interactions in insect navigation. Anim Cogn 2020; 23:1129-1141. [PMID: 32323027 PMCID: PMC7700066 DOI: 10.1007/s10071-020-01383-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023]
Abstract
Animals travelling through the world receive input from multiple sensory modalities that could be important for the guidance of their journeys. Given the availability of a rich array of cues, from idiothetic information to input from sky compasses and visual information through to olfactory and other cues (e.g. gustatory, magnetic, anemotactic or thermal) it is no surprise to see multimodality in most aspects of navigation. In this review, we present the current knowledge of multimodal cue use during orientation and navigation in insects. Multimodal cue use is adapted to a species’ sensory ecology and shapes navigation behaviour both during the learning of environmental cues and when performing complex foraging journeys. The simultaneous use of multiple cues is beneficial because it provides redundant navigational information, and in general, multimodality increases robustness, accuracy and overall foraging success. We use examples from sensorimotor behaviours in mosquitoes and flies as well as from large scale navigation in ants, bees and insects that migrate seasonally over large distances, asking at each stage how multiple cues are combined behaviourally and what insects gain from using different modalities.
Collapse
|
20
|
Freas CA, Congdon JV, Plowes NJR, Spetch ML. Pheromone cue triggers switch between vectors in the desert harvest ant, Veromessor pergandei. Anim Cogn 2020; 23:1087-1105. [PMID: 32078060 DOI: 10.1007/s10071-020-01354-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/07/2020] [Accepted: 01/25/2020] [Indexed: 11/27/2022]
Abstract
The desert harvester ant (Veromessor pergandei) employs a mixture of social and individual navigational strategies at separate stages of their foraging trip. Individuals leave the nest along a pheromone-based column, travelling 3-40 m before spreading out to forage individually in a fan. Foragers use path integration while in this fan, accumulating a direction and distance estimate (vector) to return to the end of the column (column head), yet foragers' potential use of path integration in the pheromone-based column is less understood. Here we show foragers rely on path integration both in the foraging fan and while in the column to return to the nest, using separate vectors depending on their current foraging stage in the fan or column. Returning foragers displaced while in the fan oriented and travelled to the column head location while those displaced after reaching the column travel in the nest direction, signifying the maintenance of a two-vector system with separate fan and column vectors directing a forager to two separate spatial locations. Interestingly, the trail pheromone and not the surrounding terrestrial cues mediate use of these distinct vectors, as fan foragers briefly exposed to the pheromone cues of the column in isolation altered their paths to a combination of the fan and column vectors. The pheromone acts as a contextual cue triggering both the retrieval of the column-vector memory and its integration with the forager's current fan-vector.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Jenna V Congdon
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | | | - Marcia L Spetch
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
21
|
Freas CA, Congdon JV, Plowes NJR, Spetch ML. Same but different: Socially foraging ants backtrack like individually foraging ants but use different mechanisms. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103944. [PMID: 31520596 DOI: 10.1016/j.jinsphys.2019.103944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/07/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Diverse species may adopt behaviourally identical solutions to similar environmental challenges. However, the underlying mechanisms dictating these responses may be quite different and are often associated with the specific ecology or habitat of these species. Foraging desert ants use multiple strategies in order to successfully navigate. In individually foraging ants, these strategies are largely visually-based; this includes path integration and learned panorama cues, with systematic search and backtracking acting as backup mechanisms. Backtracking is believed to be controlled, at least in solitary foraging species, by three criteria: 1) foragers must have recent exposure to the nest panorama, 2) the path integrator must be near zero, and 3) the ant must be displaced to an unfamiliar location. Instead of searching for the nest, under these conditions, foragers head in the opposite compass direction of the one in which they were recently travelling. Here, we explore backtracking in the socially foraging desert harvester ant (Veromessor pergandei), which exhibits a foraging ecology consisting of a combination of social and individual cues in a column and fan structure. We find that backtracking in V. pergandei, similar to solitary foraging species, is dependent on celestial cues, and in particular on the sun's position. However, unlike solitary foraging species, backtracking in V. pergandei is not mediated by the same criteria. Instead the expression of this behaviour is dependent on the presence of the social cues of the column and the proportion of the column that foragers have completed prior to displacement.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, Canada.
| | | | | | | |
Collapse
|
22
|
|
23
|
Collett TS. Path integration: how details of the honeybee waggle dance and the foraging strategies of desert ants might help in understanding its mechanisms. ACTA ACUST UNITED AC 2019; 222:222/11/jeb205187. [PMID: 31152122 DOI: 10.1242/jeb.205187] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Path integration is a navigational strategy that gives an animal an estimate of its position relative to some starting point. For many decades, ingenious and probing behavioural experiments have been the only window onto the operation of path integration in arthropods. New methods have now made it possible to visualise the activity of neural circuits in Drosophila while they fly or walk in virtual reality. Studies of this kind, as well as electrophysiological recordings from single neurons in the brains of other insects, are revealing details of the neural mechanisms that control an insect's direction of travel and other aspects of path integration. The aim here is first to review the major features of path integration in foraging desert ants and honeybees, the current champion path integrators of the insect world, and second consider how the elaborate behaviour of these insects might be accommodated within the framework of the newly understood neural circuits. The discussion focuses particularly on the ability of ants and honeybees to use a celestial compass to give direction in Earth-based coordinates, and of honeybees to use a landscape panorama to provide directional guidance for path integration. The possibility is raised that well-ordered behaviour might in some cases substitute for complex circuitry.
Collapse
Affiliation(s)
- Thomas S Collett
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
24
|
Heyman Y, Vilk Y, Feinerman O. Ants Use Multiple Spatial Memories and Chemical Pointers to Navigate Their Nest. iScience 2019; 14:264-276. [PMID: 31005661 PMCID: PMC6476803 DOI: 10.1016/j.isci.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/23/2019] [Accepted: 04/01/2019] [Indexed: 12/02/2022] Open
Abstract
Animal navigation relies on the available environmental cues and, where present, visual cues typically dominate. While much is known about vision-assisted navigation, knowledge of navigation in the dark is scarce. Here, we combine individual tracking, dynamic modular nest structures, and spatially resolved chemical profiling to study how Camponotus fellah ants navigate within the dark labyrinth of their nest. We find that, contrary to ant navigation above ground, underground navigation cannot rely on long-range information. This limitation emphasizes the ants' capabilities associated with other navigational strategies. Indeed, apart from gravity, underground navigation relies on self-referenced memories of multiple locations and on socially generated chemical cues placed at decision points away from the target. Moreover, the ants quickly readjust the weights attributed to these information sources in response to environmental changes. Generally, studying well-known behaviors in a variety of environmental contexts holds the potential of revealing new insights into animal cognition. We combine multiple technologies to study how ants navigate within their dark nest Ants substitute visual cues with gravity, chemical cues, and multi-target memories Following a catastrophe, ants quickly readjust the relative importance of cues
Collapse
Affiliation(s)
- Yael Heyman
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Vilk
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ofer Feinerman
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
25
|
Abstract
Insect navigation is strikingly geometric. Many species use path integration to maintain an accurate estimate of their distance and direction (a vector) to their nest and can store the vector information for multiple salient locations in the world, such as food sources, in a common coordinate system. Insects can also use remembered views of the terrain around salient locations or along travelled routes to guide return, which is a fundamentally geometric process. Recent modelling of these abilities shows convergence on a small set of algorithms and assumptions that appear sufficient to account for a wide range of behavioural data. Notably, this 'base model' does not include any significant topological knowledge: the insect does not need to recover the information (implicit in their vector memory) about the relationships between salient places; nor to maintain any connectedness or ordering information between view memories; nor to form any associations between views and vectors. However, there remains some experimental evidence not fully explained by this base model that may point towards the existence of a more complex or integrated mental map in insects.
Collapse
Affiliation(s)
- Barbara Webb
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| |
Collapse
|
26
|
Knaden M. Learning and processing of navigational cues in the desert ant. Curr Opin Neurobiol 2019; 54:140-145. [DOI: 10.1016/j.conb.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022]
|
27
|
Freas CA, Fleischmann PN, Cheng K. Experimental ethology of learning in desert ants: Becoming expert navigators. Behav Processes 2019; 158:181-191. [DOI: 10.1016/j.beproc.2018.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/03/2018] [Accepted: 12/01/2018] [Indexed: 12/31/2022]
|
28
|
Distinct activity-gated pathways mediate attraction and aversion to CO 2 in Drosophila. Nature 2018; 564:420-424. [PMID: 30464346 PMCID: PMC6314688 DOI: 10.1038/s41586-018-0732-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 10/11/2018] [Indexed: 12/18/2022]
Abstract
Carbon dioxide is produced by many organic processes, and is a convenient volatile cue for insects1 searching for blood hosts2, flowers3, communal nests4, fruit5, and wildfires6. Curiously, although Drosophila melanogaster feed on yeast that produce CO2 and ethanol during fermentation, laboratory experiments suggest that walking flies avoid CO27–12. Here, we resolve this paradox by showing that both flying and walking Drosophila find CO2 attractive, but only when in an active state associated with foraging. Aversion at low activity levels may be an adaptation to avoid CO2-seeking-parasites, or succumbing to respiratory acidosis in the presence of high concentrations of CO2 that exist in nature13,14. In contrast to CO2, flies are attracted to ethanol in all behavioral states, and invest twice the time searching near ethanol compared to CO2. These behavioral differences reflect the fact that whereas CO2 is generated by many natural processes, ethanol is a unique signature of yeast fermentation. Using genetic tools, we determined that the evolutionarily ancient ionotropic co-receptor IR25a is required for CO2 attraction, and that the receptors necessary for CO2 avoidance are not involved. Our study lays the foundation for future research to determine the neural circuits underlying both state- and odorant- dependent decision making in Drosophila.
Collapse
|
29
|
Exclusive shift from path integration to visual cues during the rapid escape run of fiddler crabs. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Abstract
The desert ant Cataglyphis fortis inhabits the North African saltpans where it individually forages for dead arthropods. Homing ants rely mainly on path integration, i.e., the processing of directional information from a skylight compass and distance information from an odometer. Due to the far-reaching foraging runs, path integration is error-prone and guides the ants only to the vicinity of the nest, where the ants then use learned visual and olfactory cues to locate the inconspicuous nest entrance. The learning of odors associated with the nest entrance is well established. We furthermore know that foraging Cataglyphis use the food-derived necromone linoleic acid to pinpoint dead insects. Here we show that Cataglyphis in addition can learn the association of a given odor with food. After experiencing food crumbs that were spiked with an innately neutral odor, ants were strongly attracted by the same odor during their next foraging journey. We therefore explored the characteristics of the ants' food-odor memory and identified pronounced differences from their memory for nest-associated odors. Nest odors are learned only after repeated learning trials and become ignored as soon as the ants do not experience them at the nest anymore. In contrast, ants learn food odors after a single experience, remember at least 14 consecutively learned food odors, and do so for the rest of their lives. As an ant experiences many food items during its lifetime, but only a single nest, differentially organized memories for both contexts might be adaptive.
Collapse
|
31
|
Römer D, Bollazzi M, Roces F. Carbon dioxide sensing in the social context: Leaf-cutting ants prefer elevated CO 2 levels to tend their brood. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:40-47. [PMID: 29778905 DOI: 10.1016/j.jinsphys.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Social insects show temperature and humidity preferences inside their nests to successfully rear brood. In underground nests, ants also encounter rising CO2 concentrations with increasing depth. It is an open question whether they use CO2 as a cue to decide where to place and tend the brood. Leaf-cutting ants do show CO2 preferences for the culturing of their symbiotic fungus. We evaluated their CO2 choices for brood placement in laboratory experiments. Workers of Acromyrmex lundii in the process of relocating brood were offered a binary choice consisting of two interconnected chambers with different CO2 concentrations. Values ranged from atmospheric to high concentrations of 4% CO2. The CO2 preferences shown by workers for themselves and for brood placement were assessed by quantifying the number of workers and relocated brood in each chamber. Ants showed clear CO2 preferences for brood placement. They avoided atmospheric levels, 1% and 4% CO2, and showed a preference for levels of 3%. This is the first report of CO2 preferences for the maintenance of brood in social insects. The observed preferences for brood location were independent of the workers' own CO2 preferences, since they showed no clear-cut pattern. Workers' CO2 preferences for brood maintenance were slightly higher than those reported for fungus culturing, although brood is reared in the same chambers as the fungus in leaf-cutting ant nests. Workers' choices for brood placement in natural nests are likely the result of competing preferences for other environmental factors more crucial for brood survival, aside from those for CO2.
Collapse
Affiliation(s)
- Daniela Römer
- Department of Behavioral Physiology and Sociobiology, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; Unidad de Entomología, Departamento de Protección Vegetal, Facultad de Agronomía, Avda. Eugenio Garzon 780, Universidad de la República, 12900 Montevideo, Uruguay.
| | - Martin Bollazzi
- Unidad de Entomología, Departamento de Protección Vegetal, Facultad de Agronomía, Avda. Eugenio Garzon 780, Universidad de la República, 12900 Montevideo, Uruguay.
| | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
32
|
Freas CA, Schultheiss P. How to Navigate in Different Environments and Situations: Lessons From Ants. Front Psychol 2018; 9:841. [PMID: 29896147 PMCID: PMC5986876 DOI: 10.3389/fpsyg.2018.00841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023] Open
Abstract
Ants are a globally distributed insect family whose members have adapted to live in a wide range of different environments and ecological niches. Foraging ants everywhere face the recurring challenge of navigating to find food and to bring it back to the nest. More than a century of research has led to the identification of some key navigational strategies, such as compass navigation, path integration, and route following. Ants have been shown to rely on visual, olfactory, and idiothetic cues for navigational guidance. Here, we summarize recent behavioral work, focusing on how these cues are learned and stored as well as how different navigational cues are integrated, often between strategies and even across sensory modalities. Information can also be communicated between different navigational routines. In this way, a shared toolkit of fundamental navigational strategies can lead to substantial flexibility in behavioral outcomes. This allows individual ants to tune their behavioral repertoire to different tasks (e.g., foraging and homing), lifestyles (e.g., diurnal and nocturnal), or environments, depending on the availability and reliability of different guidance cues. We also review recent anatomical and physiological studies in ants and other insects that have started to reveal neural correlates for specific navigational strategies, and which may provide the beginnings of a truly mechanistic understanding of navigation behavior.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Patrick Schultheiss
- Research Center on Animal Cognition, Center for Integrative Biology, French National Center for Scientific Research, Toulouse University, Toulouse, France
| |
Collapse
|
33
|
Buehlmann C, Fernandes ASD, Graham P. The interaction of path integration and terrestrial visual cues in navigating desert ants: what can we learn from path characteristics? ACTA ACUST UNITED AC 2018; 221:jeb.167304. [PMID: 29146769 DOI: 10.1242/jeb.167304] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/12/2017] [Indexed: 11/20/2022]
Abstract
Ant foragers make use of multiple navigational cues to navigate through the world and the combination of innate navigational strategies and the learning of environmental information is the secret to their navigational success. We present here detailed information about the paths of Cataglyphis fortis desert ants navigating by an innate strategy, namely path integration. Firstly, we observed that the ants' walking speed decreases significantly along their homing paths, such that they slow down just before reaching the goal, and maintain a slower speed during subsequent search paths. Interestingly, this drop in walking speed is independent of absolute home-vector length and depends on the proportion of the home vector that has been completed. Secondly, we found that ants are influenced more strongly by novel or altered visual cues the further along the homing path they are. These results suggest that path integration modulates speed along the homing path in a way that might help ants search for, utilise or learn environmental information at important locations. Ants walk more slowly and sinuously when encountering novel or altered visual cues and occasionally stop and scan the world; this might indicate the re-learning of visual information.
Collapse
Affiliation(s)
- Cornelia Buehlmann
- University of Sussex, School of Life Sciences, Falmer, Brighton BN1 9QG, UK
| | | | - Paul Graham
- University of Sussex, School of Life Sciences, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
34
|
|
35
|
Murakami H, Tomaru T, Gunji YP. Interaction between path integration and visual orientation during the homing run of fiddler crabs. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170954. [PMID: 28989787 PMCID: PMC5627127 DOI: 10.1098/rsos.170954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Foraging fiddler crabs form a strict spatial relationship between their current positions and burrows, allowing them to run directly back to their burrows when startled even without visual contacts. Path integration (PI), the underlying mechanism, is a universal navigation strategy through which animals continuously integrate directions and distances of their movements. However, we report that fiddler crabs also use visual orientation during homing runs using burrow entrances as cues, with the prioritised mechanism (i.e. PI or visual) determined by the distance (which has a threshold value) between the goal, indicated by PI, and the visual cue. When we imposed homing errors using fake entrances (visual cue) and masking their true burrows (goal of PI), we found that frightened fiddler crabs initially ran towards the true burrow following PI, then altered their behaviour depending on the distance between the fake entrance and masked true burrow: if the distance was large, they kept running until they reached the true burrow, ignoring the visual cue; however, if the distance was small, they altered the homing path and ran until they reached the fake entrance. This suggests that PI and visual mechanism in fiddler crabs are mutually mediated to achieve their homing behaviour.
Collapse
Affiliation(s)
- Hisashi Murakami
- Department of Information Systems Creation, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Takenori Tomaru
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yukio-Pegio Gunji
- School of Fundamental Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| |
Collapse
|
36
|
Römer D, Bollazzi M, Roces F. Carbon dioxide sensing in an obligate insect-fungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus. PLoS One 2017; 12:e0174597. [PMID: 28376107 PMCID: PMC5380341 DOI: 10.1371/journal.pone.0174597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/10/2017] [Indexed: 11/19/2022] Open
Abstract
Defense against biotic or abiotic stresses is one of the benefits of living in symbiosis. Leaf-cutting ants, which live in an obligate mutualism with a fungus, attenuate thermal and desiccation stress of their partner through behavioral responses, by choosing suitable places for fungus-rearing across the soil profile. The underground environment also presents hypoxic (low oxygen) and hypercapnic (high carbon dioxide) conditions, which can negatively influence the symbiont. Here, we investigated whether workers of the leaf-cutting ant Acromyrmex lundii use the CO2 concentration as an orientation cue when selecting a place to locate their fungus garden, and whether they show preferences for specific CO2 concentrations. We also evaluated whether levels preferred by workers for fungus-rearing differ from those selected for themselves. In the laboratory, CO2 preferences were assessed in binary choices between chambers with different CO2 concentrations, by quantifying number of workers in each chamber and amount of relocated fungus. Leaf-cutting ants used the CO2 concentration as a spatial cue when selecting places for fungus-rearing. A. lundii preferred intermediate CO2 levels, between 1 and 3%, as they would encounter at soil depths where their nest chambers are located. In addition, workers avoided both atmospheric and high CO2 levels as they would occur outside the nest and at deeper soil layers, respectively. In order to prevent fungus desiccation, however, workers relocated fungus to high CO2 levels, which were otherwise avoided. Workers' CO2 preferences for themselves showed no clear-cut pattern. We suggest that workers avoid both atmospheric and high CO2 concentrations not because they are detrimental for themselves, but because of their consequences for the symbiotic partner. Whether the preferred CO2 concentrations are beneficial for symbiont growth remains to be investigated, as well as whether the observed preferences for fungus-rearing influences the ants' decisions where to excavate new chambers across the soil profile.
Collapse
Affiliation(s)
- Daniela Römer
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Unidad de Entomología, Departamento de Protección Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| | - Martin Bollazzi
- Unidad de Entomología, Departamento de Protección Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
37
|
Boulay R, Aron S, Cerdá X, Doums C, Graham P, Hefetz A, Monnin T. Social Life in Arid Environments: The Case Study of Cataglyphis Ants. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:305-321. [PMID: 27860520 DOI: 10.1146/annurev-ento-031616-034941] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Unlike most desert-dwelling animals, Cataglyphis ants do not attempt to escape the heat; rather, they apply their impressive heat tolerance to avoid competitors and predators. This thermally defined niche has promoted a range of adaptations both at the individual and colony levels. We have also recently discovered that within the genus Cataglyphis there are incredibly diverse social systems, modes of reproduction, and dispersal, prompting the tantalizing question of whether social diversity may also be a consequence of the harsh environment within which we find these charismatic ants. Here we review recent advances regarding the physiological, behavioral, life-history, colony, and ecological characteristics of Cataglyphis and consider perspectives on future research that will build our understanding of organic adaptive responses to desertification.
Collapse
Affiliation(s)
- Raphaël Boulay
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- Institute of Insect Biology, Tours University, 37200 Tours, France
| | - Serge Aron
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, 1050, Belgium
| | - Xim Cerdá
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- Doñana Biological Station, CSIC, 41092 Seville, Spain
| | - Claudie Doums
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- Institute of Systematics, Evolution, and Biodiversity, CNRS, UPMC, EPHE, MNHN, 75005 Paris, France
| | - Paul Graham
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Abraham Hefetz
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Thibaud Monnin
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- UMR 7618, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris, France
| |
Collapse
|
38
|
Clay M, Stoeckel J, Helms B. The role of abiotic and biotic cues in burrow habitat selection by juvenile crayfish. BEHAVIOUR 2017. [DOI: 10.1163/1568539x-00003463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Environmental cues contain critical information for individuals while searching for mates and suitable habitat. Crayfish have well-developed chemosensory abilities for detecting environmental cues in water; much less is known about these abilities on land. The Devil crayfish (Cambarus diogenes) is a burrowing crayfish often found in dense floodplain colonies as adults. Juveniles however are released in surface water and must navigate overland to burrow. Previous work demonstrates juveniles use cues from conspecific adults, and to a lesser extent, soil cues, for burrow site selection. Using mesocosms, we build on this by examining burrowing cues associated with (1) congeneric adults, (2) excavated burrow material and (3) other juveniles. In contrast to conspecific adults, cues provided by congeneric adults did not override cues associated with soil type. Similarly, juveniles burrowed closer to conspecific adult burrow mounds than to congeneric and human-built mounds. Juveniles also showed significant grouping behaviour in the absence of all other cues. These results suggest juvenile crayfish integrate multiple terrestrial cues for burrow site selection.
Collapse
Affiliation(s)
- Mallary Clay
- Christ School, 500 Christ School Road, Arden, NC 28704, USA
| | - Jim Stoeckel
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Brian Helms
- Department of Biological and Environmental Sciences, Troy University, Troy, AL 36082, USA
| |
Collapse
|
39
|
Webb B, Wystrach A. Neural mechanisms of insect navigation. CURRENT OPINION IN INSECT SCIENCE 2016; 15:27-39. [PMID: 27436729 DOI: 10.1016/j.cois.2016.02.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 06/06/2023]
Abstract
We know more about the ethology of insect navigation than the neural substrates. Few studies have shown direct effects of brain manipulation on navigational behaviour; or measure brain responses that clearly relate to the animal's current location or spatial target, independently of specific sensory cues. This is partly due to the methodological problems of obtaining neural data in a naturally behaving animal. However, substantial indirect evidence, such as comparative anatomy and knowledge of the neural circuits that provide relevant sensory inputs provide converging arguments for the role of some specific brain areas: the mushroom bodies; and the central complex. Finally, modelling can help bridge the gap by relating the computational requirements of a given navigational task to the type of computation offered by different brain areas.
Collapse
Affiliation(s)
- Barbara Webb
- School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh EH8 9AB, UK.
| | - Antoine Wystrach
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique, Universite Paul Sabatier, Toulouse, France
| |
Collapse
|
40
|
Knaden M, Graham P. The Sensory Ecology of Ant Navigation: From Natural Environments to Neural Mechanisms. ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:63-76. [PMID: 26527301 DOI: 10.1146/annurev-ento-010715-023703] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Animals moving through the world are surrounded by potential information. But the components of this rich array that they extract will depend on current behavioral requirements and the animal's own sensory apparatus. Here, we consider the types of information available to social hymenopteran insects, with a specific focus on ants. This topic has a long history and much is known about how ants and other insects use idiothetic information, sky compasses, visual cues, and odor trails. Recent research has highlighted how insects use other sensory information for navigation, such as the olfactory cues provided by the environment. These cues are harder to understand because they submit less easily to anthropomorphic analysis. Here, we take an ecological approach, considering first what information is available to insects, then how different cues might interact, and finally we discuss potential neural correlates of these behaviors.
Collapse
Affiliation(s)
- Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Paul Graham
- Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton, BN1 9RH, United Kingdom;
| |
Collapse
|
41
|
Environmental stability modulates the role of path integration in human navigation. Cognition 2015; 142:96-109. [DOI: 10.1016/j.cognition.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 11/19/2022]
|
42
|
|
43
|
Schmitt F, Stieb SM, Wehner R, Rössler W. Experience-related reorganization of giant synapses in the lateral complex: Potential role in plasticity of the sky-compass pathway in the desert antCataglyphis fortis. Dev Neurobiol 2015; 76:390-404. [DOI: 10.1002/dneu.22322] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/29/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Franziska Schmitt
- University of Würzburg, Biozentrum, Behavioral Physiology and Sociobiology (Zoology II); Am Hubland 97074 Würzburg Germany
| | - Sara Mae Stieb
- University of Würzburg, Biozentrum, Behavioral Physiology and Sociobiology (Zoology II); Am Hubland 97074 Würzburg Germany
| | - Rüdiger Wehner
- University of Zürich, Zoologisches Institut, Brain Research Institute; Winterthurerstraße 190, 8057 Zürich Switzerland
| | - Wolfgang Rössler
- University of Würzburg, Biozentrum, Behavioral Physiology and Sociobiology (Zoology II); Am Hubland 97074 Würzburg Germany
| |
Collapse
|
44
|
Bau J, Cardé RT. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects. Integr Comp Biol 2015; 55:461-77. [DOI: 10.1093/icb/icv036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Kamran M, Moore PA. Comparative Homing Behaviors in Two Species of Crayfish,Fallicambarus FodiensandOrconectes Rusticus. Ethology 2015. [DOI: 10.1111/eth.12392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maryam Kamran
- Laboratory for Sensory Ecology; Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind and Behavior; Bowling Green State University; Bowling Green OH USA
| | - Paul A. Moore
- Laboratory for Sensory Ecology; Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind and Behavior; Bowling Green State University; Bowling Green OH USA
| |
Collapse
|
46
|
Route-segment odometry and its interactions with global path-integration. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:617-30. [DOI: 10.1007/s00359-015-1001-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/08/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
|
47
|
Stürzl W, Grixa I, Mair E, Narendra A, Zeil J. Three-dimensional models of natural environments and the mapping of navigational information. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:563-84. [DOI: 10.1007/s00359-015-1002-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 11/24/2022]
|
48
|
Egocentric and geocentric navigation during extremely long foraging paths of desert ants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:609-16. [DOI: 10.1007/s00359-015-0998-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
|
49
|
Abstract
A wide variety of insects use spatial memories in behaviours like holding a position in air or flowing water, in returning to a place of safety, and in foraging. The Hymenoptera, in particular, have evolved life-histories requiring reliable spatial memories to support the task of provisioning their young. Behavioural experiments, primarily on social bees and ants, reveal the mechanisms by which these memories are employed for guidance to spatial goals and suggest how the memories, and the processing streams that use them, may be organized. We discuss three types of memory-based guidance which, together, can explain a large part of observed insect spatial behaviour. Two of these, alignment image-matching and positional image-matching, are based on an insect's remembered views of its surroundings: The first uses views to keep to a familiar heading and the second to head towards a familiar place. The third type of guidance is based on a process of path integration by which an insect monitors its distance and direction from its nest through odometric and compass information. To a large degree, these guidance mechanisms appear to involve modular computational systems. We discuss the lack of evidence for cognitive maps in insects, and in particular the evidence against a map based on path integration, in which view-based and path integration memories might be combined. We suggest instead that insects have a collective of separate guidance systems, which cooperate and train each other, and together provide reliable guidance over a range of conditions.
Collapse
Affiliation(s)
- Matthew Collett
- Department of Psychology, University of Exeter, Perry Rd, Exeter EX4 4QG, Devon, UK.
| | | | | |
Collapse
|
50
|
Buehlmann C, Graham P, Hansson BS, Knaden M. Desert ants locate food by combining high sensitivity to food odors with extensive crosswind runs. Curr Biol 2014; 24:960-4. [PMID: 24726153 DOI: 10.1016/j.cub.2014.02.056] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 12/22/2022]
Abstract
Desert ants feeding on dead arthropods forage for food items that are distributed unpredictably in space and time in the food-scarce terrain of the Saharan salt pans [1]. Scavengers of the genus Cataglyphis forage individually and do not lay pheromone trails [2]. They rely primarily on path integration [3] for navigation and, in addition, use visual [4] and olfactory cues [5-7]. While most studies have focused on the navigational mechanisms of ants targeting a familiar place like the nest or a learned feeding site, little is known about how ants locate food in their natural environment. Here we show that Cataglyphis fortis is highly sensitive to and attracted by food odors, especially the necromone linoleic acid, enabling them to locate tiny arthropods over several meters in distance. Furthermore, during the search for food, ants use extensive crosswind walks that increase the chances of localizing food plumes. By combining high sensitivity toward food odors with crosswind runs, the ants efficiently screen the desert for food and hence reduce the time spent foraging in their harsh desert environment.
Collapse
Affiliation(s)
- Cornelia Buehlmann
- Max Planck Institute for Chemical Ecology, Hans-Knoell Strasse 8, 07745 Jena, Germany; School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Paul Graham
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Hans-Knoell Strasse 8, 07745 Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Hans-Knoell Strasse 8, 07745 Jena, Germany.
| |
Collapse
|