Kee T, Sanda P, Gupta N, Stopfer M, Bazhenov M. Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit.
PLoS Comput Biol 2015;
11:e1004531. [PMID:
26458212 PMCID:
PMC4601731 DOI:
10.1371/journal.pcbi.1004531]
[Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/28/2015] [Indexed: 11/23/2022] Open
Abstract
Inhibitory interneurons play critical roles in shaping the firing patterns of principal neurons in many brain systems. Despite difference in the anatomy or functions of neuronal circuits containing inhibition, two basic motifs repeatedly emerge: feed-forward and feedback. In the locust, it was proposed that a subset of lateral horn interneurons (LHNs), provide feed-forward inhibition onto Kenyon cells (KCs) to maintain their sparse firing—a property critical for olfactory learning and memory. But recently it was established that a single inhibitory cell, the giant GABAergic neuron (GGN), is the main and perhaps sole source of inhibition in the mushroom body, and that inhibition from this cell is mediated by a feedback (FB) loop including KCs and the GGN. To clarify basic differences in the effects of feedback vs. feed-forward inhibition in circuit dynamics we here use a model of the locust olfactory system. We found both inhibitory motifs were able to maintain sparse KCs responses and provide optimal odor discrimination. However, we further found that only FB inhibition could create a phase response consistent with data recorded in vivo. These findings describe general rules for feed-forward versus feedback inhibition and suggest GGN is potentially capable of providing the primary source of inhibition to the KCs. A better understanding of how inhibitory motifs impact post-synaptic neuronal activity could be used to reveal unknown inhibitory structures within biological networks.
Understanding how inhibitory neurons interact with excitatory neurons is critical for understanding the behaviors of neuronal networks. Here we address this question with simple but biologically relevant models based on the anatomy of the locust olfactory pathway. Two ubiquitous and basic inhibitory motifs were tested: feed-forward and feedback. Feed-forward inhibition typically occurs between different brain areas when excitatory neurons excite inhibitory cells, which then inhibit a group of postsynaptic excitatory neurons outside of the initializing excitatory neurons’ area. On the other hand, the feedback inhibitory motif requires a population of excitatory neurons to drive the inhibitory cells, which in turn inhibit the same population of excitatory cells. We found the type of the inhibitory motif determined the timing with which each group of cells fired action potentials in comparison to one another (relative timing). It also affected the range of inhibitory neurons’ activity, with the inhibitory neurons having a wider range in the feedback circuit than that in the feed-forward one. These results will allow predicting the type of the connectivity structure within unexplored biological circuits given only electrophysiological recordings.
Collapse