1
|
Olsen JG, Prestel A, Kassem N, Broendum SS, Shamim HM, Simonsen S, Grysbæk M, Mortensen J, Rytkjær LL, Haxholm GW, Marabini R, Holmberg C, Carr AM, Crehuet R, Nielsen O, Kragelund BB. Checkpoint activation by Spd1: a competition-based system relying on tandem disordered PCNA binding motifs. Nucleic Acids Res 2024; 52:2030-2044. [PMID: 38261971 PMCID: PMC10939359 DOI: 10.1093/nar/gkae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
DNA regulation, replication and repair are processes fundamental to all known organisms and the sliding clamp proliferating cell nuclear antigen (PCNA) is central to all these processes. S-phase delaying protein 1 (Spd1) from S. pombe, an intrinsically disordered protein that causes checkpoint activation by inhibiting the enzyme ribonucleotide reductase, has one of the most divergent PCNA binding motifs known. Using NMR spectroscopy, in vivo assays, X-ray crystallography, calorimetry, and Monte Carlo simulations, an additional PCNA binding motif in Spd1, a PIP-box, is revealed. The two tandemly positioned, low affinity sites exchange rapidly on PCNA exploiting the same binding sites. Increasing or decreasing the binding affinity between Spd1 and PCNA through mutations of either motif compromised the ability of Spd1 to cause checkpoint activation in yeast. These results pinpoint a role for PCNA in Spd1-mediated checkpoint activation and suggest that its tandemly positioned short linear motifs create a neatly balanced competition-based system, involving PCNA, Spd1 and the small ribonucleotide reductase subunit, Suc22R2. Similar mechanisms may be relevant in other PCNA binding ligands where divergent binding motifs so far have gone under the PIP-box radar.
Collapse
Affiliation(s)
- Johan G Olsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Noah Kassem
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Sebastian S Broendum
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hossain Mohammad Shamim
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Signe Simonsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin Grysbæk
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Josefine Mortensen
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Louise Lund Rytkjær
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Gitte W Haxholm
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Riccardo Marabini
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Christian Holmberg
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, John Maynard Smith Building, Falmer, BN1 9RQ, Brighton
| | - Ramon Crehuet
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, c/ Jordi Girona 18-26, 08034 Barcelona
| | - Olaf Nielsen
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
2
|
Fleck O, Fahnøe U, Løvschal KV, Gasasira MFU, Marinova IN, Kragelund BB, Carr AM, Hartsuiker E, Holmberg C, Nielsen O. Deoxynucleoside Salvage in Fission Yeast Allows Rescue of Ribonucleotide Reductase Deficiency but Not Spd1-Mediated Inhibition of Replication. Genes (Basel) 2017; 8:E128. [PMID: 28441348 PMCID: PMC5448002 DOI: 10.3390/genes8050128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
In fission yeast, the small, intrinsically disordered protein S-phase delaying protein 1 (Spd1) blocks DNA replication and causes checkpoint activation at least in part, by inhibiting the enzyme ribonucleotide reductase, which is responsible for the synthesis of DNA. The CRL4Cdt2 E3 ubiquitin ligase mediates degradation of Spd1 and the related protein Spd2 at S phase of the cell cycle. We have generated a conditional allele of CRL4Cdt2, by expressing the highly unstable substrate-recruiting protein Cdt2 from a repressible promoter. Unlike Spd1, Spd2 does not regulate deoxynucleotide triphosphate (dNTP) pools; yet we find that Spd1 and Spd2 together inhibit DNA replication upon Cdt2 depletion. To directly test whether this block of replication was solely due to insufficient dNTP levels, we established a deoxy-nucleotide salvage pathway in fission yeast by expressing the human nucleoside transporter human equilibrative nucleoside transporter 1 (hENT1) and the Drosophila deoxynucleoside kinase. We present evidence that this salvage pathway is functional, as 2 µM of deoxynucleosides in the culture medium is able to rescue the growth of two different temperature-sensitive alleles controlling ribonucleotide reductase. However, salvage completely failed to rescue S phase delay, checkpoint activation, and damage sensitivity, which was caused by CRL4Cdt2 inactivation, suggesting that Spd1-in addition to repressing dNTP synthesis-together with Spd2, can inhibit other replication functions. We propose that this inhibition works at the point of the replication clamp proliferating cell nuclear antigen, a co-factor for DNA replication.
Collapse
Affiliation(s)
- Oliver Fleck
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- North West Cancer Research Institute, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Ulrik Fahnøe
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Katrine Vyff Løvschal
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | | | - Irina N Marinova
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK.
| | - Edgar Hartsuiker
- North West Cancer Research Institute, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Christian Holmberg
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Olaf Nielsen
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
Vejrup-Hansen R, Fleck O, Landvad K, Fahnøe U, Broendum SS, Schreurs AS, Kragelund BB, Carr AM, Holmberg C, Nielsen O. Spd2 assists Spd1 in the modulation of ribonucleotide reductase architecture but does not regulate deoxynucleotide pools. J Cell Sci 2014; 127:2460-70. [PMID: 24652833 DOI: 10.1242/jcs.139816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
In yeasts, small intrinsically disordered proteins (IDPs) modulate ribonucleotide reductase (RNR) activity to ensure an optimal supply of dNTPs for DNA synthesis. The Schizosaccharomyces pombe Spd1 protein can directly inhibit the large RNR subunit (R1), import the small subunit (R2) into the nucleus and induce an architectural change in the R1-R2 holocomplex. Here, we report the characterization of Spd2, a protein with sequence similarity to Spd1. We show that Spd2 is a CRL4(Cdt2)-controlled IDP that functions together with Spd1 in the DNA damage response and in modulation of RNR architecture. However, Spd2 does not regulate dNTP pools and R2 nuclear import. Furthermore, deletion of spd2 only weakly suppresses the Rad3(ATR) checkpoint dependency of CRL4(Cdt2) mutants. However, when we raised intracellular dNTP pools by inactivation of RNR feedback inhibition, deletion of spd2 could suppress the checkpoint dependency of CRL4(Cdt2) mutant cells to the same extent as deletion of spd1. Collectively, these observations suggest that Spd1 on its own regulates dNTP pools, whereas in combination with Spd2 it modulates RNR architecture and sensitizes cells to DNA damage.
Collapse
Affiliation(s)
- Rasmus Vejrup-Hansen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Oliver Fleck
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark NWCR Institute, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Katrine Landvad
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Ulrik Fahnøe
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Sebastian S Broendum
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Ann-Sofie Schreurs
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | - Christian Holmberg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Olaf Nielsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| |
Collapse
|